
UFO: Verification with Interpolants and
Abstract Interpretation (Competition

Contribution)

Aws Albarghouthi1, Arie Gurfinkel2, Yi Li1, Sagar Chaki2, and Marsha
Chechik1

1Department of Computer Science, University of Toronto, Canada
2Software Engineering Institute, Carnegie Mellon University, USA

1 Verification Approach

The algorithms underlying Ufo are described in [1–3]. The Ufo tool is described
in more detail in [4].

Ufo marries the power and efficiency of numerical Abstract Interpretation
(AI) domains [6] with the generalizing ability of interpolation-based software
verification in an abstraction refinement loop. More formally: given a program
P , a safety property ϕ, and some abstract domain A, Ufo starts by computing
an inductive invariant I of P in A. If I ⇒ ϕ, then we know that P satisfies ϕ,
i.e., P cannot reach any of the error states characterized by ¬ϕ. Otherwise, if
I 6⇒ ϕ, Ufo uses SMT solving to check whether the alarm raised by I maps to
a real bug in the code. To do so, Ufo encodes all of the program paths explored
by abstract interpretation as a formula, and uses an SMT solver to check its
satisfiability. If the formula is satisfiable, an erroneous execution is reported to
the user. Otherwise, an interpolation technique guided by the results of AI is
used to strengthen I into I ′, where I ′ ⇒ ϕ. If I ′ is no longer inductive, abstract
interpretation continues from the set of states described by I ′. Otherwise, the
program is safe.

2 Software Architecture

Ufo is implemented in C++ in the LLVM compiler infrastructure [7] as a general
verification framework. Its architecture is shown in Fig. 1. In what follows, we
describe our instantiation of the framework for the purposes of the competition.

Preprocessing Phase. The first step in this phase is converting a given pro-
gram into the LLVM intermediate representation. Following that, we perform
compiler optimizations and preprocessing in order to simplify the verification
process. As a preprocessing step, we initialize uninitialized variables using non-
deterministic functions. This is used to bridge the gap between the verification
semantics (which assume a non-determinsitic assignment) and compiler seman-
tics, which presets unitialized variables with the goal of optimizing the code. For
optimizations, we perform a number of program simplifications such as function
inlining, converting the program into the static single assignment (SSA) form by
reducing memory operations into SSA registers, removing dead code, etc.



Optimizations
for

verification

Optimized
program P o Cutpoint

Graph (CG)
constructor

Weak Toplogical
Ordering (WTO)

Preprocessing Phase

CG
WTO

Analysis Phase

ARG Constructor
(main algorithm)

CG

SMT
solver

interface

Interpolating
SMT solver

Program P with
assertions

Abstract
post

Refiner

C to
LLVM

bitcode

Expansion
strategy

Counterexample
or certificate of

correctness

Fig. 1: The architecture of UFO [4].

After the optimization step, we represent the program as a Cutpoint Graph
(CG), a control-flow graph where each node is a cutpoint in the original program
and each edge is a loop-free execution between two cutpoints. Then, a Weak
Topological Ordering (WTO) [5] is computed for the CG and used later as the
abstract interpretation strategy.

Analysis Phase. The main algorithm constructs an Abtract Reachability Graph
(ARG), a labelled unrolling of the program that represents an inductive invari-
ant using a given abstract domain. The ARG contructor is parameterized by the
abstract domain used and the refinement strategy:
– Abstract domains: The abstract domains we use are Box (intervals), Boxes [6]

(intervals with disjunctions), and Cartesian and Boolean predicate abstrac-
tion. Our experiments have shown that different domains are useful for dif-
ferent problems and there is no clear winner. Thus, for the purposes of the
competition, we instrumented Ufo to run multiple analysis instances with
different domains in parallel, reporting the results of the fastest instance.

– Refinement : As a refinement strategy, we used AI-guided DAG interpolants
from [1]. DAG interpolants annotate a directed acyclic graph of paths using
a single call to an SMT solver, delegating the process of path enumeration
to the SMT solver. In comparison, other techniques, e.g., Impact [8], unroll
the program into a tree, potentially having to refine exponentially many
paths in the size of the program. Furthermore, our refinement strategy uses
the invariant computed by abstract interpretation in the encoding, often
resulting in weaker interpolants and faster SMT solving time.

The Z3 [9] SMT solver is used for satisfiability checking, and MathSAT51

for computing interpolants. Due to the efficiency of Z3, we use it to shrink an
interpolation query by computing an UNSAT core of a formula before handing
it to MathSAT5 for satisfiability checking and interpolation.

The analysis phase results in either SAFE – a safe inductive invariant has
been computed, CEX – a counterexample has been found, or UNKNOWN – implying
that Ufo failed to produce a conclusive result. Counterexamples are produced as
traces over basic blocks in the LLVM intermediate representation of the program.

1 mathsat.fbk.eu



3 Strengths and Weaknesses

Ufo has been succesfully applied to ControlFlowIntegers, SystemC,
DeviceDrivers64, and ProductLines. Currently, Ufo uses linear arithmetic
to model semantics of sequential C programs, making it imprecise for categories
such as BitVectors (requiring bit-level precision), HeapManipulation (requiring
heap tracking), and Concurrency (requiring thread handling). Another weakness
is Ufo’s reliance on multiple tools for the front-end: LLVM 2.6, LLVM 2.9, and
CIL. This increases the trusted computing base and makes it harder to maintain.

The power of Ufo lies in its parameterized nature, allowing instantiations
with different abstract domains and providing a general framework for experi-
menting with verification algorithms.

Tool Setup and Configuration. Ufo is available for download from bitbucket.

org/arieg/ufo/wiki/svcomp13.wiki. The options for running the tool are:

./bin/ufo-svcomp-par.py [-m64] --cex=FILE input

where -m64 turns on 64-bit model, --cex is the location of the counter-example,
and input is a C file.
Acknowledgment. This material is based upon work funded and supported by the
Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a FFRDC2. We also
acknowledge financial support provided by NSERC, NECSIS and Alexander Graham
Bell Scholarship.

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Craig Interpretation. In: SAS’12.
LNCS, vol. 7460, pp. 300–316 (2012)

2. Albarghouthi, A., Gurfinkel, A., Chechik, M.: From Under-approximations to Over-
approximations and Back. In: TACAS’12. LNCS, vol. 7214, pp. 157–173 (2012)

3. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Whale: An Interpolation-based Algo-
rithm for Inter-procedural Verification. In: VMCAI’12. vol. 7148, pp. 39–55 (2012)

4. Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: UFO: A Framework for
Abstraction- and Interpolation-Based Software Verification. In: CAV’12. LNCS, vol.
7358, pp. 672–678 (2012)

5. Bourdoncle, F.A.: Efficient Chaotic Iteration Strategies with Widenings. In:
FMPA’93. pp. 128–141. LNCS (1993)

6. Gurfinkel, A., Chaki, S.: Boxes: A Symbolic Abstract Domain of Boxes. In: SAS’10.
LNCS, vol. 6337, pp. 287–303 (2010)

7. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: CGO’04. pp. 75–88 (2004)

8. McMillan, K.L.: Lazy Abstraction with Interpolants. In: CAV’06. LNCS, vol. 4144,
pp. 123–136 (2006)

9. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: TACAS’08. LNCS, vol.
4963, pp. 337–340 (2008)

2
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN ”AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT. This material has been approved for public release and unlimited distribution.
(DM-0000076)


