Management of Time Requirements in Component-based Systems

Yi Li¹ Tian Huat Tan² Marsha Chechik¹

University of Toronto
 Singapore University of Technology and Design

FM 2014 Singapore May 14, 2014

Component-based Software Engineering

Business Goals & System Requirements

Component-based Software Engineering

Business Goals & System Requirements

Component-based Software Engineering

modularity, reusability, separation of concerns

Vehicle Control Systems

- Electronic Stability Control (ESC)
- Anti-lock braking system (ABS)

Vehicle Control Systems

- Electronic Stability Control (ESC)
- Anti-lock braking system (ABS)

Smart Phones

Vehicle Control Systems

- Electronic Stability Control (ESC)
- Anti-lock braking system (ABS)

Smart Phones

Sensors - motion tracking

Vehicle Control Systems

- Electronic Stability Control (ESC)
- Anti-lock braking system (ABS)

Smart Phones

Sensors - motion tracking

Web Service Compositions

- Ticket Booking
- Stock Quotes

Vehicle Control Systems

- Electronic Stability Control (ESC)
- Anti-lock braking system (ABS)

Smart Phones

Sensors - motion tracking

Web Service Compositions

- Ticket Booking
- Stock Quotes

Previous Work: [] [ICSE'13]

- Local Timing Requirements (LTR) synthesis
- Web Services BPEL
- Monolithic representation

Previous Work: [] [ICSE'13]

- Local Timing Requirements (LTR) synthesis
- Web Services BPEL
- Monolithic representation

LTR:

Must finis

LTR - monolithic constraint

Pros:

- + distills complicated composition structures into a single formula
- + precisely captures all feasible combinations

Cons:

- imposes dependencies across components
- lacks support for localized debugging/repairing

E'13]

nents

ion

LTR:

Previous Work: [] [ICSE'13]

- Local Timing Requirements (LTR) synthesis
- Web Services BPEL
- Monolithic representation

LTR:

uLTR: $(0 \le t_{DS} < 1 \land 0 \le t_{FS} < 1)$ $\lor (0 \le t_{DS} < 1 \land 0 \le t_{PS} < 1)$

LTR:

- Component-dependent timing requirement
- Linear real arithmetic
- Precise
- Monolithic

uLTR:

```
(0 \le t_{DS} < 1 \land 0 \le t_{FS} < 1)
\lor (0 \le t_{DS} < 1 \land 0 \le t_{PS} < 1)
```

- Component-independent under-approximated LTR
- Intervals
- Under-approximated
- Localized

All possible timing configurations,

e.g.,
$$t_{DS} = 1$$
, $t_{FS} = 0.5$, $t_{PS} = 0.8$

$$Precision(uLTR) = \frac{\#configurations \ satisfied \ by \ uLTR}{\#configurations \ satisfied \ by \ LTR} \times 100\%$$

$$Precision(uLTR) = \frac{\#configurations \ satisfied \ by \ uLTR}{\#configurations \ satisfied \ by \ LTR} \times 100\%$$

Checklist

What is uLTR?

- Component-independent under-approximated LTR
- Soundness: ensure timing safety

How to break up the monolithic constraint?

- Compute uLTR from LTR
- Precision: preserve as many choices as possible

How can localized constraints support the management of timing requirements?

- uLTR for component selection
- uLTR for runtime adaptation and recovery

Checklist

What is uLTR?

- Component-independent under-approximated LTR
- Soundness: ensure timing safety

How to break up the monolithic constraint?

- Compute uLTR from LTR
- Precision: preserve as many choices as possible

How can localized constraints support the management of timing requirements?

- uLTR for component selection
- uLTR for runtime adaptation and recovery

φ:

φ:

φ: $\neg (0 \le t_{DS} \land 1 \le t_{FS} \land 1 \le t_{PS})$ $\land ((0 \le t_{DS} \land 0 \le t_{FS} \land 0 \le t_{PS}) \Rightarrow t_{DS} \le 3)$ $(0 \le t_{DS} < 1 \land 0 \le t_{FS} < 1)$ $\wedge ((0 \le t_{DS} \land 0 \le t_{FS} \le 1 \land 0 \le t_{PS}) \Rightarrow t_{DS} + t_{FS} \le 3)$ t_{PS} $\vee (0 \leq t_{DS} < 1 \land 0 \leq t_{PS} < 1)$ $\wedge ((0 \le t_{DS} \land 1 \le t_{FS} \land 0 \le t_{PS} \le 1) \Rightarrow t_{DS} + t_{PS} \le 2)$ t_{DS}

 $B_1 = MaxCube(\phi)$

 $B_1 = MaxCube(\phi)$ t_{PS} InfCube(φ , B₁) t_{DS}

```
B_1 = MaxCube(\phi)
                                      t_{PS}
InfCube(\varphi, B<sub>1</sub>)
B_2 = MaxCube(\phi)
```

 t_{DS}

```
B_1 = MaxCube(\phi)
InfCube(\varphi, B<sub>1</sub>)
B_2 = MaxCube(\phi)
B=Merge(B_1,...,B_i)
                         t_{DS}
```

Compute uLTR from LTR

```
B_1 = MaxCube(\phi)
InfCube(\varphi, B<sub>1</sub>)
B_2 = MaxCube(\phi)
B=Merge(B_1,...,B_i)
if (h(B_i)<\omega)
    return;
                        t_{DS}
```

Compute uLTR from LTR

```
Soundness
B_1 = MaxCube(\phi)
InfCube(\varphi, B<sub>1</sub>)
B_2 = MaxCube(\phi)
                                                          Precision
B=Merge(B_1,...,B_i)
if (h(B_i)<\omega)
    return;
                        t_{DS}
```

 $MaxCube(\phi)$ //return the hypercube in ϕ with maximum volume

InfCube(ϕ ,B) //relax in one direction if possible

```
\begin{array}{l} \text{MaxCube}(\phi) \text{ //return the hypercube in } \phi \text{ with maximum volume} \\ \text{ // sample arbitrary hyper-rectangle} \\ \theta \triangleq \forall Vars(\varphi) \cdot ((\bigwedge_{v_i \in Vars(\varphi)} l_i \leq v_i \leq u_i) \Rightarrow \varphi) \\ \\ v_i \in Vars(\varphi) \end{array}
```

InfCube(φ ,B) //relax in one direction if possible

```
\begin{array}{l} \text{MaxCube}(\pmb{\phi}) \text{ //return the hypercube in } \varphi \text{ with maximum volume} \\ \text{ // sample arbitrary hyper-rectangle} \\ \theta \triangleq \forall Vars(\varphi) \cdot ((\bigwedge_{v_i \in Vars(\varphi)} l_i \leq v_i \leq u_i) \Rightarrow \varphi) \\ \text{ // sample maximal hyper-cube} \\ \text{OPTIMIZE}(\theta \wedge (\bigwedge_{v_i \in Vars(\varphi)} (u_i - l_i = h)), h) \\ \\ v_i \in Vars(\varphi) \end{array}
```

InfCube(φ ,B) //relax in one direction if possible

 $\begin{array}{c} \text{MaxCube}(\phi) \text{ //return the hypercube in } \phi \text{ with maximum volume} \\ \text{// sample arbitrary hyper-rectangle} \\ \text{Symbolic Optimization}) \cdot ((\bigwedge_{v_i \in Vars(\varphi)} l_i \leq v_i \leq u_i) \Rightarrow \varphi) \\ \\ \text{ [POPL'14]} \\ \text{imal hyper-cube} \end{array}$

Optimize
$$(\theta \land (\bigwedge_{v_i \in Vars(\varphi)} (u_i - l_i = h)), h)$$

InfCube(φ ,B) //relax in one direction if possible

```
\begin{array}{l} \text{MaxCube}(\pmb{\phi}) \text{ //return the hypercube in } \pmb{\phi} \text{ with maximum volume} \\ \text{ // sample arbitrary hyper-rectangle} \\ \theta \triangleq \forall Vars(\varphi) \cdot ((\bigwedge_{v_i \in Vars(\varphi)} l_i \leq v_i \leq u_i) \Rightarrow \varphi) \\ \text{ // sample maximal hyper-cube} \\ \text{OPTIMIZE}(\theta \wedge (\bigwedge_{v_i \in Vars(\varphi)} (u_i - l_i = h)), h) \\ \\ v_i \in Vars(\varphi) \end{array}
```

UNSAT?
$$(\neg (B[l_i/\infty] \Rightarrow \varphi))$$
 // relax lower bound

UNSAT?
$$(\neg (B[u_i/\infty] \Rightarrow \varphi))$$
 // relax upper bound

```
MaxCube(\phi) //return the hypercube in \phi with maximum volume
     // sample arbitrary hyper-rectangle
     v_i \in Vars(\varphi)
     // sample maximal hyper-cube
     v_i \in Vars(\varphi)
InfCube(\varphi,B) //relax in one direction if possible
     UNSAT? (\neg (B[l_i/\infty] \Rightarrow \varphi)) // relax lower bound
     UNSAT? (\neg (B[u_i/\infty] \Rightarrow \varphi)) // relax upper bound
// heights of sampled hyper-cubes form a non-increasing sequence
```

Checklist

What is uLTR?

- Component-independent under-approximated LTR
- Soundness: ensure timing safety

How to break up the monolithic constraint?

- Compute uLTR from LTR
- Precision: preserve as many choices as possible

How can localized constraints support the management of timing requirements?

- uLTR for component selection
- uLTR for runtime adaptation and recovery

Checklist

What is uLTR?

- Component-independent under-approximated LTR
- Soundness: ensure timing safety

How to break up the monolithic constraint?

- Compute uLTR from LTR
- Precision: preserve as many choices as possible

How can localized constraints support the management of timing requirements?

- uLTR for component selection
- uLTR for runtime adaptation and recovery

- Real-world Web Service data: QWS dataset
- Case studies: online booking service, ...
- Evaluate the percentage of false-negatives (precision)
 w.r.t. size of the uLTR model

- Real-world Web Service data: QWS dataset
- Case studies: online booking service, ...

Replacing DS is enough!

Replacing DS is enough!

The "meaning" of LTR: safe if one of t_{FS} and t_{PS} is less than 1.

Experiments:

- Use real service response time
- Simulate violations by adding uniform random delays to components
- Compare the length of recovery plans generated by LTR and uLTR
- In ~90% cases, uLTR discovers shorter repairs

Limitations & Future Work

Limited evaluation

Need to look at other domains

Proof of concept, not the silver bullet

 Generalize the sampling algorithm: allow arbitrary hyper-rectangles

Scalability issues:

- Quantifier elimination
- Balance between precision and performance

Checklist

What is uLTR?

- Component-independent under-approximated LTR
- Soundness: ensure timing safety

How to break up the monolithic constraint?

- Compute uLTR from LTR
- Precision: preserve as many choices as possible

How can localized constraints support the management of timing requirements?

- uLTR for component selection
- uLTR for runtime adaptation and recovery

Checklist

What is uLTR?

- Component-independent under-approximated LTR
- Soundness: ensure timing safety

How to break up the monolithic constraint?

- Compute uLTR from LTR
- Precision: preserve as many choices as possible

How can localized constraints support the management of timing requirements?

- uLTR for component selection
- uLTR for runtime adaptation and recovery

Questions?

Thank you!

References

Li, Y., Albarghouthi, A., Gurfinkel, A., Kincaid, Z., Chechik, M.: Symbolic Optimization with SMT Solvers. In: Proc. of POPL 2014 (2014)

Tan, T.H., André, E., Sun, J., Liu, Y., Dong, J.S., Chen, M.: Dynamic Synthesis of Local Time Requirement for Service Composition. In: Proc. of ICSE 2013, pp. 542–551 (2013)

Al-Masri, E., Mahmoud, Q.H.: QoS-based Discovery and Ranking of Web Services. In: Proc. of ICCCN 2007, pp. 529–534. IEEE (2007)

Wang, S., Rho, S., Mai, Z., Bettati, R., Zhao, W.: Real-time Component-based Systems. In: Proc. of RTETAS 2005, pp. 428–437 (2005)

Carminati, B., Ferrari, E., Hung, P.C.: Exploring Privacy Issues in Web Services Discovery Agencies. IEEE Security & Privacy 3(5), 14–21 (2005)