
A Meta-Study of Software-Change Intentions

JACOB KRÜGER, Eindhoven University of Technology, Eindhoven, Netherlands

YI LI, Nanyang Technological University, Singapore, Singapore

KIRILL LOSSEV, University of Toronto, Toronto, Canada

CHENGUANG ZHU, The University of Texas at Austin, Austin, United States

MARSHA CHECHIK, University of Toronto, Toronto, Canada

THORSTEN BERGER, Ruhr-University Bochum, Bochum, Germany

JULIA RUBIN, The University of British Columbia, Vancouver, Canada

Every software system undergoes changes, for example, to add new features, fix bugs, or refactor code.
The importance of understanding software changes has been widely recognized, resulting in various tech-
niques and studies, for instance, on change-impact analysis or classifying developers’ activities. Since changes
are triggered by developers’ intentions—something they plan or want to change in the system—many re-
searchers have studied intentions behind changes. While there appears to be a consensus among software-
engineering researchers and practitioners that knowing the intentions behind software changes is impor-
tant, it is not clear how developers can actually benefit from this knowledge. In fact, there is no consoli-
dated, recent overview of the state of the art on software-change intentions (SCIs) and their relevance for
software engineering. We present a meta-study of 122 publications, which we used to derive a categoriza-
tion of SCIs and to discuss motivations, evidence, and techniques relating to SCIs. Unfortunately, we found
that individual pieces of research are often disconnected from each other, because a common understand-
ing is missing. Similarly, some publications showcase the potential of knowing SCIs, but more substantial
research to understand the practical benefits of knowing SCIs is needed. Our contributions can help re-
searchers and practitioners improve their understanding of SCIs and how SCIs can aid software engineering
tasks.

CCS Concepts: • General and reference → Surveys and overviews; • Software and its engineering →

Software evolution; Maintaining software;

Additional Key Words and Phrases: Intentions, software evolution, change management, version control

Authors’ Contact Information: Jacob Krüger, Eindhoven University of Technology, Eindhoven, Noord-Brabant, Nether-
lands; e-mail: j.kruger@tue.nl; Yi Li, Nanyang Technological University, Singapore, Singapore; e-mail: yi_li@ntu.edu.sg;
Kirill Lossev, University of Toronto, Toronto, Ontario, Canada; e-mail: kirill.lossev@mail.utoronto.ca; Chenguang Zhu,
The University of Texas at Austin, Austin, Texas, United States; e-mail: cgzhu@utexas.edu; Marsha Chechik, University of
Toronto, Toronto, Ontario, Canada; e-mail: chechik@cs.toronto.edu; Thorsten Berger, Ruhr-University Bochum, Bochum,
Nordrhein-Westfalen, Germany; e-mail: thorsten.berger@rub.de; Julia Rubin, The University of British Columbia, Vancou-
ver, British Columbia, Canada; e-mail: mjulia@ece.ubc.ca.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 0360-0300/2024/10-ART300
https://doi.org/10.1145/3661484

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

HTTPS://ORCID.ORG/0000-0002-0283-248X
HTTPS://ORCID.ORG/0000-0003-4562-8208
HTTPS://ORCID.ORG/0009-0006-1383-2035
HTTPS://ORCID.ORG/0000-0002-7343-8279
HTTPS://ORCID.ORG/0000-0002-6301-3517
HTTPS://ORCID.ORG/0000-0002-3870-5167
HTTPS://ORCID.ORG/0000-0001-7280-1614
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3661484
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3661484&domain=pdf&date_stamp=2024-10-01

300:2 J. Krüger et al.

ACM Reference Format:

Jacob Krüger, Yi Li, Kirill Lossev, Chenguang Zhu, Marsha Chechik, Thorsten Berger, and Julia Rubin. 2024.
A Meta-Study of Software-Change Intentions. ACM Comput. Surv. 56, 12, Article 300 (October 2024), 41 pages.
https://doi.org/10.1145/3661484

1 Introduction

Software systems evolve rapidly, which is reflected in the many changes that developers apply to
the codebase of their systems [40, 112, 119]. For instance, developers add new features, fix bugs,
improve system performance, or optimize the structure of source code via refactorings. There
seems to be consensus in software-engineering research that knowing such developer intentions
behind a software change is beneficial, for instance, for managing software projects (e.g., for assign-
ing resources to specific activities [102]), for creating training data (e.g., for automated program
repair [99]), or for improving change histories (e.g., to transplant specific changes [100]). Still, de-
velopers’ software-change intentions (SCIs)—specifying what they want(ed) to change in their
system by modifying it—are rarely explicitly recorded. Consequently, many researchers rely on
techniques to automatically recover SCIs, for instance, from commits [37, 41, 50, 53, 159].

Unfortunately, it is challenging to identify the different SCIs that may also be tangled within
a single change and to untangle them [11, 20, 33, 45, 52, 152, 159, 163, 170]. This task is cumber-
some and expensive, since the developers who implemented the changes typically use arbitrary
natural-language descriptions to document changes (e.g., commit messages). Moreover, whether
a description properly reflects on the change (e.g., a change described to fix a bug may also in-
volve refactoring) and which descriptions refer to which SCIs (e.g., “optimization” versus “perfor-
mance improvement”) is often unclear. When we investigated the existing body of research, we
noted that many publications referred to similar or even the same SCIs using different terms, oper-
ated on different levels of granularity, (re-)defined SCIs as they saw fit, and combined or intermixed
orthogonal and overlapping categorizations of SCIs. This challenged our understanding of how dif-
ferent pieces of research were connected, what the actual benefits of using or understanding SCIs
were, and how we could reuse or combine the existing research contributions.

So, despite extensive and very active research [5, 7, 37, 50, 80, 156], an important question re-
mains: What is a common ground for describing SCIs and what is the evidence that knowing SCIs is
useful in practice? Some researchers have classified different types and subsets of SCIs to varying
degrees of abstraction (e.g., as maintenance activities or specific refactorings) [13, 43, 62, 64, 148,
166]. Unfortunately, the more systematic attempts (e.g., those based on literature surveys) of un-
derstanding SCIs are decades old, do not reflect on the benefits of knowing SCIs (e.g., they only
derive or define a taxonomy for the purpose of having one), do not discuss the existing empirical
evidence, and do not consider the problem of intermixed categories. Many publications do not even
mention the term “intention,” even though they are concerned with SCIs. For instance, a typical
scenario is researchers being concerned with identifying bug-fixing (i.e., corrective [148]) software
changes from commits, which can then be used for designing program-repair or fault-prediction
techniques [71, 99, 140, 154]. The researchers typically refer to “bug fix” or “repair” changes, but
essentially identify software changes with a corrective SCI. Since none of the previously proposed
taxonomies has established itself as a common ground for describing SCIs, researchers and prac-
titioners are building on whatever definitions of SCIs are most feasible for them. This, in turn,
complicates building a common knowledge base, comparing research, and collecting reliable evi-
dence on the usefulness of SCIs.

In this article, we present a meta-study in which we identified and analyzed a large body of
research on SCIs to provide a detailed understanding of how knowledge on SCIs is used in research

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

https://doi.org/10.1145/3661484

A Meta-Study of Software-Change Intentions 300:3

and what the actual evidence for benefiting from this knowledge is. To tackle this gap, we defined
four research objectives (ROs) for our meta-study as follows:

RO1 capturing the research on documenting, analyzing, and using SCIs;
RO2 deriving a systematic categorization for describing SCIs;
RO3 collecting empirical evidence on the usefulness of knowing SCIs; and
RO4 comparing techniques that use and recover SCIs.

To identify relevant publications, we conducted a systematic literature review [73]. Our analysis
of the resulting 122 publications is qualitative, investigating their actual content and contributions
rather than providing publication statistics only. We provide in-depth insights into the usefulness
of SCIs as a concept based on this extensive dataset of publications, which is available in a persis-
tent open-access repository.1

Most of the publications we identified focus on techniques (50) or empirical studies (48) and
use SCIs in a wide range of contexts (e.g., predicting maintenance activities, refactoring version
histories). Building on a sample of the publications, we derived a systematic categorization to
provide a structure for organizing SCIs. Unfortunately, we identified little evidence on the practical
benefits of knowing SCIs, even though they are used in various techniques. During our meta-
study, we experienced that understanding and structuring the existing research was challenging,
a problem our categorization helps to tackle.

Our contributions in this article can guide researchers and practitioners in advancing techniques
and studies on software evolution by providing a common ground on SCIs. More precisely, by
capturing the state of the art (RO1), we contribute a concise body of knowledge of the area that
serves as a reference for others. Building on this body of knowledge, we derive a categorization for
describing the notions of SCIs used in the literature (RO2). This provides a single comprehensive
overview of the SCIs used, exemplifies these SCIs, and eases communication as well as knowledge
sharing. The empirical evidence (RO3) indicates the potential impact knowing SCIs can have—but
it also highlights the need for more in-depth studies. By comparing existing techniques (RO4), we
contribute an overview of how SCIs are used and what researchers or practitioners can build upon
to advance software engineering in the future.

The remainder of this article is organized as follows: We describe the methodology of our meta-
study in Section 2. In Section 3, we present the results of our literature search to capture the state of
the art on SCIs (RO1). Then, we address our three remaining research objectives in Section 4 (RO2),
Section 5 (RO3), and Section 6 (RO4), respectively. We discuss potential threats to the validity of
our meta-study in Section 7 and its implications in Section 8. In Section 9, we summarize the related
work before concluding this article in Section 10.

2 Methodology

In this section, we describe our methodology illustrated in Figure 1.

2.1 Initial Screening

Initially, we aimed to survey the literature to identify the current state of the art on intentions
in software engineering in general. For this purpose, we performed an unstructured screening
building on our prior knowledge of the area as well as automated searches using relevant keywords
(e.g., “intent”) in different search engines (e.g., DBLP and Google Scholar). During this screening,
we organized the found publications into the three following categories:

(1) those that describe intention-related concepts in the broader context of software engineering
(e.g., developers’ knowledge of stakeholder intentions) [15, 60, 75, 85, 126, 127, 141, 143, 159];

1https://doi.org/10.5281/zenodo.10977570

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

https://doi.org/10.5281/zenodo.10977570

300:4 J. Krüger et al.

Fig. 1. Overview of our methodology for identifying and analyzing relevant publications. The numbers indi-
cate the numbers of publications stemming from the previous step.

Fig. 2. High-level overview of the role of intentions in software engineering. We are primarily concerned
with SCIs, which we highlight in green.

(2) those that use intentions as a concept to support established use cases (e.g., generating com-
mit messages to specify SCIs) [9, 58, 59, 94, 97, 138, 139]; and

(3) those that report on or use classifications of intentions in software engineering (e.g., for
labeling commits) [21, 25, 47, 91, 101, 148].2

This initial screening allowed us to achieve a high-level understanding of different uses of inten-
tions in software-engineering publications.
Results. From our initial screening, we considered 22 publications and one website (referenced
for each category defined above) as relevant and investigated them in detail. We found that these
sources focus on one or more of four origins of intentions: those expressed by stakeholders of
a system, those implemented by the developers, those behind changes (i.e., SCIs), and those im-
plemented in the system. In Figure 2, we display these origins and their relations as a high-level
overview.
Discussion. Intentions are a key notion in software engineering. Usually, intentions are defined
by a stakeholder of a system who uses that system for a specific purpose, with those intentions
typically being structured around requirements or features. A developer is then responsible for
implementing such intentions by considering the stakeholder’s descriptions and executing a corre-
sponding change (e.g., modifying an asset). Consequently, a software change represents the actual

2https://www.parkersoftware.com/blog/the-4-software-maintenance-categories-and-what-they-mean-for-your-users/

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

https://www.parkersoftware.com/blog/the-4-software-maintenance-categories-and-what-they-mean-for-your-users/

A Meta-Study of Software-Change Intentions 300:5

implementation of the intention (correct or incorrect) in terms of modifications to the system. We
can see that the notion of intentions relates to each step relevant for evolving a software system,
but intentions are often expressed via different notations (e.g., requirements, features, assets, com-
mits, revisions). Unfortunately, while this high-level understanding of intentions describes soft-
ware evolution and provides a good intuition of the connections between the involved notations,
it is far too coarse-grained to actually support researchers or practitioners.

Based on this insight, we decided to refine our analysis through an extensive meta-study to
provide a foundation for our research vision [80]. To limit the scope of this meta-study and ob-
tain a more concise overview, we chose to focus on SCIs. We decided to focus on SCIs, because
a software change represents the actual implementation of an intention in a system—regardless
of whether there have been miscommunication, mismatches, or errors in specifying this intention
at any point. For instance, a software change that is intended to fix a bug represents the actual
implementation of the developer’s solution in terms of modifications to the system, and the inten-
tion typically originates from some stakeholder request (e.g., a bug report). However, the intended
change may not align with the actual change; for instance, the change may involve other inten-
tions of the developer (e.g., tangling refactoring) or may not fulfill its purpose (e.g., not fixing the
bug). For software engineering, it is arguably important to understand SCIs as well as potential
mismatches to their implementation, considering that they should represent stakeholder inten-
tions. Consequently, we argue that the actual software changes provide the best and most relevant
understanding for researchers and practitioners of the way (i.e., actual modifications to the source
code) in which intentions are implemented in a software system.

2.2 Literature Review

To systematically elicit relevant publications for our meta-study, we followed the methodology of
systematic literature reviews [73]. In the following, we report the individual steps of our method-
ology. We do not focus on providing statistics on the publications identified but instead on an
in-depth meta-study of their actual content.
Selection Criteria. We defined selection criteria based on our insights from the initial screening.
While testing different search strings and exploring the results of our automated search (explained
shortly), we identified that these criteria were too broad, leading to the inclusion of many publica-
tions that were not relevant. We iteratively refined our selection criteria during discussions among
all authors until we finally defined three inclusion (IC) and five exclusion (EC) criteria. Specifi-
cally, we included a publication if it satisfies IC1, IC2, and IC3 as follows:

IC1 The publication defines types of changes/intentions from the perspective of developers
(e.g., a taxonomy of intentions or maintenance activities, empirical studies classifying
commits).

IC2 The publication uses types of changes/intentions from the perspective of developers in its
actual contributions (e.g., not only to motivate a piece of work).

IC3 The publication is related to changes/intentions on source code; including other artifacts
only if they are directly mapped to source code.

Please note that we did not assess how “fundamental” SCIs are to the research reported within
a publication (e.g., identifying SCIs versus knowing a SCI to improve a technique). Consequently,
we cover publications that are concerned with SCIs and also those that weakly relate to them. This
is on purpose to provide a more complete overview of how different areas in software engineering
are related to SCIs—and thereby to each other.

We excluded publications that fulfilled any of the following criteria:
EC1 Not written in English;
EC2 Not peer reviewed, such as dissertations, technical reports, or books;

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:6 J. Krüger et al.

EC3 Fewer than three pages (e.g., keynotes, posters);
EC4 Out of scope despite referring directly to intentions and software, for instance, the inten-

tion to use software tools, intent automata, or intentions behind software piracy; or
EC5 Uses intention as a name for a concept unrelated to software changes (e.g., Android uses

the name “intent” for an inter-component messaging system3).
Note that we did not employ a quality assessment of the publications we selected, since our re-
search goal was broader than a comparison of empirical studies (the main purpose of a quality
assessment) and, therefore, involved completely different types of research (e.g., techniques, em-
pirical studies, methodologies) that can hardly be directly compared in terms of quality.
Automated Search. First, we performed an automated search. For this purpose, we built on
the keywords we used during our initial screening to derive a number of search strings. We ex-
perimented with those search strings and explored the publications they returned (e.g., number,
relevance). Based on these trial runs, we added synonyms and tested different combinations of
operators (e.g., AND, OR). In the end, we decided to use two different search strings, which we
executed on the ACM Digital Library Guide to Computing Literature, SCOPUS, and DBLP. We
used these search engines, because they cover a variety of publishers, are (or can be) limited to the
field of Computer Science, and allow bulk downloading of all returned publications. Specifically,
our search strings were as follows:

(1) intent* AND software for ACM and SCOPUS
intent + software for DBLP

(2) (change* OR commit*) AND (intent* OR maint* OR evol*) AND (classif* OR taxono* OR cate-
gor* OR recov* OR extract* OR generat* OR activit* OR label* OR reason* OR trace* OR detect*
OR analy*) for ACM and SCOPUS

DBLP does not allow for complex queries, which is why we did not employ the second search
string on this engine. Furthermore, we limited SCOPUS to Computer Science, aiming to exclude
unrelated research areas. With the first search string, we aimed to capture publications that directly
refer to intentions in the context of software engineering. With the second search string, we built
on our insights from our initial screening and trial runs to derive terms that researchers used in the
context of SCIs. We employed the strings on titles, abstracts, and keywords for ACM and SCOPUS,
whereas DBLP allows searching only over standard bibliographic data (e.g., titles).
Results of the Automated Search. The first author executed the automated searches, which
returned 92 (DBLP), 153 (ACM), and 45 (SCOPUS) publications for the first search string as well as
192 (ACM) and 82 (SCOPUS) for the second one. Next, we consolidated the 564 results into a single
BIB file. Using this file, we removed duplicates with JabRef’s feature for importing new entries (460
results) and the feature for checking for duplicates of JabRef (459) and KBibTex (428). We put the
remaining 428 publications into a spreadsheet that was available to all authors.

For these 428 publications, we employed our initial set of selection criteria on titles, abstracts,
and then full texts if needed. Specifically, the first author checked every publication, while each
other author checked a subset (each publication was reviewed by two authors). During this step,
we determined that we could exclude a number of publications easily, but also had significant dis-
agreements about some of the remaining ones. We found that this was mainly caused by different
interpretations that we had about what exhibits a developer’s intention at the source-code level.
Some of the points of disagreement were “Are transformations code? What about grammars or
models? Is implementing user intentions in the code in the scope of our study? What about ar-
chitectural changes, commit messages, and comments?” With these experiences, we refined our
selection criteria to derive the ones described above. Using these criteria, we re-iterated through

3https://developer.android.com/reference/android/content/Intent

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

https://developer.android.com/reference/android/content/Intent

A Meta-Study of Software-Change Intentions 300:7

all publications we did not yet exclude (i.e., that we included or for which we disagreed) and re-
evaluated their scores. To resolve the remaining disagreements, one author who did not review the
corresponding publication before checked it and provided a reasoning for the final decision. We
repeatedly re-checked all publications during the snowballing and our data analysis (as explained
shortly, we removed five more publications) to ensure that they were actually in the scope of our
meta-study. In the end, we included 36 publications as relevant.
Snowballing. When investigating the 428 publications returned by the automated search, we
found that some publications we knew to be relevant from our initial screening were missing—
even if they matched our search strings. A prominent example for this case was the taxonomy
of Swanson [148] that was not part of the 428 publications. This has likely been caused by the
strong focus of our search strings and technical problems of search engines in the area of computer
science [8, 79, 135]. We decided to perform backwards snowballing [167] on the 36 included pub-
lications to complement our automated search and mitigate such problems. Namely, we iterated
through all 36 publications and extracted their references, resulting in 1,095 additional publications
in a second spreadsheet.
Results of the Snowballing. The first author began with reducing the number of publications
by removing duplicates (939) as well as those clearly not relevant (e.g., from the biology domain,
theses, fewer than three pages) based on the author’s expertise after analyzing the previous sample
of publications (213). Afterwards, the first author applied the selection criteria on each remaining
publication, indicating that 94 publications should be included. To verify that the exclusions and
inclusions were reasonable, three other authors independently cross-checked random samples of
20 different publications each (i.e., we cross-checked 60 of 213 decisions). We identified disagree-
ments in six cases, which we discussed among all authors. In the end, we found that only two of
the included publications should instead be excluded, resulting in 92 publications.

The discussion revealed that the first author was too inclusive in his selection of publications
during the snowballing. This insight enhances our confidence that the sample from the snow-
balling does not miss important publications. We removed six more publications during our data
extraction and detailed analysis, resulting in 86 included publications.

During our analysis, we found that the additional publications confirmed our previous insights
(e.g., we could match them to our categorization of SCIs and characterization of techniques), but
did not reveal new major insights. We considered this as saturation and stopped after the first
iteration of snowballing, ending up with a total of 122 publications as the basis for our meta-study.
Data Extraction. The first author of this article extracted the data for each publication. Then, the
third author checked the extracted data to ensure their correctness. Both authors read through
each publication and extracted data relevant for the respective type of research. Moreover, the
second and fourth authors extracted additional data on the techniques we identified (RO4). All
authors met regularly to discuss and refine the extracted data (e.g., checking whether they were
comprehensible and adding or removing relevant data entries). For each publication, we elicited
the following data:

— Bibliographic Data: A collection of standard data about a publication, namely author names,
title, publication year, and a link to the published version (typically based on a DOI).

— Goal: A one-sentence summary of the main research goal of the publication.
— Type of Contribution: The main contribution of the publication, representing one of the fol-

lowing categories (note that we assigned the dominant type of contribution, e.g., a publica-
tion proposing and empirically evaluating a technique is classified as technique):
– Dataset—the publication presents a dataset of changes, together with some type of SCIs.
– Empirical Study—the publication presents a study related to identifying SCIs or some

software-change phenomena where SCIs may be useful to know.

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:8 J. Krüger et al.

– Literature Review—the publication presents a literature review of software changes, in-
cluding some notion of SCIs (e.g., to classify research or derive a taxonomy).

– Methodology—the publication presents a methodology that incorporates SCIs.
– Taxonomy Proposal—the publication presents a taxonomy (not derived from the literature)

of changes or SCIs, which can refer to the problem space (e.g., perform maintenance) or
to the solution space (e.g., remove a class), which we also recorded.

– Technique—the publication presents a technique for identifying SCIs, or a technique that
relies on some notion of SCIs (e.g., for verifying program behavior).

— Benefits: A brief description of the benefits of knowing SCIs as motivated by the authors. We
were specifically interested in documented use cases for practitioners that go beyond just
understanding the nature of changes, which is only useful for researchers (e.g., for classifying
research that is related to the different types of changes).

— Evidence: A short note whether and what kind of evidence a publication provides on the
usefulness of knowing SCIs.

— Technique: Provides further information about the intention-related technique if one is pre-
sented in the publication. Specifically, we recorded the aim of the technique, its input, out-
put, the underlying technologies (e.g., static analysis, machine learning), and how SCIs are
involved (e.g., to classify commits, as an intermediate entity).

— Taxonomy: A list of different SCIs or types of changes defined or used in the publication (e.g.,
corrective, bug fix, addition).

We documented these data in a shared spreadsheet to which all authors had access.
Reliability of the Results. We continuously discussed our progress and results in weekly
meetings among all authors. Moreover, we employed multiple rounds of verification to ensure
that the elicited publications and data were reliable. First, during the automated search, each
publication was classified by two different authors, with the first author classifying all publications
to obtain an overview understanding. We discussed all discrepancies in the decisions among at
least five authors. Second, recall that we employed the snowballing, because we found that several
publications we identified during the initial screening were missing in our dataset. During the
snowballing, we relied on the first author to classify the publications, but performed cross-checks
on 60 randomly selected publications.. We found that the first author was too inclusive for some
publications, which resulted in further exclusions during our analysis. In summary, we conducted
an extensive literature search with multiple rounds of verification, yielding 122 publications on
various topics—which we argue is a reliable dataset for our meta-study.

2.3 Data Analysis

Next, we report the process of analyzing our dataset of publications.
Classifying the State of the Art (RO1) and Empirical Evidence (RO3). We provide an
overview of how SCIs have been used in the 122 publications (Section 3), and of the empirical
evidence knowing SCIs can have in practice (Section 5). To elicit such qualitative data, the
first author iterated through each publication and extracted relevant statements based on an
open-coding-like process. More specifically, the first author read through each publication to
identify statements that relate to the relevant data fields. For example, the usage of SCIs within
a publication was typically described in the introduction or under methodology. The benefits
and empirical evidence were typically part of results or discussion sections, with summarizing
statements reported in the abstract, introduction, or conclusion. Last, taxonomies used within the
publications were often described within tables and methodologies, usually with an explanation
of how they were created. For instance, a publication may reuse an existing taxonomy (e.g., citing
the one by Swanson [148]), elicit it from a dataset, or define it ad hoc—which we assumed to be

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

A Meta-Study of Software-Change Intentions 300:9

the case if no other explanation has been provided. By iterating through each publication and fo-
cusing on the sections most related to each data entry, the first author carefully extracted relevant
statements (e.g., the taxonomy from a table). Afterwards, the third author cross-checked the data.
Since this process yielded too much detailed data, we performed a data synthesis following an
open-card-sorting-like method [175]. In this step, the first author identified common themes and
topics in the data, for instance, that several publications motivated their work with predicting the
efforts related to software changes. Then, the sixth author iterated through the data to see whether
they were understandable, and cross-checked for individual publications whether the data were
correct. Following this step, all authors agreed to the final structure and level of detail of our
dataset. The first author re-iterated through each publication to update the dataset accordingly.
During this step, he refined statements to be more descriptive, updated the contributions (for
which we decided to adapt the classification above), and re-checked the remaining data. This also
led to the inclusion of one more publication to the dataset, which we accidentally missed during
the snowballing (it may have been removed by the automatic duplicate detection).
Deriving a Categorization of SCIs (RO2). Inspired by the qualitative data-analysis techniques
from grounded theory, namely open and axial coding [145], the fifth and seventh authors indepen-
dently read 20 of the identified publications each (randomly chosen, distinct sets), looking for SCIs
(e.g., a category of activities), their definitions (i.e., of the category), and concrete examples for
these (i.e., individual activities). Then, the two authors met multiple times to discuss and unify the
SCIs, grouping them into five main categories, roughly corresponding to why and when a certain
action is performed; what objects it manipulates; and who will benefit from the action. As the final
outcome, the two authors defined five orthogonal categories: goals, actions, object, customer, and
lifecycle phase. To validate that this categorization would avoid the issues of previous taxonomies
(e.g., overlapping categories, inconsistent terms), we discussed it among all authors and mapped
other SCI-related terms we extracted before to the categories (cf. Section 4). During this process,
we found that we could reassign most terms used in existing publications into one of our distinct
categories without overlaps. Note that we did not aim to provide a unified categorization (i.e., a
full-fledged taxonomy) that involves all terms from every publication, since this would involve
many categories not related to SCIs and result in various levels of granularity. For instance, we
did not map or integrate all sub-types of bugs (subsumed under corrective) or refactorings (sub-
sumed under preventive: improving maintainability) mentioned within the publications into our
categorization (cf. Figure 4) to avoid too many fine-grained types. Instead, we aimed to derive a
categorization that can be used to properly describe SCIs at one level of detail, separating common
orthogonal categories, allowing for extensions or refinements, and resulting in a comprehensive
description of SCIs. Via these means, we aimed to ensure that our categories are truly orthogonal
and avoid the typical problems we experienced and expressed the most relevant aspects of an SCI.
Last, we noticed that our categories also cover the high-level intentions we identified from our
initial screening of the literature (cf. Figure 2). Specifically, developers executing an SCI are con-
sidered, together with other stakeholders, as customers; the change itself is an action, the system is
the object, and the underlying intention is the goal. That our categories cover all of these high-level
concepts related to intentions improves our confidence that these are feasible for describing SCIs.
We present our resulting categorization with discussions and examples for each SCI in Section 4.
Classifying SCI-related Techniques (RO4). The second and fourth authors reviewed all 50 pub-
lications noted as proposing a technique related to SCIs to identify each technique’s specific goal,
inputs, outputs, and underlying approaches and how SCIs are used in it. Both authors discussed
and compared their review results, until reaching consensus on how to describe and classify the
techniques based on these data. Most importantly, they found that the techniques identify SCIs, use
them to improve an existing technique, or involve them as intermediate results. Also, the authors

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:10 J. Krüger et al.

could distinguish three primary underlying approaches, namely static-analysis, dynamic-analysis,
and statistical (including classification and machine learning) approaches. To extract the data and
classify the techniques into consistent categories, the authors relied on their expertise and the
descriptions of SCIs within the techniques, provided by the publications. Last, the categorizations
were reviewed by all of the authors. By comparing the insights and experiences of all analyses,
we aimed to avoid redundancies, obtain a concise overview about the publications, and validate
all our findings on SCIs. We present our discussion of techniques that involve SCIs in Section 6.

3 Understanding the Identified Publications (RO1)

We now briefly summarize the results of our literature search to discuss the state of the art on
SCIs—which we detail in the next sections. To this end, we display overviews of all 122 included
publications in Table 1 (empirical studies), Table 2 (datasets, methodologies, literature reviews, tax-
onomy proposals), and Table 3 (techniques). For each publication, we summarize its core proper-
ties. These properties involve whether we identified the publication through the automated search
or snowballing (source), its reference (two references imply journal extensions), and the type of
contribution. Then, we display short descriptions of the goals, benefits, and evidence reported in
a publication, which we discuss in Section 5. In the column taxonomy (discussed in Section 4),
we specify whether a publication directly reuses, extends (e.g., with orthogonal categorizations
or by integrating additional terms), synthesizes (from the literature), or proposes (i.e., not explic-
itly building on previous ones) a taxonomy. We considered a taxonomy within a publication to be
proposed by the authors themselves if they did not explicitly cite a publication from which it was
reused or derived. While we noticed that some publications used taxonomies similar or identical
to existing ones, particularly the one by Swanson [148], the missing citations made it impossible to
understand whether a taxonomy was reused from a specific publication or was an ad hoc proposal
based on knowledge obtained from somewhere else (e.g., a course or website). For techniques (cf.
Table 3), we also provide an indication on how SCIs and what underlying approaches are used
within each technique, which we discuss in more detail in Section 6.

In Figure 3, we provide a yearly overview of when the publications have been published, at
what venues (abbreviated labels), and what they contribute (colors and/or borders). We can see
that we included several rather old papers, such as the taxonomy proposed by Swanson in 1976.
However, most publications in our dataset have been published between 2003 and 2017, and we
also identified more recent publications. Considering our search strategy (i.e., automated search
in 2021, backwards snowballing), the distribution of publications is reasonable and covers a long
period of software-engineering research that relates to SCIs. Similarly, we can see that the publi-
cations appeared at a range of venues similar to the other literature reviews on software changes
that we identified (cf. Section 9); with well-established software engineering and evolution venues
occurring more frequently, for instance, the International Conference on Software Maintenance
and Evolution (20, 1988–2016), International Conference on Mining Software Repositories

(MSR) (9, 2005–2020), the International Conference on Software Engineering (8, 1976–2019), the
Journal of Systems and Software: Evolution and Process (8, 1990-2013), or the IEEE Transactions
on Software Engineering (6, 1995–2014). While the distribution over time indicates the continuous
interest in SCIs, the venues clearly highlight that SCIs are relevant to a broad range of research
topics. Last, we can see that publications aiming to synthesize or specify certain types of SCIs (liter-
ature reviews, taxonomies) occur frequently throughout the years—but recent reviews are missing.
This highlights the continuous interest in research for constructing a common foundation for de-
scribing software changes and SCIs to build upon, which has not yet been achieved (cf. Section 9).
Overall, most publications either contribute a technique (50) or an empirical study (48) related

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

A Meta-Study of Software-Change Intentions 300:11

Table 1. Overview of the 48 Publications Classified as Empirical Study (ES)
in Our Meta-study

so
u

rc
e

re
fe

re
n

ce

co
n

tr
ib

u
ti

o
n

g
o

a
l

b
e
n

e
fi

ts

e
v

id
e
n

ce

ta
x

o
n

o
m

y

S, S [1, 2] ES comprehension project monitoring practice [148]
S [10] ES predicting effort estimation — ❍

S [11] ES predicting bug prediction — ❍

S [12] ES predicting bug prediction — ❍

S [14] ES comprehension project monitoring — [148]
S [22] ES predicting measuring maintainability — [148]+
S [23] ES comprehension comprehend software evolution — ❍

S [35] ES comprehension comprehend software evolution — [148]+
S [36] ES labeling project monitoring — ❍

S [38] ES predicting bug prediction — ❍

S [42] ES comprehension comprehend software evolution — [148]+
S [46] ES predicting bug prediction — ❍

S [47] ES comprehension comprehend software evolution — [148]+
S [49] ES comprehension comprehend software evolution — ❍

S [51] ES labeling identifying misclassification — [148]+
S [52] ES untangling improve version history — ❍

S [63] ES predicting effort estimation — [148]+
S [67] ES predicting change prediction — ❍

S [69] ES comprehension comprehend software evolution — ❍

S [70] ES comprehension comprehend software evolution survey ❍

S [87] ES predicting effort estimation — [148]+
S [93] ES comprehension comprehend software evolution survey [148]
S [106] ES comprehension comprehend software evolution — ❍

A [104] ES visualization ensuring intention fulfillment — —
A [107] ES comprehension project monitoring — [148]+
S [108] ES predicting bug prediction practice ❍

S [109] ES comprehension comprehend software evolution — [148]+
S [110, 111] ES specification safe evolution templates — ❍

S [113] ES comprehension comprehend software evolution survey ❍

S [117] ES specification compare evolution patterns — ❍

S [114] ES comprehension comprehend software evolution — ❍

A [115] ES comprehension comprehend software evolution — ❍

S [116] ES comprehension comprehend software evolution — ❍

S [121] ES predicting maintenance activities — [148]+
S [122] ES predicting bug prediction — ❍

S [123] ES comprehension comprehend software evolution — [148]+
S [129] ES comprehension ensuring consistency between artifacts payoff ❍

A [132] ES comprehension comprehend software evolution — [148]+
S [134] ES comprehension compare research — [148]
S [140] ES comprehension bug prediction — ❍

S [142] ES comprehension comprehend software evolution survey [148]+
S [151] ES comprehension comprehend software evolution survey ❍

S [155] ES comprehension comprehend software evolution — ●

A [157] ES comprehension comprehend software evolution — ❍

S [158] ES comprehension comprehend software evolution — ❍

S [173] ES comprehension comprehend software evolution survey ❍

A: automated search, S: snowballing
[xx]+: extends reference, ❍: proposes own taxonomy, ●: synthesizes from multiple
publications

to SCIs. Furthermore, 12 publications propose a novel taxonomy of SCIs, 6 contribute a literature
review, 5 provide a methodology for analyzing software changes, and 1 presents a dataset.
Types of Contributions. We can see that researchers have been concerned with, or used, SCIs
to achieve various research contributions. Now, we exemplify some of these contributions. Herzig
and Zeller [52] investigated five Java projects empirically to understand to what extent bug-fixing
commits involve tangled changes and propose a predictor to help untangle them (cf. Table 1). We
classified their contribution to be primarily empirical and to have the motivated goal of untangling
SCIs, which can help improve version histories. Unfortunately, the publication does not provide

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:12 J. Krüger et al.

Table 2. Overview of the One Dataset (DS), Five Methodology (ME), Six Literature
Review (LR), and 12 Taxonomy Proposal (TP) Publications in Our Meta-study

so
u

rc
e

re
fe

re
n

ce

co
n

tr
ib

u
ti

o
n

g
o

a
l

b
e
n

e
fi

ts

e
v

id
e
n

ce

ta
x

o
n

o
m

y

S [118] DS comprehension comprehend software evolution — ❍

S [19] ME comprehension comprehend software evolution practice [148]+
A [18] ME comprehension problem identification — [148]
S [68] ME comprehension comprehend software evolution — ❍

S [128] ME comprehension project monitoring practice [148]
A [136] ME comprehension problem identification — ❍

A [13] LR taxonomy defining change properties — ●

S [62] LR taxonomy comparing evolution research — ●

S [64] LR taxonomy comparing MSR research — ●

A [88] LR taxonomy comparing CIA research — ●

S [130] LR taxonomy formalizing maintenance — ●

S [166] LR taxonomy comparing research — ●

S [6] TP taxonomy problem identification — ❍

S [24] TP taxonomy comprehend software evolution — [148]+
S [29] TP taxonomy comprehend software evolution — [148]
A [43] TP taxonomy comprehend software evolution — ❍

S [54] TP taxonomy comprehend software evolution — [148]+
S [74] TP taxonomy comparing research — ❍

A [89] TP taxonomy improving CIA research — ❍

S [95] TP taxonomy refine taxonomy — [148]+
S [105] TP taxonomy comparing research — ❍

S [148] TP taxonomy comprehend software evolution — ❍

A [161] TP taxonomy effort estimation — ❍

S [162] TP taxonomy comparing research — [148]+

A: automated search, S: snowballing
[xx]+: extends reference, ❍: proposes own taxonomy, ●: synthesizes from multiple
publications

evidence of how useful it is to know the tangled SCIs or to untangle them (this was out of scope for
that publication). In terms of a taxonomy, Herzig and Zeller rely on the notion of bug-fixing SCIs
(corrective according to Swanson and our categorization). Going into another direction, Benestad
et al. [13] conducted a literature review on research that is concerned with understanding software
evolution by analyzing individual changes (cf. Table 2). The authors have the goal of understand-
ing and essentially providing a taxonomy of change attributes (which partially include SCIs) that
have been used in research; and this work is highly similar to our own research (we compare
both publications in more detail in Section 9). Since Benestad et al. contribute a literature review,
they do not provide own empirical evidence on the benefits of knowing SCIs but synthesize their
taxonomy from the literature. Sun et al. [146] propose a technique for improving change-impact
analysis using a taxonomy of change types (cf. Table 3). While they evaluate their technique and
show its potential benefits, the evidence that the technique works is purely research driven—in
contrast to the practical evidence regarding the benefits of knowing SCIs we are interested in. Sun
et al. define their own taxonomy of SCIs that is structured around adding, removing, or modifying
different entities in the source code. We argue that all of such publications build on the connecting
concept of SCIs. Not surprisingly for software engineering, SCIs are mostly considered when
developing or improving a technique and when conducting empirical studies.

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

A Meta-Study of Software-Change Intentions 300:13

Table 3. Overview of the 50 Publications Classified as Technique (TE) in Our Meta-study
so

u
rc

e

re
fe

re
n

ce

co
n

tr
ib

u
ti

o
n

g
o

a
l

b
e
n

e
fi

ts

e
v

id
e
n

ce

S
C

I
u

sa
g

e

a
p

p
ro

a
ch

e
s

ta
x

o
n

o
m

y

S [17] TE predicting effort estimation correlations ▼ classification —
S [20] TE labeling comprehend software evolution — ◆ static ❍

A [26] TE predicting ensuring consistency between artifacts — ▲ static —
A [28] TE transplantation avoiding errors correctness ◆ static —

S, A [30, 31] TE labeling comprehend software evolution — ▲ static ❍

S [32] TE labeling comprehend software evolution — ◆ static + classification ❍

S [33] TE labeling project monitoring — ▲ classification [148]
A [34] TE labeling comprehend software evolution — ▲ static [32]
S [39] TE labeling comprehend software evolution — ◆ static ❍

A [41] TE comprehension comprehend software evolution — ▲ static + dynamic ❍

A [44] TE mining refine concern mining correctness ▲ static ❍

S [45] TE labeling project monitoring — ▲ classification ❍

S [48] TE untangling improve version histories — ◆ static —
A [53] TE labeling filter changes — ▲ classification [148]+
A [55] TE labeling project monitoring — ▲ classification [148]
A [56] TE verification ensuring intention fulfillment feedback ▼ static —
A [59] TE verification ensuring intention fulfillment — ▼ static —
S [61] TE visualization ensuring intention fulfillment — ◆ static —
S [66] TE labeling comprehend software evolution — ▲ static ❍

S [71] TE predicting bug prediction — ◆ static ❍

S [72] TE untangling improve version histories — ◆ static ❍

S [84] TE predicting improving CIA — ◆ static ❍

S [90] TE predicting maintenance activities — ▲ ML/statistics [148]
A [91] TE labeling project monitoring — ▲ classification [148]
A [94] TE transplantation operational intentions correctness ▼ static ❍

A [98] TE verification ensuring intention fulfillment — ▼ dynamic —
A [99] TE specification compare evolution patterns — ▼ static [117]
A [100] TE untangling improve version histories — ▼ static ❍

A [102] TE labeling project monitoring — ▲ classification [148]
A [103] TE visualization ensuring intention fulfillment — ▲ static —
S [124] TE verification ensuring intention fulfillment usability ▼ static —
A [125] TE labeling problem identification — ▲ static ❍

S [133] TE specification safe evolution templates — ◆ static ❍

A [137] TE predicting reducing effort correctness ▼ dynamic [148]
A [139] TE programming enabling domain experts — ▼ code generation —
S [144] TE predicting bug prediction — ◆ static + classification ❍

S [146] TE predicting improving CIA — ◆ static ❍

S [147] TE predicting improving CIA — ◆ static ❍

S [149] TE predicting breaking changes — ◆ static + classification ❍

S [152] TE untangling comprehend software evolution — ◆ static ❍

S [153] TE untangling comprehend software evolution — ▼ static ❍

S [154] TE labeling bug fix transplantation — ◆ ML/statistics ❍

S [159] TE labeling comprehend software evolution — ◆ static ❍

A, A [163, 164] TE labeling effort estimation correctness ◆ classification ❍

A [165] TE labeling comprehend software evolution — ◆ static ❍

S [168] TE labeling bug prediction — ◆ static ❍

S [170] TE labeling project monitoring — ▲ classification [148]
A [172] TE verification ensuring intention fulfillment understandability ▼ dynamic —

A: automated search, S: snowballing
[xx]+: extends reference, ❍: proposes own taxonomy, ●: synthesizes from multiple publications
▲: identify SCIs, ▼: use SCIs to improve other techniques, ◆: SCIs as an intermediate result

Goals and Benefits. Next, we summarize the goals and benefits described in each publication. We
can see in the tables that these vary widely. For instance, some publications motivate the ability
to predict or label SCIs as a primary goal, which may help, for example, estimate maintenance ef-
forts [10, 17], predict bugs [11, 12], or improve change-impact analysis [146, 147]. The broad range
of contributions results in a variety of different goals and presumed benefits. As a consequence,
it can be challenging to identify and synthesize commonalities between the publications, particu-
larly since they also build on different taxonomies. In Section 5, we give a more detailed analysis
of the publications’ goals, benefits, and empirical evidence—aiming to provide an overview that
helps clarify how SCIs have been used and how the different pieces of research are connected.

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:14 J. Krüger et al.

Fig. 3. Overview of the paper distribution in our dataset.

Taxonomies. Regarding the taxonomies related to SCIs that have been used in the publications,
we can see that these stem from different sources. Most researchers rely on the taxonomy of
maintenance activities proposed by Swanson or one of its extensions, or they extend it themselves.
It was sometimes unclear whether a taxonomy was directly based on Swanson’s work or stemmed
from the terms being common knowledge or phrases (e.g., researchers referring to corrective
changes).

When extracting the data, we checked whether the authors directly referred to their taxonomy
as stemming from another work (e.g., Swanson), for instance, by stating so in the text or by putting
a reference in the respective table. So some other taxonomies may have been based on a previous
taxonomy without the authors being aware of it. Still, the overall picture of most publications
extending or proposing a taxonomy as needed remains. This is also caused by the various con-
tributions and goals of the publications, which are often concerned with more fine-grained SCIs
(e.g., specific refactorings [159]) or require different categorizations. For instance, Hindle et al.
[54] are concerned with empirically analyzing large commits (cf. Table 2). They extend Swanson’s
taxonomy, add a more fine-grained layer on the commit level (thereby mixing different levels of
abstraction, e.g., bug fix on SCI level versus module add on implementation level), and further
classifying commits based on size (i.e., “large”).

Unfortunately, even the literature reviews that derive their taxonomies from various publica-
tions do not provide a feasible unification of SCIs (cf. Section 9). Primarily, these publications
elicit different categorizations for changes that involve SCIs to some extent, but they do not
tackle the problem of separating different categories of SCIs. When analyzing the publications,
the missing consensus based on which we could understand SCIs and map them to different
concepts made it challenging to compare the publications or identify their connections—leading

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

A Meta-Study of Software-Change Intentions 300:15

to confusion and multiple iterations within our methodology (e.g., when deciding what is still
in scope or to ensure the data quality). We address this problem by providing a systematically
derived categorization of SCIs that clearly distinguishes different SCIs. So our categorization in
Section 4 provides a foundation to facilitate the understanding, unify the description, and clarify
connections of research on SCIs.

RO1: State of the Art on SCIs

To provide an overview of how SCIs are used and studied in software-engineering research, we
systematically selected 122 relevant publications. Our analysis of the publications indicates the
following:

— Most of these publications contribute either a technique (50) or an empirical study (48),
with the rest contributing taxonomy proposals, literature reviews, methodologies, or a
dataset.

— SCIs are used for a broad range of goals (e.g., comprehending software evolution, predict-
ing maintenance activities, verifying the correctness of changes) aiming to achieve many
benefits (e.g., improving automated analysis techniques, facilitating project monitoring).

— The taxonomies used to describe SCIs are often adapted as required, resulting in intermix-
ing of synonymous, overlapping, or orthogonal categories.

4 Moving Toward a Taxonomy (RO2)

Most researchers build on their own definitions or taxonomies of SCIs, sometimes being inspired
by or extending other works. In particular, the taxonomy of Swanson [148] is regularly reused
and extended. However, the actual problem is that the extensions are often arbitrary and non-
systematic. Some publications simply add categories as they see fit, resulting in incoherent, vague,
and overlapping SCIs that act on different levels of granularity (e.g., high-level developer intentions
versus code modifications versus specific activity types such as refactorings). There have been sev-
eral previous attempts at describing SCIs more systematically by synthesizing categories through
literature reviews [13, 62, 64, 88, 130, 166]. Unfortunately, as we discuss in Section 9, these works
do not focus on the SCIs themselves but on related techniques (e.g., change-impact analysis) or var-
ious change attributes—which do not lead to a coherent understanding of SCIs. As a result, it was
often challenging during our analysis to understand the relations between different taxonomies
and identify which SCIs are related, highlighting the absence of a common understanding of SCIs.

4.1 Categorizing SCIs

During our analysis (cf. Section 2.3), we discovered that many of the SCIs were overlapping and
that their aspects were named inconsistently. To move toward a language and taxonomy for
specifying the key properties of an SCI, we separated overlapping SCIs while applying a uniform
naming. We display our resulting categorization of SCIs in Figure 4, with solid boxes indicating the
higher-level categories and dashed boxes exemplifying terms that are part of these categories and
may yield more fine-grained categorizations (e.g., sub-categories of bug fix or refactoring SCIs).
Our categorization contains five top-level categories: goals, actions, objects, customer, and lifecycle
phase, which we describe in more detail in the following. Together, they specify and formalize a
change by defining when (lifecycle phase), what (objects) parts of a system have been changed, how
(actions), for what purpose (goal) of a specific actor (customer) and can be thought of as a language
for specifying the key properties of an SCI. While in practice, developers and researchers may use
a subset of these categories to describe the parts of a change that are relevant for them, missing in-
formation may lead to misuses, such as causing misunderstandings regarding the goals of a change

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:16 J. Krüger et al.

Fig. 4. Our categorization of SCIs.

or the customers for which it was implemented. Note again that our categorization in Figure 4 is
not intended to be complete. Instead, as we argue in Section 4.2, by focusing on the most important
properties of an SCI, we produce an extensible foundation for describing and comparing research.
Goals. This category is most commonly discussed in existing publications, building directly on
the taxonomy by Swanson [148]. It describes the purpose for which developers perform a change.
We divide goals into four sub-categories:

— Perfective changes (a.k.a. enhancements) focus on the evolution of requirements and features
that exist in a software system. Such changes include, for instance, adding new functionality
requested by the users, improving the usability or security of a system, or implementing new
quality of service requirements.

— Adaptive changes are important when the environment of a system changes, which can
be caused by changes to, for example, the operating system, hardware, or dependencies.
Adaptive changes can also include changes reflected by organizational policies and rules.

— Corrective changes address errors and faults in a system. These changes usually originate
from bug reports that were created by users or from internal reviews done within an orga-
nization.

— Preventive changes help developers improve their system and prevent its deterioration, so
that it can function for a longer period of time. These changes include, for instance, improv-
ing software understandability and maintainability, addressing the accumulated technical
debt, eliminating performance bottlenecks, or making parts of the system reusable.

Using these four categories, we can distinguish the different goals a SCI can have.
Actions. This category describes the concrete activities developers perform to achieve their goals.
We further split actions into two sub-categories:

— Simple actions include adding, deleting, and inspecting an element of a system (e.g., lines of
code, modules, interfaces, and classes).

— Compound actions are higher-level operations performed by combining multiple simple ac-
tions, such as changing, moving, or renaming a set of elements (i.e., deleting and adding);
merging, splitting, or swapping multiple elements (i.e., inspecting, deleting, adding); or
performing a refactoring using a combination of these actions.

These two categories are well established for specifying actions and operations and serve the same
purpose in our taxonomy.

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

A Meta-Study of Software-Change Intentions 300:17

Objects. This category describes the elements that are manipulated by an action. Due to the
complexity of modern software systems, the objects include a wide range of software artifact,
such as interfaces, classes, methods, and exceptions; GUI elements; requirements, features, and
tests; source and non-source files; documentation; or source control systems and patch/pull re-
quests. Due to this wide range, it is challenging to define a useful sub-categorization that would be
applicable for every type of research on SCIs.
Customer. With this category, we cover the individual or entity due to which an SCI has been
initiated. Essentially, we can distinguish between internal (i.e., development team) or external (e.g.,
end user, legal body) customers. Still, a more fine-grained categorization of customers may be
needed for some research on SCIs.
Lifecycle Phase. Our last category specifies at what time an SCI is performed. In the literature,
we identified different examples that relate to this category, for instance, SCIs that occur at de-
sign time or at runtime—and that may be anticipated or not [161]. So, this category provides an
understanding of the relation of an SCI to the lifecycle of its respective system.
Example for Categorizing Changes. We argue that these five categories are well suited to de-
scribe the most important properties of SCIs that cannot be easily covered by metrics. As an exam-
ple of using the categories for describing changes, let us assume a stakeholder finds and reports a
bug in a system that a developer is trying to fix—connecting to the concepts related to high-level in-
tentions we sketch in Figure 2. Now, the developer implements a change, for instance, in a separate
fork of the system, and creates a pull request. Following our categories, they could specify within
the pull request that they implemented a corrective change (goal) due to the stakeholder’s request
(customer), modifying a conditional statement (compound action) to a code file (object) while the
system is already operational (lifecycle phase). In a second pull request (or within the same one),
the developer may add new (simple action) test cases (object) to ensure that other developers (cus-
tomer) can ensure the system’s future operation (lifecycle) through preventive maintenance (goal).
Of course, the developers of the system have to agree on what level of granularity they document
this information, what details they cover, and whether they want to document all of these cate-
gories. However, we argue that these five categories cover the most relevant pieces of information
for describing an SCI, which can help document these more reliably and consistently, thereby also
allowing to design new techniques to support developers.

4.2 Comparison to Existing Taxonomies

Our categorization is not a synthesis of all taxonomies we identified in the 122 publications. Instead,
we aimed to define a concise categorization for specifying SCIs, providing an extensible (e.g., more
fine-grained sub-categories) foundation for describing and comparing research. We argue that such
a concise overview is much more helpful than a more detailed, but still incomplete, taxonomy that
involves too many fine-grained levels. Moreover, our categorization represents the most important
properties of an SCI and thereby covers the relevant properties of existing taxonomies.

To further exemplify our categorization, we summarize the 19 publications that extend or adapt
the taxonomy of Swanson [148] in Table 4. Please note that Swanson’s taxonomy itself is subsumed
by the category goal in our categorization. In Table 4, each bullet refers to a taxonomy defined
in the respective publication, for instance, Hindle et al. [53] extend Swanson’s taxonomy with
“feature addition” as well as “non-functional” SCIs and complement it with another taxonomy for
large changes that involves SCIs, such as “legal,” “module management,” and “maintenance.” This
is an example for the inconsistencies of taxonomies that are used within and between different
publications. Concretely, the extension of “non-functional” in the first taxonomy overlaps and
is inconsistent with the other four SCIs: It covers legal aspects (e.g., copyright), source control
system management (e.g., branching, tagging), and code clean-up. While the former two are not

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:18 J. Krüger et al.

Table 4. Overview of the Taxonomies We Identified as Extending the One of Swanson [148]
(i.e., Those Marked as “[148]+” in Previous Tables)

ref contr taxonomy

Swanson [148] TP • adaptive; corrective; perfective
[22] ES • adaptive; corrective; perfective; preventive
[35] ES • adaptive; corrective; new application
[42] ES • adaptive; corrective; perfective; preventive

[47] ES
• corrective; forward; management; re-engineering
• tiny; small; medium; large

[51] ES • adaptive; corrective; documentation; perfective; refactoring; other

[63] ES
• adaptive; corrective; perfective; preventive
• introduction/deletion of module; change of interface, control flow, data declarations, data, or assignment statement

[87] ES • corrective; enhancive (adaptive, perfective, preventive)
[107] ES • adaptive; corrective; inspection; perfective
[109] ES • adaptive; perfective (functional; quality attributes); preventive
[121] ES • adaptive; non-urgent corrective; perfective; preventive; urgent-corrective

[123] ES
• adaptive; corrective; inspection; perfective
• delete; insert; modify

[132] ES • adaptive; corrective; enhancement; perfective; preventive

[142] ES
• adaptive; corrective; perfective; preventive
• small; medium; large

[19] ME • adapative; corrective; enhancement; preventive
[24] TP • adaptive; corrective; enhancive; groomative; performance; preventive; reductive

[54] TP

• adaptive; corrective; implementation; non-functional; perfective
• branch; bug fix; build; clean up; cross; data; debug; documentation; external; feature add; indentation; initialization;
internationalization; legal; maintenance; merge; module add, move, remove; platform specific; source control;
refactoring; rename; testing; token replace; versioning

[95] TP • adaptive; corrective; documentation; pretty printing; retrenchment; retrieving
[162] TP • adaptive; code leverage; corrective; perfective; reuse

[53] TE
• adaptive; corrective; feature addition; non-functional; perfective
• feature addition; legal; maintenance; meta-program; module management; non-functional source code changes;
SCS management

A line starting with a bullet (•) indicates a taxonomy used in the respective publication; for instance, Hattori
and Lanza [47] distinguish between maintenance activities (e.g., “corrective”) and change size (e.g., “tiny”). SCIs
in parentheses are sub-categories of the SCI directly before the parentheses; for instance, Lee and Jefferson [87]
summarize “adaptive,” “perfective,” and “preventive” as “enhancive.”

related to actual code changes, code clean-up is covered as the goal of an SCI (i.e., preventive). The
second taxonomy keeps some of the SCIs (e.g., “feature addition”), while also summarizing (e.g.,
“maintenance”) and splitting (e.g., “legal”) others. As a consequence, it was challenging for us to
understand the relations between SCIs within and between publications.

We argue that our categorization can help researchers improve the comprehensibility and com-
parability of their research. Particularly, note that even though the taxonomies in Table 4 are all
based on the one of Swanson, almost each one adds a highly individual naming for different SCIs,
ignores some SCIs, or introduces concepts unrelated to SCIs. Our categorization can help resolve
such inconsistencies, since its high-level categories provide a common ground for specifying the
context and coverage of SCIs in a publication. For instance, “enhancement” [132], “feature addi-
tion” [53], and “feature add” [54] all refer to extending a system with novel functionality and thus
are covered by the categories goal (i.e., perfective: adding new functionality), action (i.e., simple:
add), and objects (i.e., feature). Furthermore, our categorization resolves inconsistencies, such as
that concepts (e.g., “branch,” “bug fix,” “module add” [54]) are part of the same taxonomy—even
though they are not describing the same abstractions or do not relate to SCIs. For example, we
removed “branch,” since it does not relate to a change of the source code and separated “bug fix”
(goal) from “module add” (action and object). Consequently, we removed concepts, such as size
measures [47, 142], “inspection” [123], “branch” [53, 54], or “urgent” [121], since these do not de-
scribe SCIs (e.g., changes to the actual source code). Overall, our categorization covers the most
important properties to specify SCIs, which helps distinguish SCIs and make the corresponding
research more comparable.

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

A Meta-Study of Software-Change Intentions 300:19

RO2: Categorization of SCIs

To define a categorization of SCIs, we performed open and axial coding on 40 publications, which
we randomly selected from our sample. The main benefits of the resulting categorization are as
follows:

— It provides a systematic view of concepts related to SCIs, defining five orthogonal categories
(goals, actions, objects, customer, lifecycle phase).

— It includes examples of concepts in each category, easing communication and facilitating
a shared understanding of SCIs.

— It defines a common level of abstraction and allows extensions with more orthogonal cat-
egories and/or more fine-grained levels.

5 Assessing the Benefits (RO3)

The 122 publications we reviewed had different goals and benefits. Not surprisingly, the over-
arching theme of all of these is to support or facilitate software evolution, which is why there
are various overlaps and strong connections between the publications. In contrast, we can see in
Tables 1, 2, and 3 that only a small number of the publications (20) provide any form of real-world
evidence on the claimed benefits of knowing SCIs. We remark again that this does not mean that
the contributions in the publications have not been evaluated by some other means (e.g., compar-
isons against other techniques or a dataset). Still, a transfer into practice, for instance, as a field
experiment, case study, tool, or any other practical evaluation, to study the benefits for actual soft-
ware engineers has rarely been reported. In this section, we first discuss the goals and benefits
claimed in the reviewed publications before summarizing the available evidence to support these
claimed benefits of knowing SCIs.

5.1 Goals and Benefits

The most frequently mentioned goals of researching SCIs in the publications are as follows: com-
prehending software evolution (29), labeling changes with SCIs (22), predicting some software-
evolution phenomenon (e.g., bugs) (20), and providing a taxonomy for understanding software
changes (18). Moreover, SCIs have been considered in more specific, highly interesting research
directions, such as verifying software (5), transplanting code (2), or even programming (1). In the
following, we discuss the individual goals and benefits the authors claim knowing or using SCIs
could have with respect to such goals. Since the general idea (i.e., knowing SCIs) and overarching
goal (i.e., supporting software evolution) are identical, there are many similarities between the
publications.
Comprehension (29). This goal assumes that knowing SCIs helps developers comprehend
changes more easily. In contrast to understanding low-level code changes (i.e., program compre-
hension), a developer comprehends the higher-level SCI (e.g., what is the purpose of the change
and what are the underlying assumptions)—with research showing that developers consider such
more abstract knowledge as more important [77, 78, 131]. For example, Greevy et al. [41] propose
a technique that allows us to analyze the evolution of a system to help developers identify feature
changes and refactorings more easily. However, this goal also involves many publications that
are concerned with fundamental research questions only; helping researchers provide a better
comprehension of software evolution without direct practical impact. For instance, Hattori and
Lanza [47] investigated 72,351 commits from nine projects to comprehend what constitutes small
or large commits, which of these involve most developer activities, and whether large commits
are concerned with code management. To address particularly the second question, the authors
adapted the classification of Swanson [148] to comprehend different developer activities. Overall,

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:20 J. Krüger et al.

the main benefits claimed for this goal are as follows: improving the comprehension of software
evolution, monitoring projects (e.g., analyzing workload distributions [1]), predicting bugs (e.g.,
comprehending which changes before a corrective one introduced the bug [140]), comparing re-
search (e.g., comparing efforts for different SCIs [134]), and identifying software-evolution prob-
lems (e.g., checking whether quality attributes are still fulfilled [136]). Note that how these benefits
are achieved also depends on the type of contribution of a publication. For instance, methodolo-
gies propose how developers can comprehend software changes, empirical studies provide data for
this purpose, and techniques present supportive tools. Last, we want to remark that this goal of
comprehending evolution is very broad, spanning very different research directions. We decided
not to split this goal further, because (1) the boundaries between more fine-grained goals were
often vague and (2) the authors of the papers themselves regularly mentioned this high-level goal
with respect to knowing SCIs. Please note that the goal and benefits of the actual work, which may
only build on SCIs, are often involving additional goals. By not splitting up this goal further, we
aimed to contribute a concise overview that does not involve many overlapping and interconnected
sub-goals.
Labeling (23). This goal builds on the same assumption as the previous one, namely that knowing
SCIs is helpful. However, research on this goal is only concerned with labeling changes according
to some taxonomy of SCIs, but the results are not directly used for any other purpose (e.g., for
comprehending software evolution). The results of such a labeling can help researchers or practi-
tioners achieve the other goals. It is not surprising that most publications related to this goal pro-
pose techniques (19). For instance, Tian et al. [154] propose a technique for identifying bug-fixing
(i.e., goal: corrective) changes and compare their technique against other such labeling techniques.
There is no follow up use of the SCI labels in the publication itself, but it is motivated to help with
transplanting corrective changes into other code locations or even projects (e.g., for code trans-
plantation and automatic program repair). To motivate the labeling of software changes, several
benefits are discussed that strongly relate to other goals and their benefits. For example, labeling
changes with SCIs can help researchers and practitioners improve project monitoring (e.g., allow-
ing to add missing labels to changes [45] or identify mislabeled changes [51]), comprehending
software evolution, filtering changes based on their SCIs to facilitate analyses [53], transplanting
bug fixes, estimating maintenance efforts (e.g., identifying changes causing large efforts during
reviews [163]), or predicting bugs (e.g., linking changes and bug reports [168]).
Predicting (22). Various researchers have aimed to use SCIs to enable or improve predictions on
evolving software, which is sometimes closely related to labeling. Typically, such works aim to
use SCIs to improve an existing analysis (e.g., change-impact analysis [146]) or build on a set of
changes labeled with SCIs to predict occurrences of a phenomenon or the same SCI (e.g., correc-
tive changes are used to identify bug-introducing changes to then predict future bugs [71]). For
instance, Tang et al. [149] proposed a machine learning–based technique that allows to predict
whether a corrective change may break regression testing. Dagenais and Robillard [26] designed
a technique that aims to keep software documentation in sync with source code changes by pre-
dicting whether documentation must be updated after a change. Most of the mentioned benefits
of knowing SCIs for predictions are highly intuitive, such as predicting types of changes and their
economic impact on projects [10], predicting bugs to prevent these [46], predicting (breaking)
changes to identify problems [67], predicting updates to other artifacts (e.g., documentation), or
predicting software quality to ensure the system’s maintainability [22]. Please note that the goals
of labeling and predicting are closely connected and interrelated, for instance, SCIs may be labeled
with a technique and then used for some prediction. We refer to labeling if the primary focus of
a publication is to identify (or “predict”) SCIs, whereas our goal of predicting typically refers to
publications that use such labels to predict some other phenomenon. For the previous example,

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

A Meta-Study of Software-Change Intentions 300:21

this goal would typically be predicting and not labeling (e.g., because an existing technique was
reused to label SCIs and these were the underlying idea for the prediction).
Taxonomy (18). Several publications have been concerned with deriving a taxonomy or similar
classification of software evolution that involves SCIs (cf. Section 9 for a detailed comparison to
our own meta-study). Such publications are primarily focused on researchers, indicating that un-
derstanding the properties and SCIs of changes can help them to study a certain problem domain.
For instance, the researchers argue that using their taxonomies, and thus SCIs, can help compare
research (e.g., on software evolution [62], mining software repositories [64], or change impact
analysis [88]) and formalize software evolution (e.g., defining an ontology of software mainte-
nance [130]). Other benefits mentioned are closely related to these two, and to the benefits of other
goals, such as identifying problems, comprehending software evolution, improving techniques, or
supporting effort estimations.
Untangling (6). Several researchers experienced that changes can involve multiple, tangled SCIs,
complicating automated analyses and program comprehension. This resulted in the research goal
of untangling different SCIs that are part of a single change, aiming to improve version histories
and support the comprehension of software evolution. For instance, Kirinuki et al. [72] propose
to derive templates of changes (i.e., specifying SCIs) from past changes to warn developers if they
commit tangled SCIs. In a similar direction, Matsuda et al. [100] propose a technique to automat-
ically separate refactoring SCIs (i.e., goal: perfective) and Hayashi et al. [48] propose refactorings
to enable developers to untangle and reorder changes based on their SCIs.
Specification (5), Verification (5), and Visualization (3). We describe these three goals
together, because they build on the same underlying benefits: analyzing evolution patterns and
ensuring that software evolution is save. For instance, Sampaio et al. [133] propose and formalize
evolution templates for product lines, which represent different SCIs developers may have. Ensur-
ing these templates during the evolution of a product line would allow to guarantee that products
not affected by the changed code keep their behavior. Among others, Hou and Hoover [56] build
on the same idea and essentially propose to use the Structural Constraint Language to specify
constraints of the code as conditions—particularly non-functional design intentions that should
always be fulfilled. During software evolution, it can be checked whether a software change still
fulfills these conditions. Such research essentially adopts the concept of SCIs in the context of
software verification. Similarly, other researchers proposed visualizations, primarily to check
whether changes still fulfill underlying intentions of the code. For instance, Jackson and Ladd [61]
proposed Semantic Diff as a tool to summarize SCIs and allow a developer to compare these against
their original SCI (e.g., whether a change identified as corrective was intended to be corrective).
Mining (1), Programming (1), and Transplantation (2). While these three goals are strongly
connected to some of the previous ones, they are different and highly interesting in terms of the
research proposed. Specifically, they rely on the concept of SCIs for implementing or improving
a concrete technique. Hashimoto and Mori [44] propose a concrete technical improvement for
concern mining by considering SCIs. Dhaliwal et al. [28], propose to group changes with the same
SCI (e.g., a specific goal, such as corrective or perfective) to transplant them safely and Lillack
et al. [94] define SCIs as operational concepts for transplanting changes. In both cases, avoiding
errors is the claimed main benefit. Finally, Simonyi et al. [139] propose to use intentions as the
primary concern for implementing software systems to enable domain experts to design software.
So, we argue that these techniques are taking more concrete steps of integrating SCIs into the
actual engineering and evolution of software than most other publications we identified.
Discussion. Overall, we can see that the different goals and benefits are, not surprisingly, closely
related. However, most of the contributions are more intended to support researchers instead of
practitioners. For instance, labeling changes with SCIs and taxonomies of SCIs are used to compare

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:22 J. Krüger et al.

research and enable certain analyses. The claimed benefits for practitioners are rarely supported
by actual practical evidence. In contrast, few publications are investigating how to incorporate
SCIs into software engineering to directly benefit practitioners, for instance, by improving code
transplantation or program verification. Note that this does not mean that these publications do not
have practical applicability, but their concrete usability seems more abstract and is rarely shown.
One recurring problem in this regard are the completely different paths, notations, and levels of
detail at which researchers consider SCIs. For example, some explicitly refer to SCIs while others
refer to various sub-categories; and the same terms in two publications can refer to different SCIs.
We relied heavily on our understanding of the research area as well as our classification to classify
and structure the goals and benefits. For instance, for labeling changes, our classification provides a
common understanding of what is labeled (e.g., goals) or what may be relevant to fully describe an
SCI (i.e., what goal is fulfilled by what actions on what objects for what customer in what lifecycle
phase). In fact, our classification directly addresses the most often mentioned goals and benefits by
improving our comprehension of software evolution (research). So, we consider our classification
as a helpful means for researching, communicating, and using SCIs—thereby avoiding confusion
and illustrating connections between individual works.

5.2 Evidence

As discussed, we identified various intuitive goals and benefits claimed to motivate the use of SCIs
in software engineering. However, many of these goals are only substantiated by showing that a
technique works as intended, by improving such a technique compared to other techniques, or by
sketching how a problem could be tackled with the consequent knowledge of SCIs. What is often
missing is an actual transfer into practice to study whether these goals and benefits are relevant
to practitioners. In the following, we summarize and discuss the 20 pieces of practical evidence we
found on the benefits of knowing SCIs in software engineering. Note that these pieces of evidence
are often either highly specific or too vague, which is why we can only provide a general intuition
on the benefits of knowing SCIs.
Practices (5). Some publications report on case studies conducted in companies or describe a
company using categorizations of SCIs for project monitoring, change management, or effort esti-
mations [1, 2, 19]. Unfortunately, the researchers do not provide insights on the concrete benefits
of having this particular knowledge. Similarly, Mockus and Weiss [108] report that a methodology
involving SCIs to assess the risks of software changes is applied in a company to inform developers
about risks, but actual empirical data are missing. Rombach et al. [128] report on using SCIs for
measuring maintenance activities at Software Engineering Laboratory (SEL)—a joint venture
of NASA, University of Maryland, Computer Sciences Corporation—including a concrete template
for specifying SCIs based on the taxonomy of Swanson [148]. The authors use this information to
understand the effort distributions within the company, and express that such information helped
the SEL comprehend its software development and maintenance. While missing actual data, we
argue that the companies must have seen a benefit in knowing SCIs to implement such practices.
Surveys (6) and Correlations (1). Several researchers conducted surveys to understand specific
types of SCIs. Yet, we were unable to identify any that directly investigated the benefits of know-
ing different SCIs. However, the following surveys indicate that certain SCIs impact developers’
perceptions, so knowing SCIs would have practical benefits (e.g., supporting developers’ program
comprehension, debiasing misconceptions, providing tools for untangling SCIs in one change).

Kim et al. [70] performed a survey with Microsoft developers, asking them for their defini-
tions and perceptions of what constitutes a refactoring. The findings indicate that the developers
had various definitions of refactoring that are not in line with the original one (i.e., that refactor-
ing SCIs are often tangled with other goals, namely corrective or perfective ones). Moreover, the

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

A Meta-Study of Software-Change Intentions 300:23

developers argue that refactorings are associated with various risks (e.g., breaking changes, merge
conflicts) and benefits (e.g., improved readability, fewer bugs) that only partly correspond to this
SCI. This indicates that developers could benefit from more clearly separating between different
SCIs when committing changes, thereby mitigating risks (e.g., refactorings should not cause break-
ing changes). Researchers can build on these insights to study whether knowing the SCI of a change
mitigates the risks identified or makes developers more aware of their actual causes.

Tao et al. [151] report a survey with interviews involving 180 Microsoft developers to research
the importance of comprehending software changes. Their results indicate that the question of
the rationale behind a code change (i.e., the SCI) is perceived to be the most important piece of
information—but also the one that is easy to recover. However, the difficulty rating builds on the
assumption that the description of the change (e.g., commit message) is available. Some issues the
participants mention to challenge the comprehension of SCIs involve low quality of the description,
tangled changes, and missing links to additional metadata.

Lientz et al. [93] conducted a survey to study software maintenance and enhancement, for which
they received responses from 69 organizations. They built on the taxonomy of Swanson to elicit
how often each type of maintenance activity occurs in practice. The findings of Lientz et al. sup-
port the assumption that software maintenance is the most expensive activity for organizations.
Moreover, organizations seem to be aware of the different goals of SCIs and particularly perfec-
tive SCIs (new functionalities) seem to cause most management problems. Consequently, knowing
specific SCIs could, in fact, support organizations in improving their project management by adapt-
ing their processes accordingly (e.g., identifying and solving concrete problems associated with an
SCI). Similarly, Nosek and Palvia [113] replicated a previous survey on software maintenance and
obtained essentially the same results, indicating, for instance, that demands for perfective SCIs,
software changes, and management support cause problems. A direct analysis of the relations of
SCIs and consequent problems in software projects (i.e., technical and management) could provide
more detailed insights and practical evidence. Other surveys [142, 173] in this direction focus on
studying the costs or activities of software maintenance based on taxonomies of SCIs, indicating
that the distinction of SCIs may help practitioners improve their comprehension. Similarly, Briand
and Basili [17] aim to predict the effort of software changes by using correlations to show that
the SCI is an indicator for such efforts—thus, together with the previous surveys, indicating that
knowing SCIs may benefit effort estimations.
Correctness (5). Dhaliwal et al. [28] use metrics to find changes that belong together (i.e., repre-
senting one SCI) to facilitate code transplantation in product lines. They conduct a study with au-
tomatic and developer-guided transplantations, yielding 76% and 94% fewer failures, respectively.
In the same direction, Lillack et al. [94] define six SCIs as concrete operators that automate the
integration of code changes between different variants of a product line. Conducting a user study
with 12 developers, they show that the operational SCIs result in fewer integration errors (e.g.,
seven compared to 17.5 for a standard merge tool). Hashimoto and Mori [44] propose a technique
for locating concerns in version histories, relating changes and considering SCIs to improve their
technique. The authors conduct a simulation study that indicates a precision from 53.3% to 71.9%.
Silva et al. [137] describe a technique for identifying code locations where perfective software
changes should be executed. Evaluating their technique on four case studies, Silva et al. find that
the precision of suggesting locations for perfective changes ranges from 77% to 100%. Last, Wang
et al. [163, 164] report on using SCIs to identify changes that require large reviewing efforts. They
evaluate their technique based on four projects, with the results indicating that considering SCIs
improves the technique’s performance by up to 19% (7.4% on average). These findings represent
arguably the most interesting and most reliable empirical evidence in our dataset. More precisely,

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:24 J. Krüger et al.

it seems that knowing what changes belong to the same SCI or even operationalizing SCIs can
reduce the number of bugs, and thus costs, of integrating or transplanting code changes.
Payoff (1). Rostkowycz et al. [129] describe experiences of re-documenting a software system in
an organization. Any iteration of re-documentation was triggered by a number of components of
the system having been changed and reaching an “error free” status of the system. The documen-
tation included the intentions of the software components and of the individual software changes.
While the precise impact of knowing SCIs is not reported, this knowledge was still part of the docu-
mentation, and the authors report that the re-documentation payed off after 1.5 years. Replicating
such a study with a focus on SCIs only would help understand the actual benefits of knowing SCIs;
for instance, by introducing explicit documentation for SCIs based on our taxonomy or studying
projects that have a related taxonomy of SCIs for issues.
Feedback (1), Usability (1), and Understandability (1). Hou and Hoover [56] collaborated with
industrial developers to evaluate their technique for specifying constraints for changes as inten-
tions. Unfortunately, the authors do not report an empirical study with these developers, they only
state that their collaborators perceived the technique as helpful. Qi et al. [124] build on the same
idea, defining software-change contracts to ensure that the SCI behind a change is fulfilled. The
authors asked two students to write different contracts and report primarily on the usability of the
tool from the students’ perspectives, indicating that both were quite successful in using the corre-
sponding tool (i.e., they could write 52 contracts for 57 changes). Finally, Yi et al. [172] extend the
previous paper, reporting a user study of 16 students who had to modify, comprehend, and write
change contracts. Overall, the results indicate that the students could easily understand change
contracts (86–100% correct responses). The results of the first two studies are only anecdotal but
hint in the same direction as the user study reported in the third publication: Specifying SCIs to
verify changes seems to be an interesting and intuitive way of checking software changes.
Discussion. In summary, these pieces of evidence are not providing a good understanding of
whether knowing SCIs really helps practitioners. Consequently, our impression remains that much
of the existing research in this area is oriented toward other researchers. We argue that more em-
pirical studies are required that investigate the impact and potential benefits that knowing SCIs
can have for practitioners. For instance, consider the idea of untangling SCIs. While it is intuitive
that tangled SCIs could be refactored, for example, to facilitate cherry-picking and improve other
techniques, the actual benefits of these techniques for practitioners have not been explicitly in-
vestigated. Unfortunately, it is challenging to collect reliable empirical evidence on the benefits
of knowing SCIs in practice, particularly since there has been no common understanding of their
properties. Our meta-study and classification can help researchers design empirical studies more
systematically to improve our confidence that knowing (certain categories of) SCIs is relevant for
practice. Moreover, our classification helped us structure our comparison of the publications’ in-
sights, providing guidance for analyzing their different perspectives and levels of abstractions. Still,
further research to investigate whether our classification provides a common ground that helps
researchers and practitioners in their work is needed.

RO3: Reported Benefits and Evidence

To understand the usefulness of knowing SCIs, we analyzed the reported benefits and the sup-
porting evidence provided in our sample of 122 publications. Our insights are as follows:

— A primary benefit of knowing SCIs is being able to comprehend, classify, and compare
software-evolution research.

— Collecting empirical evidence on the benefits of knowing SCIs in practice is difficult.
— Comparing between the publications and composing empirical evidence reported in them

is challenging, since they are defined at different levels of abstraction.

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

A Meta-Study of Software-Change Intentions 300:25

Fig. 5. Our classification of SCI-based techniques.

6 Analyzing the Techniques (RO4)

Recall that we have classified 50 publications as techniques concerned with SCIs in Table 3, which
identify SCIs (▲), use SCIs to improve other techniques (▼), or have SCIs as an intermediate result
(◆). Next, we describe the first two types of techniques in more detail. In Figure 5, we illustrate our
classification of the techniques according to their input and output artifacts, underlying approach,
as well as the way SCIs are used. Specifically, these techniques build on the concept of SCIs in
two ways: (i) identifying developers’ SCIs from software development artifacts (cf. Figure 5(a)) or
(ii) using SCIs to improve the effectiveness of other techniques (cf. Figure 5(b)).

Techniques of the former type rely on various software development artifacts as inputs to de-
termine developers’ SCIs, for instance, commit messages [53, 107, 132], source code changes [34,
41, 91], source code density [55], or documentation [26]. The outputs of these techniques are SCIs
represented using natural language labels [41, 53, 91, 132], structured labels (e.g., based on the cate-
gory goals from our categorization) [55, 107], change types as well as change significance [34], and
documentation edits [26]. Most commonly, the underlying approaches build on static analysis [99]
or statistical analysis (including data mining and machine learning), such as clustering [107], clas-
sification [163, 164], and keyword frequency analysis [132].

Techniques of the second type use SCIs as inputs. There, SCIs are typically represented in
the form of user-specified change patterns [99], user-specified aspects in an aspect-oriented lan-
guages [98], intentional trees defined using domain-specific languages [139], or user-declared in-
tegration SCIs for forked product variants [94]. These SCIs are then used to (re-)structure source
code changes, for example, producing more fine-grained changes [100] or refactoring code changes
to be feature oriented [30]. SCI specifications can also be used to detect unanticipated code inter-
ferences between different aspects [98], to automatically generate executable code [139], and to
reverse engineer product variants into configurable software product lines [94].

In the following, we walk through some representative SCI-based techniques according to their
underlying approaches. Specifically, the second and fourth authors picked these examples based
on their overview understanding of which and how many techniques rely on which underly-
ing approaches. We provide an overview of the mapping between techniques and approaches in
Table 3.

6.1 Statistical Analysis and Machine Learning

Approaches related to statistical analyses, especially machine learning, are typically used to iden-
tify SCIs. The inputs to these techniques are software artifacts, such as commit messages, commit
metadata (e.g., source code density [55]), and source code changes. The outputs are the identified
SCIs, usually in the form of natural language labels or structured labels.

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:26 J. Krüger et al.

Fig. 6. An example of the machine learning technique proposed by Wang et al. [164].

For example, Wang et al. [163, 164] applied machine learning-based classification techniques,
including Alternating Decision Tree, Logistic Regression, Naive Bayes, Support Vector Machine,
and Random Forest, to classify changes according to their SCIs. The ultimate goal of this work
was to label commits according to their estimated review efforts—large-review-effort (LRE)

changes typically take more time, more reviewers, and more iterations to resolve all suggestions
made by reviewers. The authors found a strong correlation between the SCI with the review
effort of the changes, meaning that changes with certain SCIs are more likely to take more review
iterations. Therefore, they proposed to identify SCIs as an intermediate result, which is then used
to facilitate the identification of LRE changes. In Figure 6(b), we illustrate the workflow of the
technique by Wang et al. The input to the machine learning models is the change metadata, such
as the revision history of a file, committers’ experiences, and the SCIs identified through an intent

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

A Meta-Study of Software-Change Intentions 300:27

analysis. The trained machine learning models are then used to classify commits into either LRE
or non-LRE changes.

The intent analysis heuristically identifies SCIs by searching for keywords in commit messages
(e.g., “fix,” “refactor,” and “feature”). We summarize the nine types of SCIs, their descriptions, and
the heuristics used to automate the classification process in Figure 6(a). For example, the com-
mit messages of changes related to “Test” usually contain a keyword “test,” and the changed files
contain only test files or resource files. These heuristics were initially summarized manually and
subsequently refined using a feedback-driven technique. If the accuracy of some heuristics is lower
than 80% on a test sample, then they are refined by adding new heuristics or adjusting existing
ones. One interesting finding from this study is that software changes are unevenly distributed
regarding SCIs. Changes with some SCIs, such as “Feature” and “Refactor,” have a higher proba-
bility of being LRE changes. Through extensive experimentation using different machine learning
models, the authors found that among the examined classifiers, Logistic Regression and Random
Forest achieve good AUC scores [16], which confirms the feasibility of identifying LRE changes
by using machine learning algorithms and SCIs.

Other works of this type follow similar ideas, and many of them produce SCIs as their outputs.
Hindle et al. [53] proposed a machine learning technique that automatically classifies commits
into SCIs based on the commit messages and author identities. The training set was built on the
commit history data of nine open source projects. The features used for classification include
word distribution, author identity, and module/file types. Multiple machine learning algorithms
were used, including Nearest Neighbor, Naive Bayes, Support Vector Machine, tree-based learners,
and rule-based learners. Levin and Yehudai [91] proposed a technique that automatically classifies
commits into SCIs using source code changes and commit messages. The training set was built on
top of the version histories of a set of popular Java repositories on GitHub. The classification was
based on keyword frequency, with the goal of creating a model of high accuracy and Kappa value.
The machine learning models used include Random Forest, Gradient Boosting Machine, and J48.
Hönel et al. [55] proposed an automatic commit classification technique based on source code
density measure. The training set was built using 359K commits, where 1,149 commits had SCI
labels (i.e., adaptive, corrective, and perfective). The features used for classification included code
change-related features, such as the number of added and deleted files in a commit or code density.

6.2 Static Analysis

Static analysis approaches are generally used to identify developers’ SCIs, elicit change types, and
refine existing techniques with the help of SCIs. The input to these techniques includes source
code changes, binary file changes, user-specified change patterns, and forked product variants.
The output includes the identified code changes, change types, and program entities affected by
changes, depending on the goal of the technique.

For example, Lillack et al. [94] proposed to leverage user-provided integration intentions to alle-
viate the challenges in integrating software variants. Software variant integration is the process of
building a configurable software product line [81, 120] from a number of software variants created
through cloning—copying existing code and adapting it to new requirements by implementing new
or modifying existing features. Variant integration is a challenging task, which requires a good un-
derstanding of all the variants, their differences as well as how they are aligned, and making design
decisions on what to keep and what to remove [3, 27, 76, 82, 83, 94].

In Figure 7, we show an example that illustrates the variant integration technique called IN-
CLINE. The inputs are two software variants shown on the left-hand side, namely “Mainline” and
“Fork,” and the desired output is on the right-hand side, namely “Integration Goal.” Each code ex-
cerpt offers some configuration options implemented with preprocessor directives, such as #if

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:28 J. Krüger et al.

Fig. 7. Software variant integration with developer specified SCIs [94].

or #ifdef. Normally, to derive the integrated version, developers have to explore different edit
options, undo and redo changes, and iterate through this process several times. INCLINE semi-
automates this process by allowing developers to specify their high-level integration decisions
as SCIs, which frees them from low-level error-prone editing work. The integration SCIs used in
Figure 7 include (1) KeepAsFeature, which specifies that Line 4 of “Fork” should be kept in the inte-
grated code as a feature (Line 6); (2) Keep, which specifies that Lines 4 and 5 of “Mainline” should
be kept; (3) Exclusive, which specifies that Line 7 of “Mainline” and Line 8 of “Fork” should be kept
mutually exclusive and configurable by an #if-#else-#endif structure; and (4) Remove, which
specifies that Line 10 of “Mainline” should be removed (due to a typo). With INCLINE, developers
can easily experiment with different integration SCIs and the low-level editing work is carried
out automatically. The generation of variant integration is supported by an automated transfor-
mation of the abstraction syntax trees (ASTs). Specifically, each user-defined integration SCI
corresponds to a partial functions transforming ASTs. These functions are applied on the ASTs
following a certain order to properly handle interactions between SCIs.

Martinez et al. [99] proposed an AST-based technique that automatically finds change pattern
instances (i.e., SCIs) in a codebase given a user-written change pattern specification. The tech-
nique represents versioning changes of a commit and change patterns at the AST level. It accepts
as input a commit and a list of user-provided change patterns (e.g., a change of an if-condition
expression, an addition of a method declaration), parses the AST difference in the commit, and
determines whether the difference matches any pattern. Rayside et al. [125] proposed a change
impact analysis technique that detects which part of a Java code base is affected by a change of JDK
or third-party libraries—focusing on adaptive SCIs. The technique detects changes by analyzing
the difference of bytecode before and after the change and then identifies the affected code entities
by building a dependency graph and analyzing the propagation path of the changes. Dintzner et al.
[31] proposed FEVER, a heuristic-based technique to extract changes in variability models, assets,
and mappings. It accepts as input a set of commits and outputs an instance of its change model
covering the given commit range. From the initial set of commits, it first analyzes every commit,
identifies the changed code entities and the changes, and creates the relationships between the

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

A Meta-Study of Software-Change Intentions 300:29

entities and the changes. Finally, it consolidates the change relationship information over time by
keeping track of relationships spreading beyond single commits (i.e., an SCI). Matsuda et al. [100]
proposed a technique to reorder and regroup changes, based on a commit policy (i.e., fine-grained
or coarse-grained). It reorganizes commit histories to better conform to a specified policy regarding
specific SCIs. For example, for a fine-grained policy, different types of refactoring changes should
be committed separately while for a coarse-grained policy, refactoring should be separate from
behavior-changing changes. Dagenais and Robillard [26] proposed AdDoc, which mines code pat-
terns based on a set of rules and templates. Using code changes, AdDoc generates documentation
of the SCI and recommends the documentation update to developers. It also reports violations of
the patterns as the code and the documentation evolve.

6.3 Dynamic Analysis

Dynamic analysis techniques are generally applied to identify developers’ SCIs, which are then
used to improve other techniques. The inputs to these techniques include source code changes
and sometimes user-provided specifications.

For example, Yi et al. [172] proposed a change contract language to formally describe intended
behavioral as well as structural changes across program versions (i.e., goals and actions in our
taxonomy). The formal semantics of the change contract language are based on the Java Modeling

Language (JML) [86], and the language focuses on capturing the intended behavioral changes
and their semantic effects. Essentially, a change contract specifies how the post-conditions of the
same method in two consecutive versions should relate to each other under certain preconditions.
The authors also developed tool support for the language, which enables both test generation to
witness contract violation, and automated repair of certain tests that are broken due to program
changes.

In Figure 8(b), we display an example of a change contract written for the execute
method of Apache Ant. Lines 4–13 are JML-style annotations with extra keywords, such as
“change_behavior,” “requires,” and “when_signaled.” The change contract in Figure 8(b) prag-
matically expresses the verbal description given in the bug report in Figure 8(a). On the high level,
the change contract captures both the observed symptom (i.e., failing with an error message, “Use
of the extension element [...]”) and the necessary condition to reproduce the symptom (i.e., “broken
on JDK 7 when a SecurityManager is set”).

Such a contract is useful for dynamically validating code changes against developer’s SCIs. To
perform contract validation, random test generation techniques are used to first generate a set of
relevant tests, which execute the target method and satisfy the precondition given in the contract.
Then, the tests are executed on both the old and the updated versions, instrumented with proper
checking code. If a violation is found during the test run, then it is reported to the developer as
evidence.

Greevy et al. [41] proposed a technique for Smalltalk programs that summarizes changes to de-
termine whether software entities (e.g., classes) that participate in the implementation of a feature
become obsolete, whether new entities are added to the implementation of a feature, and whether
code is refactored. It takes multiple versions of a system as input and uses dynamic analysis to
extract traces by executing a feature for each version. By comparing and analyzing traces of differ-
ent versions, the technique captures and summarizes the evolution of a system as SCIs. Marot and
Wuyts [98] proposed a technique that detects aspect interference in aspect-oriented programs. To
use the technique, developers first semantically annotate the advices, called compositional inten-
tions, with their intended compositions. Then, during runtime, if a compositional SCI is violated,
then an error is triggered with an explanation of the violation, with the goal of giving feedback to
the developers that the program execution is in conflict with their SCI.

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:30 J. Krüger et al.

Fig. 8. An example for the dynamic analysis technique by Yi et al. [172].

6.4 Emerging Techniques and LLMs

Emerging AI technologies based on Large Language Models (LLMs) [174] have significantly
impacted numerous domains, including software engineering [57, 96]. Many early attempts have
been made to “reinvent” analyses and tools with LLMs for software-engineering tasks, such as
code generation [160], test generation [150], fault localization [65], and program repair [169]. LLM-
based techniques emerge as multifaceted and versatile tools to better support software developers
based on their access to a vast collection of natural language and code data. But, to date, we are not
aware of any peer-reviewed publication on identifying SCIs based on LLMs. Therefore, we exclude
such techniques from this analysis.

Nevertheless, LLM-based techniques have the potential to simplify existing SCI-based software
analysis techniques. For example, for effort estimation, instead of identifying SCIs first [163],
new techniques have been proposed to rely on context-aware language models, such as BERT, to
estimate efforts required for software maintenance tasks [4]. This type of techniques can poten-
tially provide an end-to-end solution to many SCI-related software analysis tasks. Yet, recent stud-
ies [57, 96] also pointed out that LLM-based techniques, in their current state, have limitations,
which may hinder their adoption in some software-engineering scenarios. For example, while
LLMs are trained on massive amounts of data, their generalizability across different tasks remains
a big challenge. When applied on domains that are outside the scope of training, LLM-based tech-
niques may not perform consistently well. Moreover, the lack of interpretability makes the under-
standing of the decision-making process of LLM-based techniques difficult. Many studies [92, 171]
have shown that it is possible to manipulate model decisions with malicious attacks. Therefore,
we believe that identifying SCIs still holds merit even with the presence of LLMs, because an

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

A Meta-Study of Software-Change Intentions 300:31

orthogonal angle toward developers’ intentions may enhance the interpretability and trustworthi-
ness of the LLM-generated results, leading to better adoption of LLM-based techniques.

RO4: Techniques Related to SCIs

To understand how techniques build on SCIs, we analyzed the 50 publications from our sample
that used or proposed them. From the analysis, we learned the following:

— The goals of the techniques are either identifying SCIs or using them as a concept to improve
analysis results.

— The techniques rely on three underlying concepts: machine learning, static analysis, and
dynamic analysis.

— Yet, the range of the techniques is surprisingly large, because they are based on different
levels of abstractions of SCIs (e.g., “bug fix” versus “keep” versus contracts).

7 Threats to Validity

Internal Validity. The internal validity is concerned with how we conducted our meta-study and
potential biases we may have introduced. Since we had to extract and interpret natural-language
descriptions of other authors, it is possible that we misinterpreted their statements. Consequently,
we may have extracted data incorrectly, which may have biased our data analysis. To mitigate this
problem, we iteratively refined our analysis process and extracted data based on numerous discus-
sions with all authors of this article. Moreover, we cross-checked the extracted data repeatedly, for
instance, when reading on details in individual publications to address our research objectives. To
categorize our data, we relied on open-card-sorting-like methods and agreement between the au-
thors to mitigate misinterpretations. Based on this process, the agreement within our dataset, and
the affirmation of all authors involved, we argue that threats to the internal validity are mitigated.
External Validity. The external validity is concerned with how well we can apply our findings in
the broader context, and thus their general reliability. Since our meta-study synthesizes from 122
publications, we argue that we considered a relevant set of publications to ensure the reliability
of our results. We combined an automated with a snowballing search to mitigate potential prob-
lems with search engines and to improve the completeness of our dateset. As stop criterion, we
used saturation, which means that the new publications we found during the snowballing did not
provide fundamentally new insights. Still, since the area of software evolution and maintenance
is enormous, it is simply not possible to cover all relevant publications. To tackle this problem, we
considered only peer-reviewed publications. So, we may have missed some relevant data for our
meta-study, but based on the comparison to related reviews and surveys (cf. Section 9) as well as
our expertise in the area, we argue that this threat is limited. Additionally, we publish our data in
a persistent open-access repository1 to allow other researchers to validate, replicate, and extend
our study.

8 Implications

After summarizing the key insights with respect to each of our research objectives, we now briefly
discuss the consequent implications that researchers and practitioners can derive from our meta-
study. Specifically, we consider the following five important implications:
SCIs are an underlying concept of software engineering. Our meta-study revealed that

many different research directions are concerned with or at least related to SCIs. While
some connections are rather loose, we argue that almost all software-engineering research is
at some point connecting to changes of a software system, and thus SCIs. More specifically,
software changes are what results in a new system and its modifications, which is why we
can consider them key within software-engineering research and practice. For this reason,

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:32 J. Krüger et al.

we argue that SCIs are an important concept to connect different research directions and
practices, which are often reported disjointedly despite their connections. So, we think that
SCIs may serve as a common connector between research areas in software engineering
and can guide techniques as well as practices that combine and integrate such areas [80].

Using a unified classification helps comprehend and compare research. During our meta-
study, we found it challenging to fully understand all pieces of research and their connections
due to the varying terminologies used. We argue that the lack of a unified terminology makes
it very challenging for researchers and practitioners to fully grasp relationships between
areas. Consequently, we hope that our classification is a helpful means and stepping stone for
overcoming this challenge. In particular, we would recommend that researchers concerned
with software changes try to use a common classification or explain why this is not possible.
By referring to or extending an existing terminology, they can help others understand the
context of their work and its connections to other areas.

The practical evidence on the usefulness of SCIs is limited. We see a continuous interest in
(documenting) SCIs in research and practice. Despite this interest, there is limited empirical
evidence whether knowing SCIs is helpful in practice. Among others, this lack of evidence
makes it challenging to identify the right levels of abstraction for documenting SCIs and how
to document them. For this reason, we argue that future studies are needed to elicit more
evidence and provide an in-depth understanding of the usefulness of SCIs. The evidence and
insights collected via our meta-study are a helpful means for this purpose, and already hint
at the relevance of SCIs for research and practice.

Documenting the most important properties of SCIs can help developers. While the em-
pirical evidence is scarce, we argue that it helps developers to agree on a common documen-
tation template for their changes—building on the concept of SCIs to document particularly
important and more abstract information. In fact, when sketching our vision of using SCIs in
software engineering [80], we found that there are templates on GitHub that cover some of
our SCI categories, particularly the goal. Combined with the existing evidence and argued
practical benefits, we consider it helpful for developers to document SCIs. Of course, our
categorization can support designing a template covering the most important aspects, but
the developers have to agree on what details are important to them and how to ensure that
the documentation is correct as well as maintained.

Developers and researchers can build on various techniques to work with SCIs. We iden-
tified techniques for achieving different goals via three underlying approaches. These in-
sights highlight what has been studied in the past and what are potential new research
directions. Even more importantly, researchers and practitioners who want to study or adopt
SCIs do not have to start from scratch. Instead, they can build on an extensive body of re-
search and technologies on SCIs. For example, practitioners may want to reuse a technique
to automatically label changes according to the involved SCIs, which can warn them about
potentially violated SCIs.

We hope that these implications help practitioners and researchers reflect on SCIs, and thereby
scope new research as well as practical improvements in the future.

9 Related Work

Next, we provide an overview of the related work. For this purpose, we focus on discussing and
comparing the literature reviews we identified during our search (cf. Table 2), since these represent
the closest research to our own. We provide a synthesized overview of all six reviews in Table 5.
As we can see, the overlap of our meta-study with these reviews is rather low. However, this is not
very surprising, since the reviews focus on different research goals (e.g., change-impact analysis,

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

A Meta-Study of Software-Change Intentions 300:33

Table 5. Comparison of the Literature Reviews from Table 2 to Our Meta-study (122 Publications)

authors period
publications covered

research goal commonalities differences
overlap % we cover

Benestad et al. [13] 1993–2007 34 15 44.12 identify measurement goals
and attributes used in change-
based studies

some attributes partly overlap
with SCIs

attributes also span data and
metrics; no analysis of SCIs, ev-
idence, or techniques

Jamshidi et al. [62] 1995–2011 60 0 0.00 identify types of architecture
evolution with respective for-
malisms, reasonings, run-time
aspects, and tools

types of evolution partly over-
lap with SCIs

focus on architecture changes
and automation; no analysis of
evidence, goals, or benefits of
SCIs

Kagdi et al. [64] 1996–2006 80 4 5.00 identify the repositories used
in, purpose of, methodologies
for, and evaluations used in
mining papers

software changes that partly
overlap with SCIs as a subset of
the proposed taxonomy

no deeper analysis of software
changes; no analysis of tech-
niques, evidence, or benefits of
knowing SCIs

Lehnert [88] 1991–2011 160 N/A N/A identify techniques for change-
impact analysis classifying the
artifacts analyzed, inputs used,
changes supported, and algo-
rithms

classification of software
changes is a subset of the
category actions in our work

no abstraction of SCIs or anal-
ysis of their benefits, evidence,
and techniques

Ruiz et al. [130] 1998–2002 13 1 7.69 formalize an ontology of soft-
ware maintenance

some SCIs are partly repre-
sented in the ontology

no analysis of SCIs

Williams and Carver [166] 1976–2008 130 14 10.77 identify attributes of soft-
ware change taxonomies as
part of studying architecture
evolution and impact analysis

subsets of SCIs partly included
in change taxonomies

no analysis of SCIs

N/A: paper states 160 included publications, but the online list linked in the paper is not available anymore.
The overlap specifies how many papers of each literature review we cover, too.

architecture evolution) that inherently lead to other papers being relevant. We also noticed that
we often included publications by the same authors in our meta-study in which these focused
more on SCIs, such as the journal extension of Germán [36] whose original conference paper was
included in the review by Kagdi et al. [64]. Also, our literature search covered over 10 more recent
years, which logically leads to many more recent publications in our study. Note that we assume
that we cover the most relevant data from the reviews’ primary studies, because we analyzed the
reviews themselves. Last, the distribution of venues (e.g., most publications being published at
the International Conference on Software Maintenance and Evolution) between our meta-study
aligns very well with the reviews, like the one by Williams and Carver [166]. All of this improves
our confidence in our selection of publications, even though none of the previous reviews has
attempted to address our research objectives.

Benestad et al. [13] report a literature review on change-based studies. Their goal is to summa-
rize the state of the art and identify future challenges for researchers. For this purpose, the authors
summarized the goals of the included studies and identified 43 change attributes that they mapped
into a conceptual model. Since their goals and extracted data partly overlap with ours, this litera-
ture review is arguably the closest one to our own meta-study. Unfortunately, the literature review
of Benestad et al. has the same limitations of unclear categories and missing evidence we described
as a limitation for understanding SCIs in the beginning of this article. Concretely, while Benestad
et al. elicit change attributes, they also intermix categories. For instance, they define attributes,
such as activity (partially mapping to goals in our taxonomy), maintenance type (again, partially
mapping to goals in our taxonomy), change size (partially mapping to actions in our taxonomy),
change interval, code quality, developer ID, status, or tool use. These attributes can be used to de-
scribe a change, but there is no common connection between them (e.g., they are related to SCIs,
statistical metrics, meta-data), and the benefits of knowing them are unclear. We improved consid-
erably on this work by (1) focusing on a concrete and related set of change attributes (i.e., those
related to SCIs instead of statistics of changes), (2) synthesizing these SCIs into distinct categories
to clarify their scope, (3) discussing the actual empirical evidence on the use of knowing SCIs (i.e.,
not only their goals), (4) analyzing the techniques used in the context of SCIs (not covered by
Benestad et al.), and (5) considering more recent work (i.e., more than a decade of new research).

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:34 J. Krüger et al.

Consequently, our contributions and insights extend and complement those of Benestad et al.,
providing a more focused and recent understanding of SCIs for researchers and practitioners.

The other literature reviews and surveys focus on a specific type of change or certain techniques,
which are partially related to or can involve SCIs. For this reason, we included them into our analy-
ses, while they have only few relations to our own meta-study. Concretely, Jamshidi et al. [62] stud-
ied 60 publications to provide a taxonomy for classifying architecture-centric software evolution
research. Their sub-categories “need for evolution” (e.g., corrective) and “means of evolution” (e.g.,
refactoring) intermix different SCIs that relate to goals in our taxonomy—whereas their other cat-
egories are not fitting for SCIs (e.g., “UML specification”). The remainder of the review focuses on
formalizing, reasoning about, and tools for architectural changes, constructing a framework that
specifies the relations between these points, requirements, system models, and the system’s execu-
tion. We have not been concerned with these points in our meta-study. For instance, we actively de-
cided to include models only if they have been directly connected to code changes (cf. Section 2.2).

Kagdi et al. [64] surveyed 80 publications to evaluate how well their proposed taxonomy helps
classify research on mining software repositories. Software changes are only a subset in this tax-
onomy and do match only to the category actions in our categorization of SCIs. The remaining
review focuses on aspects, such as the repositories covered, mining methodologies and their eval-
uations, or goals of the studies. None of these have been objectives of our meta-study. Similarly,
Lehnert [88] reviewed 160 publications to provide a taxonomy for describing research on change-
impact analysis. For this purpose, Lehnert summarized properties like the techniques proposed,
their required input, or algorithms used. As we found while comparing this review to our meta-
study, change-impact analysis rarely considers SCIs, but focuses primarily on identifying whether
one arbitrary change causes other changes. Consequently, some categories in the taxonomy fit
the category actions of our categorization, but deeper insights or actual SCIs are missing from the
review by Lehnert. Ruiz et al. [130] proposed an ontology of software maintenance by surveying
13 publications and industry standards. However, this ontology focuses on a high-level conceptual
model of software maintenance (involving, e.g., “resource,” “process management,” and “support”),
and thus scratches only a marginal part of SCIs. Also, Ruiz et al. did not aim to provide an overview
of the research area, but picked a known selection of publications that were feasible for their own
work. Last, Williams and Carver [166] reviewed 130 publications to provide a taxonomy for char-
acterizing architectural changes, with similar differences to our work as the review by Jamshidi
et al. Specifically, Williams and Carver did not analyze SCIs beyond eliciting a subset of categories
that partly overlap with our categorization. In contrast to all these works, we focus on actual soft-
ware changes, the SCIs behind them, and other research objectives (e.g., empirical evidence) and
provide a more recent overview of the research area.

10 Conclusion

In this article, we have reported the results of an extensive meta-study in which we analyzed 122
publications related to SCIs. We elicited these publications based on the methodology of systematic
literature reviews [73], combining an automated and a snowballing search. Using open-coding-like,
open-card-sorting-like, and axial-coding methods, we extracted and analyzed data from these pub-
lications to (RO1) capture the research on SCIs, (RO2) derive a classification of SCIs, (RO3), collect
empirical evidence on the benefits of knowing SCIs, and (RO4) comparing techniques related to
SCIs. Our key contributions with respect to these research objectives are as follows:

RO1 We found that most publications on SCIs contribute techniques (50) and empirical studies
(48), employing SCIs in a wide range of contexts (e.g., predicting maintenance activities,
verifying changes) for various goals (e.g., improving techniques, monitoring projects) and
often define or adapt taxonomies non-systematically (i.e., as needed).

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

A Meta-Study of Software-Change Intentions 300:35

RO2 We propose a classification that provides a concise overview of SCIs by defining five or-
thogonal categories (i.e., goals, actions, objects, customer, lifecycle phase) and including
concrete examples from existing publications—serving as a common ground for commu-
nicating, understanding, and extending research on SCIs.

RO3 We identified that knowing SCIs can serve several benefits (e.g., comparing research), but
eliciting reliable empirical evidence on these benefits for practitioners is challenging, and
comparing this evidence between publications is hampered by the different understand-
ings that are established and that we aimed to align with our classification.

RO4 We provide an overview of techniques related to SCIs, which indicates that these tech-
niques either aim to identify SCIs or use them to improve an established analysis, build on
three underlying technologies (i.e., machine learning, static analysis, dynamic analysis),
and span a variety of abstractions of SCIs—with our classification and overview serving
as a common ground to understand and extend such techniques.

Our insights underpin the value of having a concise classification of SCIs that enables researchers
and practitioners to understand the existing body of knowledge of software evolution research.
Particularly, our overview of the existing publications highlights the potential knowing SCIs could
have, and the need for eliciting empirical evidence that this is the case. Such empirical evidence
is a consequent next step for future work, in which we also want to explore how to compare and
integrate different techniques to facilitate research on software evolution and SCIs. Our insights
into the goals, benefits, and evidence of using SCIs have motivated us to define a research agenda
on using SCIs to move toward controlled software evolution that can help developers avoid errors
and improve the comprehensibility of software changes [80].

References

[1] Alain Abran and Hong Nguyenkim. 1991. Analysis of maintenance work categories through measurement. In ICSM.
IEEE.

[2] Alain Abran and Hong Nguyenkim. 1993. Measurement of the maintenance process from a demand-based perspec-
tive. J. Softw. Maint. Res. Pract. 5, 2 (1993), 63–90.

[3] Jonas Åkesson, Sebastian Nilsson, Jacob Krüger, and Thorsten Berger. 2019. Migrating the android apo-games into
an annotation-based software product line. In SPLC. ACM.

[4] Mohammed Alhamed and Tim Storer. 2022. Evaluation of context-aware language models and experts for effort
estimation of software maintenance issues. In ICSME. IEEE.

[5] Eman A. Al Omar, Jiaqian Liu, Kenneth Addo, Mohamed W. Mkaouer, Christian Newman, Ali Ouni, and Zhe Yu.
2022. On the documentation of refactoring types. Autom. Softw. Eng. 29, 9 (2022), 1–40.

[6] Robert S. Arnold and Donald A. Parker. 1982. The dimensions of healthy maintenance. In ICSE. IEEE.
[7] Wesley K. G. Assunção, Jacob Krüger, Sébastien Mosser, and Sofiane Selaoui. 2023. How Do microservices evolve?

An empirical analysis of changes in open-source microservice repositories. J. Syst. Softw. 204, 111788 (2023), 1–14.
[8] Muhammad A. Babar and He Zhang. 2009. Systematic literature reviews in software engineering: Preliminary results

from interviews with researchers. In ESEM. IEEE.
[9] Thar Baker, Michael Mackay, Martin Randles, and Azzelarabe Taleb-Bendiab. 2013. Intention-oriented programming

support for runtime adaptive autonomic cloud-based applications. Comput. Electr. Eng. 39, 7 (2013), 2400–2412.
[10] Victor Basili, Lionel Briand, Steven Condon, Yong-Mi Kim, Walcélio L. Melo, and Jon D. Valen. 1996. Understanding

and predicting the process of software maintenance releases. In ICSE. IEEE.
[11] Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and Orazio

Strollo. 2012. When does a refactoring induce bugs? An empirical study. In SCAM. IEEE.
[12] Robert M. Bell, Thomas J. Ostrand, and Elaine J. Weyuker. 2011. Does measuring code change improve fault predic-

tion? In PROMISE. ACM.
[13] Hans Christian Benestad, Bente Anda, and Erik Arisholm. 2009. Understanding software maintenance and evolution

by analyzing individual changes: A literature review. J. Softw. Maint. Res. Pract. 21, 6 (2009), 349–378.
[14] Susan Bergin and John G. Keating. 2003. A case study on the adaptive maintenance of an internet application. J.

Softw. Maint. Res. Pract. 15, 4 (2003), 254–264.
[15] Ted Biggerstaff, Bharat Mitbander, and Dallas Webster. 1993. The concept assignment problem in program under-

standing. In WCRE. IEEE.

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:36 J. Krüger et al.

[16] Andrew P. Bradley. 1997. The use of the area under the ROC curve in the evaluation of machine learning algorithms.
Pattern Recogn. 30, 7 (1997), 1145–1159.

[17] Lionel C. Briand and Victor R. Basili. 1992. A classification procedure for the effective management of changes during
the maintenance process. In ICSM. IEEE.

[18] Lionel C. Briand, Victor R. Basili, Yong-Mi Kim, and Donald R. Squier. 1994. A change analysis process to characterize
software maintenance projects. In ICSM. IEEE.

[19] Lionel C. Briand, Yong-Mi Kim, Walcélio L. Melo, Carolyn B. Seaman, and Victor R. Basili. 1998. Q-MOPP: Qualitative
evaluation of maintenance organizations, processes and products. J. Softw. Maint. Res. Pract. 10, 4 (1998), 249–278.

[20] Aline Brito, André C. Hora, and Marco Tulio Valente. 2020. Refactoring graphs: Assessing refactoring over time. In
SANER. IEEE.

[21] Panuchart Bunyakiati and Chadarat Phipathananunth. 2017. Cherry-picking of code commits in long-running, multi-
release software. In FSE. ACM.

[22] Elizabeth Burd and Malcolm Munro. 1999. An initial approach towards measuring and characterising software evo-
lution. In WCRE. IEEE.

[23] Diego Cedrim, Alessandro Garcia, Melina Mongiovi, Rohit Gheyi, Leonardo da Silva Sousa, Rafael Maiani de Mello,
Baldoino Fonseca, Márcio Ribeiro, and Alexander Chávez. 2017. Understanding the impact of refactoring on smells:
A longitudinal study of 23 software projects. In ESEC/FSE. ACM.

[24] Ned Chapin, Joanne E. Hale, Khaled Md. Khan, Juan F. Ramil, and Wui-Gee Tan. 2001. Types of software evolution
and software maintenance. J. Softw. Maint. Evol. Res. Pract. 13, 1 (2001), 3–30.

[25] Luis Cortés-Coy, Mario Linares-Vásquez, Jairo Aponte, and Denys Poshyvanyk. 2014. On automatically generating
commit messages via summarization of source code changes. In SCAM. IEEE.

[26] Barthélémy Dagenais and Martin P. Robillard. 2014. Using traceability links to recommend adaptive changes for
documentation evolution. IEEE Trans. Softw. Eng. 40, 11 (2014), 1126–1146.

[27] Jamel Debbiche, Oskar Lignell, Jacob Krüger, and Thorsten Berger. 2019. Migrating Java-based apo-games into a
composition-based software product line. In SPLC. ACM.

[28] Tejinder Dhaliwal, Foutse Khomh, Ying Zou, and Ahmed E. Hassan. 2012. Recovering commit dependencies for
selective code integration in software product lines. In ICSM. IEEE.

[29] Márcio Greyck Batista Dias, Nicolas Anquetil, and Káthia Marçal de Oliveira. 2003. Organizing the knowledge used
in software maintenance. J. Univers. Comput. Sci. 9, 7 (2003), 641–658.

[30] Nicolas Dintzner, Arie van Deursen, and Martin Pinzger. 2016. FEVER: Extracting feature-oriented changes from
commits. In MSR. ACM.

[31] Nicolas Dintzner, Arie van Deursen, and Martin Pinzger. 2018. FEVER: An approach to analyze feature-oriented
changes and artefact co-evolution in highly configurable systems. Empir. Softw. Eng. 23, 2 (2018), 905–952.

[32] Beat Fluri and Harald C. Gall. 2006. Classifying change types for qualifying change couplings. In ICPC. IEEE.
[33] Ying Fu, Meng Yan, Xiaohong Zhang, Ling Xu, Dan Yang, and Jeffrey D. Kymer. 2015. Automated classification of

software change messages by semi-supervised latent dirichlet allocation. Inf. Softw. Technol. 57 (2015), 369–377.
[34] Harald C. Gall, Beat Fluri, and Martin Pinzger. 2009. Change analysis with evolizer and ChangeDistiller. IEEE Softw.

26, 6 (2009), 26–33.
[35] David Gefen and Scott L. Schneberger. 1996. The non-homogeneous maintenance periods: A case study of software

modifications. In ICSM. IEEE.
[36] Daniel M. Germán. 2006. An empirical study of fine-grained software modifications. Empir. Softw. Eng. 11, 3 (2006),

369–393.
[37] Lobna Ghadhab, Ilyes Jenhani, Mohamed W. Mkaouer, and Montassar Ben Messaoud. 2021. Augmenting commit

classification by using fine-grained source code changes and a pre-trained deep neural language model. Inf. Softw.

Technol. 135, 106566 (2021), 1–13.
[38] Emanuel Giger, Martin Pinzger, and Harald C. Gall. 2011. Comparing fine-grained source code changes and code

churn for bug prediction. In MSR. ACM.
[39] Carsten Görg and Peter Weißgerber. 2005. Detecting and visualizing refactorings from software archives. In IWPC.

IEEE.
[40] Georgios Gousios. 2013. The GHTorent dataset and tool suite. In MSR. IEEE.
[41] Orla Greevy, Stéphane Ducasse, and Tudor Gîrba. 2005. Analyzing feature traces to incorporate the semantics of

change in software evolution analysis. In ICSM. IEEE.
[42] Anita Gupta, Reidar Conradi, Forrest Shull, Daniela S. Cruzes, Christopher Ackermann, Harald Rønneberg, and

Einar Landre. 2008. Experience report on the effect of software development characteristics on change distribution.
In PROFES. Springer.

[43] Jens Gustavsson. 2003. A classification of unanticipated runtime software changes in Java. In ICSM. IEEE.

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

A Meta-Study of Software-Change Intentions 300:37

[44] Masatomo Hashimoto and Akira Mori. 2012. Enhancing history-based concern mining with fine-grained change
analysis. In CSMR. IEEE.

[45] Ahmed E. Hassan. 2008. Automated classification of change messages in open source projects. In SAC. ACM.
[46] Ahmed E. Hassan. 2009. Predicting faults using the complexity of code changes. In ICSE. IEEE.
[47] Lile P. Hattori and Michele Lanza. 2008. On the nature of commits. In ASE-W. IEEE.
[48] Shinpei Hayashi, Takayuki Omori, Teruyoshi Zenmyo, Katsuhisa Maruyama, and Motoshi Saeki. 2012. Refactoring

edit history of source code. In ICSM. IEEE.
[49] Wolfgang Heider, Michael Vierhauser, Daniela Lettner, and Paul Grünbacher. 2012. A case study on the evolution of

a component-based product line. In WICSA/ECSA. IEEE.
[50] Tjaša Heričko, Saša Brdnik, and Boštjan Šumak. 2022. Commit classification into maintenance activities using aggre-

gated semantic word embeddings of software change messages. In SQAMIA. CEUR-WS.org.
[51] Kim Herzig, Sascha Just, and Andreas Zeller. 2013. It’s not a bug, it’s a feature: How misclassification impacts bug

prediction. In ICSE. IEEE.
[52] Kim Herzig and Andreas Zeller. 2013. The impact of tangled code changes. In MSR. IEEE.
[53] Abram Hindle, Daniel M. German, Michael W. Godfrey, and Richard C. Holt. 2009. Automatic classification of large

changes into maintenance categories. In ICPC. IEEE.
[54] Abram Hindle, Daniel M. Germán, and Richard C. Holt. 2008. What do large commits tell us? A taxonomical study

of large commits. In MSR. ACM.
[55] Sebastian Hönel, Morgan Ericsson, Welf Löwe, and Anna Wingkvist. 2020. Using source code density to improve the

accuracy of automatic commit classification into maintenance activities. J. Syst. Softw. 168, 110673 (2020), 1–19.
[56] Daqing Hou and H. James Hoover. 2006. Using SCL to specify and check design intent in source code. IEEE Trans.

Softw. Eng. 32, 6 (2006), 404–423.
[57] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John Grundy, and

Haoyu Wang. 2024. Large language models for software engineering: A systematic literature review. arXiv preprint

arXiv:2308.10620 (2024).
[58] Yuan Huang, Qiaoyang Zheng, Xiangping Chen, Yingfei Xiong, Zhiyong Liu, and Xiaonan Luo. 2017. Mining version

control system for automatically generating commit comment. In ESEM. IEEE.
[59] Marieke Huisman, Herbert Bos, Sjaak Brinkkemper, Arie van Deursen, Jan Groote, Patricia Lago, Jaco van de Pol,

and Eelco Visser. 2016. Software that meets its intent. In ISoLA. Springer.
[60] Ayelet Israeli and Dror G. Feitelson. 2009. Characterizing Software Maintenance Categories Using the Linux Kernel.

Technical Report 2009–10. The Hebrew University of Jerusalem.
[61] Daniel Jackson and David A. Ladd. 1994. Semantic diff: A tool for summarizing the effects of modifications. In ICSM.

IEEE.
[62] Pooyan Jamshidi, Mohammad Ghafari, Aakash Ahmad, and Claus Pahl. 2013. A framework for classifying and com-

paring architecture-centric software evolution research. In CSMR. IEEE.
[63] Magne Jørgensen. 1995. Experience with the accuracy of software maintenance task effort prediction models. IEEE

Trans. Softw. Eng. 21, 8 (1995), 674–681.
[64] Huzefa H. Kagdi, Michael L. Collard, and Jonathan I. Maletic. 2007. A survey and taxonomy of approaches for mining

software repositories in the context of software evolution. J. Softw. Maint. Res. Pract. 19, 2 (2007), 77–131.
[65] Sungmin Kang, Gabin An, and Shin Yoo. 2023. A preliminary evaluation of LLM-based fault localization. arXiv

preprint arXiv:2308.05487 (2023).
[66] David Kawrykow and Martin P. Robillard. 2011. Non-essential changes in version histories. In ICSE. ACM.
[67] Chris F. Kemerer and Sandra Slaughter. 1997. Determinants of software maintenance profiles: An empirical investi-

gation. J. Softw. Maint. Res. Pract. 9, 4 (1997), 235–251.
[68] Chris F. Kemerer and Sandra Slaughter. 1999. An empirical approach to studying software evolution. IEEE Trans.

Softw. Eng. 25, 4 (1999), 493–509.
[69] Miryung Kim, Dongxiang Cai, and Sunghun Kim. 2011. An empirical investigation into the role of api-level refactor-

ings during software evolution. In ICSE. ACM.
[70] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2014. An empirical study of refactoring: Chal-

lenges and benefits at microsoft. IEEE Trans. Softw. Eng. 40, 7 (2014), 633–649.
[71] Sunghun Kim, Thomas Zimmermann, E. James Whitehead Jr., and Andreas Zeller. 2007. Predicting faults from cached

history. In ICSE. IEEE.
[72] Hiroyuki Kirinuki, Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto. 2014. Hey! are you committing tangled

changes? In ICPC. ACM.
[73] Barbara A. Kitchenham, David Budgen, and O. Pearl Brereton. 2015. Evidence-Based Software Engineering and Sys-

tematic Reviews. CRC.

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:38 J. Krüger et al.

[74] Barbara A. Kitchenham, Guilherme H. Travassos, Anneliese von Mayrhauser, Frank Niessink, Norman F. Schnei-
dewind, Janice Singer, Shingo Takada, Risto Vehvilainen, and Hongji Yang. 1999. Towards an ontology of software
maintenance. J. Softw. Maint. Res. Pract. 11, 6 (1999), 365–389.

[75] Amy Ko, Robert DeLine, and Gina Venolia. 2007. Information needs in collocated software development teams. In
ICSE. IEEE.

[76] Jacob Krüger. 2021. Understanding the Re-Engineering of Variant-Rich Systems: An Empirical Work on Economics,

Knowledge, Traceability, and Practices. Ph.D. Dissertation. Otto-von-Guericke University Magdeburg.
[77] Jacob Krüger and Regina Hebig. 2020. What developers (care to) recall: An interview survey on smaller systems. In

ICSME. IEEE.
[78] Jacob Krüger and Regina Hebig. 2023. To memorize or to document: A survey of developers’ views on knowledge

availability. In PROFES. Springer.
[79] Jacob Krüger, Christian Lausberger, Ivonne von Nostitz-Wallwitz, Gunter Saake, and Thomas Leich. 2020. Search.

review. repeat? An empirical study of threats to replicating SLR searches. Empir. Softw. Eng. 25, 1 (2020), 627–677.
[80] Jacob Krüger, Yi Li, Chenguang Zhu, Marsha Chechik, Thorsten Berger, and Julia Rubin. 2023. A vision on intentions

in software engineering. In ESEC/FSE. ACM.
[81] Jacob Krüger, Wardah Mahmood, and Thorsten Berger. 2020. Promote-pl: A round-trip engineering process model

for adopting and evolving product lines. In SPLC. ACM.
[82] Jacob Krüger, Alex Mikulinski, Sandro Schulze, Thomas Leich, and Gunter Saake. 2023. DSDGen: Extracting docu-

mentation to comprehend fork merges. In SPLC. ACM.
[83] Elias Kuiter, Jacob Krüger, Sebastian Krieter, Thomas Leich, and Gunter Saake. 2018. Getting rid of clone-and-own:

Moving to a software product line for temperature monitoring. In SPLC. ACM.
[84] David Chenho Kung, Jerry Gao, Pei Hsia, F. Wen, Yasufumi Toyoshima, and Cris Chen. 1994. Change impact identi-

fication in object oriented software maintenance. In ICSM.
[85] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining mental models: A study of developer work

habits. In ICSE. ACM.
[86] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. 2006. Preliminary design of JML: A behavioral interface specifica-

tion language for Java. ACM SIGSOFT Softw. Eng. Notes 31, 3 (2006), 1–38.
[87] Min-Gu Lee and Theresa L. Jefferson. 2005. An empirical study of software maintenance of a web-based java appli-

cation. In ICSM. IEEE.
[88] Steffen Lehnert. 2011. A taxonomy for software change impact analysis. In EVOL/IWPSE. ACM.
[89] Steffen Lehnert, Qurat-ul-ann Farooq, and Matthias Riebisch. 2012. A taxonomy of change types and its application

in software evolution. In ECBS. IEEE.
[90] Stanislav Levin and Amiram Yehudai. 2016. Using temporal and semantic developer-level information to predict

maintenance activity profiles. In ICSME. IEEE.
[91] Stanislav Levin and Amiram Yehudai. 2017. Boosting automatic commit classification into maintenance activities by

utilizing source code changes. In PROMISE. ACM.
[92] Jia Li, Zhuo Li, Huangzhao Zhang, Ge Li, Zhi Jin, Xing Hu, and Xin Xia. 2022. Poison attack and defense on deep

source code processing models. arXiv preprint arXiv:2210.17029 (2022).
[93] Bennet P. Lientz, E. Burton Swanson, and G. E. Tompkins. 1978. Characteristics of applications software maintenance.

Commun. ACM 21, 6 (1978), 466–471.
[94] Max Lillack, Ştefan Stănciulescu, Wilhelm Hedman, Thorsten Berger, and Andrzej Wąsowski. 2019. Intention-based

integration of software variants. In ICSE. IEEE.
[95] Ie-Hong Lin and David A. Gustafson. 1988. Classifying software maintenance. In ICSM. IEEE.
[96] David Lo. 2023. Trustworthy and synergistic artificial intelligence for software engineering: Vision and roadmaps.

arXiv preprint arXiv:2309.04142 (2023).
[97] Walid Maalej. 2010. Intention-Based Integration of Software Engineering Tools. Ph.D. Dissertation. Technical University

of Munich.
[98] Antoine Marot and Roel Wuyts. 2009. Detecting unanticipated aspect interferences at runtime with compositional

intentions. In RAM-SE. ACM.
[99] Matias Martinez, Laurence Duchien, and Martin Monperrus. 2013. Automatically extracting instances of code change

patterns with AST analysis. In ICSM. IEEE.
[100] Jumpei Matsuda, Shinpei Hayashi, and Motoshi Saeki. 2015. Hierarchical categorization of edit operations for sepa-

rately committing large refactoring results. In IWPSE. ACM.
[101] Andreas Mauczka, Florian Brosch, Christian Schanes, and Thomas Grechenig. 2015. Dataset of developer-labeled

commit messages. In MSR. IEEE.
[102] Andreas Mauczka, Markus Huber, Christian Schanes, Wolfgang Schramm, Mario Bernhart, and Thomas Grechenig.

2012. Tracing your maintenance work—A cross-project validation of an automated classification dictionary for com-
mit messages. In FASE. Springer.

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

A Meta-Study of Software-Change Intentions 300:39

[103] Kim Mens, Tom Mens, and Michel Wermelinger. 2002. Supporting software evolution with intentional software
views. In IWPSE. IEEE.

[104] Kim Mens, Bernard Poll, and Sebastián González. 2003. Using intentional source-code views to aid software mainte-
nance. In ICSM. IEEE.

[105] Tom Mens, Jim Buckley, Matthias Zenger, and Awais Rashid. 2003. Towards a taxonomy of software evolution. In
USE. EPFL.

[106] Omar Meqdadi, Nouh Alhindawi, Michael L. Collard, and Jonathan I. Maletic. 2013. Towards understanding large-
scale adaptive changes from version histories. In ICSM. IEEE.

[107] Audris Mockus and Lawrence G. Votta. 2000. Identifying reasons for software changes using historic databases. In
ICSM. IEEE.

[108] Audris Mockus and David M. Weiss. 2000. Predicting risk of software changes. Bell Labs Tech. J. 5, 2 (2000), 169–180.
[109] Parastoo Mohagheghi and Reidar Conradi. 2004. An empirical study of software change: Origin, acceptance rate, and

functionality vs. quality attributes. In ISESE. IEEE.
[110] Laís Neves, Paulo Borba, Vander Alves, Lucinéia Turnes, Leopoldo Teixeira, Demóstenes Sena, and Uirá Kulesza.

2015. Safe evolution templates for software product lines. J. Syst. Softw. 106 (2015), 42–58.
[111] Laís Neves, Leopoldo Teixeira, Demóstenes Sena, Vander Alves, Uirá Kulesza, and Paulo Borba. 2011. Investigating

the safe evolution of software product lines. In GPCE. ACM.
[112] Sebastian Nielebock, Paul Blockhaus, Jacob Krüger, and Frank Ortmeier. 2021. AndroidCompass: A dataset of android

compatibility checks in code repositories. In MSR. IEEE.
[113] John T. Nosek and Prashant Palvia. 1990. Software maintenance management: Changes in the last decade. J. Softw.

Maint. Res. Pract. 2, 3 (1990), 157–174.
[114] Matheus Paixão, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul, and Mark Harman. 2017. Are developers

aware of the architectural impact of their changes? In ASE. IEEE.
[115] Matheus Paixão, Anderson G. Uchôa, Ana Carla Bibiano, Daniel Oliveira, Alessandro Garcia, Jens Krinke, and Emilio

Arvonio. 2020. Behind the intents: An in-depth empirical study on software refactoring in modern code review. In
MSR. ACM.

[116] Fabio Palomba, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia. 2017. An exploratory study on the relationship
between changes and refactoring. In ICPC. IEEE.

[117] Kai Pan, Sunghun Kim, and E. James Whitehead Jr. 2009. Toward an understanding of bug fix patterns. Empir. Softw.

Eng. 14, 3 (2009), 286–315.
[118] Leonardo Teixeira Passos and Krzysztof Czarnecki. 2014. A dataset of feature additions and feature removals from

the linux kernel. In MSR. ACM.
[119] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. 2020. The software heritage graph dataset: Large-scale

analysis of public software development history. In MSR. ACM.
[120] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product Line Engineering. Springer.
[121] Macario Polo, Mario Piattini, and Francisco Ruiz. 2001. Using code metrics to predict maintenance of legacy programs:

A case study. In ICSM. IEEE.
[122] Daryl Posnett, Abram Hindle, and Premkumar T. Devanbu. 2011. Got issues? Do new features and code improvements

affect defects? In WCRE. IEEE.
[123] Ranjith Purushothaman and Dewayne E. Perry. 2005. Toward understanding the rhetoric of small source code

changes. IEEE Trans. Softw. Eng. 31, 6 (2005), 511–526.
[124] Dawei Qi, Jooyong Yi, and Abhik Roychoudhury. 2012. Software change contracts. In FSE. ACM.
[125] Derek Rayside, Scott Kerr, and Kostas Kontogiannis. 1998. Change and adaptive maintenance detection in Java soft-

ware systems. In WCRE. IEEE.
[126] Ralf Reussner, Michael Goedicke, Wilhelm Hasselbring, Birgit Vogel-Heuser, Jan Keim, and Lukas Märtin (Eds.). 2019.

Managed Software Evolution. Springer.
[127] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. 2012. How do professional developers comprehend

software? In ICSE. IEEE.
[128] H. Dieter Rombach, Bradford T. Ulery, and Jon D. Valett. 1992. Toward full life cycle control: Adding maintenance

measurement to the SEL. J. Syst. Softw. 18, 2 (1992), 125–138.
[129] Alexander J. Rostkowycz, Václav Rajlich, and Andrian Marcus. 2004. A case study on the long-term effects of software

redocumentation. In ICSM. IEEE.
[130] Francisco Ruiz, Aurora Vizcaíno Barceló, Mario Piattini, and Félix García. 2004. An ontology for the management of

software maintenance projects. Int. J. Softw. Eng. Knowl. Eng. 14, 3 (2004), 323–349.
[131] Samar Saeed, Shahrzad Sheikholeslami, Jacob Krüger, and Regina Hebig. 2023. What data scientists (care to) recall.

In PROFES. Springer.

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

300:40 J. Krüger et al.

[132] Munish Saini and Kuljit Kaur Chahal. 2018. Change profile analysis of open-source software systems to understand
their evolutionary behavior. Front. Comput. Sci. 12, 12 (2018), 1105–1124.

[133] Gabriela Sampaio, Paulo Borba, and Leopoldo Teixeira. 2016. Partially safe evolution of software product lines. In
SPLC. ACM.

[134] Stephen R. Schach, Bo Jin, Liguo Yu, Gillian Z. Heller, and A. Jefferson Offutt. 2003. Determining the distribution of
maintenance categories: Survey versus measurement. Empir. Softw. Eng. 8, 4 (2003), 351–365.

[135] Yusra Shakeel, Jacob Krüger, Ivonne von Nostitz-Wallwitz, Christian Lausberger, Gabriel C. Durand, Gunter Saake,
and Thomas Leich. 2018. (Automated) literature analysis - threats and experiences. In SE4Science. ACM.

[136] Yaqian Shen and Nazim H. Madhavji. 2006. ESDM—A method for developing evolutionary scenarios for analysing
the impact of historical changes on architectural elements. In ICSM. IEEE.

[137] Luciana Lourdes Silva, Klérisson Vinícius Ribeiro Paixão, Sandra de Amo, and Marcelo de Almeida Maia. 2011. On
the use of execution trace alignment for driving perfective changes. In CSMR. IEEE.

[138] Charles Simonyi. 1995. The Death of Computer Languages, the Birth of Intentional Programming. Technical Report
MSR-TR-95-52. Microsoft Research.

[139] Charles Simonyi, Magnus Christerson, and Shane Clifford. 2006. Intentional software. In OOPSLA. ACM.
[140] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do changes induce fixes? In MSR. ACM.
[141] Sarocha Sothornprapakorn, Shinpei Hayashi, and Motoshi Saeki. 2018. Visualizing a tangled change for supporting

its decomposition and commit construction. In COMPSAC. IEEE.
[142] Maria J. C. Sousa and Helena M. Moreira. 1998. A survey on the software maintenance process. In ICSM. IEEE.
[143] Klaas-Jan Stol and Brian Fitzgerald. 2018. The ABC of software engineering research. ACM Trans. Softw. Eng.

Methodol. 27, 3 (2018), 11:1–51.
[144] Maximilian Störzer, Barbara G. Ryder, Xiaoxia Ren, and Frank Tip. 2006. Finding failure-inducing changes in Java

programs using change classification. In FSE. ACM.
[145] Anselm Strauss and Juliet Corbin. 1998. Basics of Qualitative Research: Techniques and Procedures for Developing

Grounded Theory. Sage.
[146] Xiaobing Sun, Bixin Li, Chuanqi Tao, Wanzhi Wen, and Sai Zhang. 2010. Change impact analysis based on a taxonomy

of change types. In COMPSAC. IEEE.
[147] Xiaobing Sun, Bixin Li, Wanzhi Wen, and Sai Zhang. 2013. Analyzing impact rules of different change types to

support change impact analysis. Int. J. Softw. Eng. Knowl. Eng. 23, 3 (2013), 259–288.
[148] Burton Swanson. 1976. The dimensions of maintenance. In ICSE. ACM.
[149] Xinye Tang, Song Wang, and Ke Mao. 2015. Will this bug-fixing change break regression testing? In ESEM. IEEE.
[150] Yutian Tang, Zhijie Liu, Zhichao Zhou, and Xiapu Luo. 2023. ChatGPT vs SBST: A comparative assessment of unit

test suite generation. IEEE Trans. Softw. Eng. Early Access (2023), 1–19.
[151] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. 2012. How do software engineers understand

code changes? An exploratory study in industry. In FSE. ACM.
[152] Yida Tao and Sunghun Kim. 2015. Partitioning composite code changes to facilitate code review. In MSR. IEEE.
[153] Sirinut Thangthumachit, Shinpei Hayashi, and Motoshi Saeki. 2011. Understanding source code differences by sep-

arating refactoring effects. In APSEC. IEEE.
[154] Yuan Tian, Julia Lawall, and David Lo. 2012. Identifying linux bug fixing patches. In ICSE. IEEE.
[155] Pitamber Tiwari, Wei Li, Raouf Alomainy, and Bingyang Wei. 2013. An empirical study of different types of changes

in the eclipse project. Open Softw. Eng. J. 7 (2013).
[156] Alexander Trautsch, Johannes Erbel, Steffen Herbold, and Jens Grabowski. 2023. What really changes when devel-

opers intend to improve their source code: A commit-level study of static metric value and static analysis warning
changes. Empir. Softw. Eng. 28, 30 (2023), 1–40.

[157] Martin Treiber, Hong Linh Truong, and Schahram Dustdar. 2008. On analyzing evolutionary changes of web services.
In ICSOC. Springer.

[158] Nikolaos Tsantalis, Victor Guana, Eleni Stroulia, and Abram Hindle. 2013. A multidimensional empirical study on
refactoring activity. In CASCON. IBM.

[159] Nikolaos Tsantalis, Matin Mansouri, Laleh Mousavi Eshkevari, Davood Mazinanian, and Danny Dig. 2018. Accurate
and efficient refactoring detection in commit history. In ICSE. ACM.

[160] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs. experience: Evaluating the usability
of code generation tools powered by large language models. In CHI. ACM.

[161] Birgit Vogel-Heuser, Thomas Simon, Jens Folmer, Robert Heinrich, Kiana Rostami, and Ralf H. Reussner. 2016. To-
wards a common classification of changes for information and automated production systems as precondition for
maintenance effort estimation. In INDIN. IEEE.

[162] Anneliese von Mayrhauser and A. Marie Vans. 1995. Program comprehension during software maintenance and
evolution. Computer 28, 8 (1995), 44–55.

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

A Meta-Study of Software-Change Intentions 300:41

[163] Song Wang, Chetan Bansal, and Nachiappan Nagappan. 2021. Large-scale intent analysis for identifying large-review-
effort code changes. Inf. Softw. Technol. 130, 106408 (2021), 1–15.

[164] Song Wang, Chetan Bansal, Nachiappan Nagappan, and Adithya Abraham Philip. 2019. Leveraging change intents
for characterizing and identifying large-review-effort changes. In PROMISE. ACM.

[165] Shaowei Wang, David Lo, and Lingxiao Jiang. 2013. Understanding widespread changes: A taxonomic study. In CSMR.
IEEE.

[166] Byron J. Williams and Jeffrey C. Carver. 2010. Characterizing software architecture changes: A systematic review.
Inf. Softw. Technol. 52, 1 (2010), 31–51.

[167] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engi-
neering. In EASE. ACM.

[168] Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung. 2011. ReLink: Recovering links between bugs
and changes. In ESEC/FSE. ACM.

[169] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated program repair in the era of large pre-
trained language models. In ICSE. IEEE.

[170] Meng Yan, Ying Fu, Xiaohong Zhang, Dan Yang, Ling Xu, and Jeffrey D. Kymer. 2016. Automatically classifying
software changes via discriminative topic model: Supporting multi-category and cross-project. J. Syst. Softw. 113
(2016), 296–308.

[171] Zhou Yang, Bowen Xu, Jie M. Zhang, Hong J. Kang, Jieke Shi, Junda He, and David Lo. 2024. Stealthy backdoor attack
for code models. IEEE Trans. Softw. Eng. Early Access 50, 4 (2024), 721–741.

[172] Jooyong Yi, Dawei Qi, Shin Hwei Tan, and Abhik Roychoudhury. 2013. Expressing and checking intended changes
via software change contracts. In ISSTA. ACM.

[173] Stephen W. L. Yip and Tom Lam. 1994. A software maintenance survey. In APSEC. IEEE.
[174] Wayne X. Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie

Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu
Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A survey of large language models. arXiv preprint

arXiv:2303.18223 (2023).
[175] Thomas Zimmermann. 2016. Card-sorting: From text to themes. In Perspectives on Data Science for Software Engi-

neering. Elsevier.

Received 15 June 2022; revised 1 November 2023; accepted 2 April 2024

ACM Comput. Surv., Vol. 56, No. 12, Article 300. Publication date: October 2024.

