Management of Time
Requirements In
Component-based Systems

Yi Li' Tian Huat Tan2 Marsha Chechik

1. University of Toronto
2. Singapore University of Technology and Design

FM 2014 Singapore
May 14, 2014

1

Component-based Software Engineering

Business Goals &
System Requirements

Component-based Software Engineering

Business Goals &
System Requirements

Component-based Software Engineering
modularity, reusability, separation of concerns

2

Timing Requirements

Timing Requirements

Vehicle Control Systems
e Electronic Stability Control (ESC)
e Anti-lock braking system (ABS)

Steering Angle
Sensor

Wheel Speed
nsor

Timing Requirements

Vehicle Control Systems
e Electronic Stability Control (ESC)
e Anti-lock braking system (ABS)

Smart Phones

Timing Requirements

Vehicle Control Systems
e Electronic Stability Control (ESC)
e Anti-lock braking system (ABS)

Smart Phones

e Sensors - motion tracking

Timing Reqguirements

Vehicle Control Systems
e Electronic Stability Control (ESC)
e Anti-lock braking system (ABS)

Smart Phones

e Sensors - motion tracking e s —
’ . +42.03(0.26%) 243pmeot

] OFY CHART COMPARE VNS TEOWOCAL INOICATORS CHART SETTNGS iy
* NV)

Web Service Compositions
e [icket Booking
e Stock Quotes

Timing Requirements

Vehicle Control Systems
e Electronic Stability Control (ESC)
e Anti-lock braking system (ABS)

Smart Phones

e Sensors - motion tracking o s

Web Service Compositions
e [icket Booking
e Stock Quotes

EXIsting Approach: LIR

EXIsting Approach: LIR

) REPORT

EXIsting Approach: LIR

EXIsting Approach: LIR

) REPORT

EXIsting Approach: LIR

EXIsting Approach: LIR

EXIsting Approach: LIR

e
HEE

EXIsting Approach: LIR

Previous Work: (] [ICSE’13]

e [ocal liming Requirements
(LTR) synthesis

e |Web Services - BPEL

e Monolithic representation

EXIsting Approach: LIR

Previous Work: (] [ICSE’13]

a e [ocal liming Requirements

(— =) .
) (LTR) synthesis

i ! | ‘ E e |Web Services - BPEL

LTR:

e Monolithic representation

= (0<tpsAl<tpsA1l=<tps)
A((0<tpsAO<trsAO=<tps)=tps<3)
A((0=<tpsAO<trs<1AO=<tps)=tps+trs<3)
A(O<tpsA1=<trsAO<tps<1)=tps+tps<2)

4

EXIsting Approach: LIR

LTR - monolithic constraint E’ 3]

Must finis
Pros:

+ distills complicated composition structures into a
single formula

ents

+ precisely captures all feasible combinations

Cons:
- Imposes dependencies across components on
- lacks support for localized debugging/repairing

= (0<tpsAl<tpsA1l=<tps)
A((0<tpsAO<trsAO=<tps)=tps<3)
A((0=<tpsAO<trs<1AO=<tps)=tps+trs<3)
A(O<tpsA1=<trsAO<tps<1)=tps+tps<2)

EXIsting Approach: LIR

st im0

rh mtw iy

LTR:

~(0<tpsAl=<tpsAl=<tps)

Previous Work: (] [ICSE’13]

e [ocal liming Requirements
(LTR) synthesis

e |Web Services - BPEL

e Monolithic representation

uLTR:

A((0<tpsAO<trsAO=<tps)=tps<3) | (0<tps<1AO=<tps<1)
A(O=<tpsAO=<trs<1AO<tps)=tps+trs=<3) v(0<tps<1AO=<tps<1)
A(O<tpsA1=<trsAO<tps<1)=tps+tps<2)

4

IR vs. ULlR

LTR:

a(0<tpsAl=<trsAl=<tps) ULTR:
A(0<tpsAO<trsAO<tps)=tps<3) (0<tps<1AO=<tps<1)
A((0<tpsAO=<trs<1AO=<tps)=tps+trs=<3) < <
A(O=<tpsAl=<tpsAO<tps<1)=tps+tps<2) V(O_tDS< 1/\O_tPS< 1)
e Component-dependent e Component-independent
timing requirement under-approximated LTR
e [Inear real arithmetic e Intervals
e Precise e Under-approximated

e Monolithic e [ocalized

IR vs. ULlR

All possible timing configurations,

e.g., tos=1,trs = 0.5, tps = 0.8

IR vs. ULlR

IR vs. ULlR

under-
approximation

false
negatives

Precision

o __ #configurations satisfied by ulL'TR
Precnsmn(uLTR) ~ F#configurations satisfied by LTR X 100%

IR vs. ULlR

Precision

o __ #configurations satisfied by ulL'TR
Precnsmn(uLTR) ~ F#configurations satisfied by LTR X 100%

L] L

[|

Checklist

What is uLTR?

e Component-independent under-approximated LTH

e Soundness: ensure timing safety

How to break up the monolithic constraint?
e Compute uLTR from LTR

* Precision: preserve as many choices as possible

How can localized constraints support the
management of timing requirements?

e ULTR for component selection

e ULTR for runtime adaptation and recovery

v

[|

[|

Checklist

What is uLTR?

e Component-independent under-approximated LTH

e Soundness: ensure timing safety

How to break up the monolithic constraint?
e Compute uLTR from LTR

* Precision: preserve as many choices as possible

How can localized constraints support the
management of timing requirements?

e ULTR for component selection

e ULTR for runtime adaptation and recovery

v

Compute uLTR from LTR

@P.
a(0<tpsAl=<tpsAl=<tps)
A((0<tpsAO=<trsAO=<tps)=tps<3)
A((0<tpsAO=<trs<1AO=<tps)=tps+trs<3) tpg
A(0O=<tpsAl=<tpsAO<tps<1)=tps+tps<2) r

Compute uLTR from LTR

P.
A(0<tpsAl=<trsAl=<tps)
A((0=<tpsAO=<trpsAO=<tps)=tps<3)
A(0=<tpsAO=<trs<1AO=<tps)=tps+trs<3) tpg
A(0O=<tpsAl=<tpsAO<tps<1)=tps+tps<2)

Compute uLTR from LTR

Q. .
A(0<tpsAl=<trsAl=<tps) | B .
A((0=<tpsAO=<trpsAO=<tps)=tps<3) | / (OStDS< 1/\OStFS< 1)

A((0=tpsAO=<trs<1AO=<tps)=tps+trs<3) ¢
A(0<tpsAl<trsAO<tps<1)=tps+tps<2) V(0<tps<1AO=<tps<1)

Compute uLTR from LTR

Compute uLTR from LTR

B1= MaxCube(wp)

L—
—
—
—
—
—
—
 —

Compute uLTR from LTR

B1= MaxCube(wp)
InfCube(w,B1) is

/7 -
- =
=
| -
—

Compute uLTR from LTR

B1= MaxCube(wp)
InfCube(w,B1) r
B>= MaxCube(w)

/ =
- —
—
| = =
—_

Compute uLTR from LTR

Bi= MaxCube(w)
InfCube(w,B1) T /
Bo= MaxCube(wp) -

B=Merge(B,..,Bi)) "_~~' I ‘//i

7/ — —_ -
— —_
—_
[
_

Compute uLTR from LTR

B1= MaxCube(wyp)
InfCube(,B1) r

B>= MaxCube(yp) [~

1
B=Merge(B,..,Bi) IIFO"\. : 7/75
if (h(Bi)<w) s

return;

Compute uLTR from LTR

S S S B P P S S P R P N R i
' s |
4 :

B1= MaxCube(wp)
InfCube(w,B1) 0

B>= MaxCube(y) I v

1
B=Merge(B1,..,Bi) /F"“ 7/75
0) —
| v T T x5
1f (h(Bi)<w) N a— e

return;

SMT Encodings

MCIXCUbE((P) //return the hypercube in ¢ with maximum volume

II’TFCUbG((P,B) //relax in one direction if possible

SMT Encodings

MCIXCUbG((P) //return the hypercube in ¢ with maximum volume
// sample arbltraryvhyper'rectangle B

0= VVars(p) -

II’TFCUbG((P,B) //relax in one direction if possible

SMT Encodings

MCIXCUbG((P) //return the hypercube in ¢ with maximum volume
// sample arbitrary hyper-rectangle
0 =VVars(p)-((N\ L <v; <u;) = @)
vi€EVars(yp)

// sample maximal hyper-cube

OPTIMIZE(O A

R <. Y

II’TFCUbG((P,B) //relax in one direction if possible

SMT Encodings

MCIXCUbGC(P) //return the hypercube in ¢ with maximum volume
e _dcbitrary hyper-rectangle

Symbolic Optimization) - ((A L < v <ug) =)
vi€Vars(p)

POPL'14
i][S] imal hyper-cube

II’I'FCUbEC(P,B) //relax in one direction if possible

SMT Encodings

MCIXCUbG((P) //return the hypercube in ¢ with maximum volume
// sample arbitrary hyper-rectangle

0 =VVars(p)-((N\ L <v; <u;) = @)

vi€EVars(yp)

// sample maximal hyper-cube

OpTiMIZE(OA(A (u;—1; =h)),h)

vi€Vars(p)
II’TFCUbG((P,B) //relax in one direction if possible

UNSAT? (—=(B|l;/oo| = ¢)) // relax lower bound

UNSAT? (~(B|u;/oo] = ¢)) // relax upper bound

SMT Encodings

MCIXCUbE((P) //return the hypercube in ¢ with maximum volume
// sample arbitrary hyper-rectangle

0 =VVars(p)-((N\ L <v; <u;) = @)

vi€EVars(yp)

// sample maximal hyper-cube

OpTiMIZE(OA(A (u;—1; =h)),h)

vi€Vars(p)
InfCube(cp,B) //relax in one direction if possible

UNSAT? (—=(B|l;/oo| = ¢)) // relax lower bound

UNSAT? (~(B|u;/oo] = ¢)) // relax upper bound

// heights of sampled hyper-cubes form a non-increasing sequence

[|

[|

Checklist

What is uLTR?

e Component-independent under-approximated LTH

e Soundness: ensure timing safety

How to break up the monolithic constraint?
e Compute uLTR from LTR

* Precision: preserve as many choices as possible

How can localized constraints support the
management of timing requirements?

e ULTR for component selection

e ULTR for runtime adaptation and recovery

10

Checklist

What is uLTR?

e Component-independent under-approximated LTH

e Soundness: ensure timing safety

How to break up the monolithic constraint?
e Compute uLTR from LTR

* Precision: preserve as many choices as possible

How can localized constraints support the
management of timing requirements?

e ULTR for component selection

e ULTR for runtime adaptation and recovery

10

ULTR for component
selection

&

ULTR for component
selection

&

&4—{!—3

ULTR for component
selection

ULTR for component
selection

ULTR for component
selection

F-] Carminati et al., 2005

P e—

&

Al-Masri & Mahmoud, 2007

=) Rajendran et al., 2010 y

¢~
&ma

11

ULTR for component
selection

Rs

finds the “best”

match given localized
constraints

ULTR for component
selection

finds the “best”
match given localized

constraints

85

Precision of ULTR model (%)

ULTR for component
selection

Real-world Web Service data: QWS dataset

Case studies: online booking service, ...

Evaluate the percentage of false-negatives (precision)
w.r.t. size of the uL.TR model

100 r
95 r
90

80 F/
75 b
70 ¥
65 T
60

90

— QWS, T. = 0.9s
....... RAND, T, =~ 10.8s

65

Precision of ULTR model (%

4 7 10
Size of ULTR model (|BS])

— 0
: 95

8
80 |/

75 b
70 F

60 £

i QWS, T, =2.7s
S— RAND, T, ~ 242.25 |

1 4 7 10
Size of ULTR model (|BS))

12

Precision of ULTR model (%)

100
90

80 |
70 t
60
5 F
w |
30
20

10

Size of ULTR model (|BS|)

Precision of ULTR model (%)

100
95
90

85

ULTR for component
selection

Real-world Web Service data: QWS dataset

Case studies: online booking service, ...

Evaluate the percentage g
w.r.t. size of the uLTRH

80 F/
75 b
70
65 |
60 |

="

— QWS, T, = 0.9s
....... RAND, T, =~ 10.8s

4 7 10
Size of ULTR model (|BS])

Precision of ULTR model (%)

100
95

90

precision)

Strong dependency in

the original LTR:

t1+t24+3t3-214<4

,
o,
4,
,
,
,
— ,
,
,
,

80 |/

(I
0

65

60 L

=
.

— QWS, T, =2.7s

....... RAND, T, ~ 242.2s _
A 1

4 7

Size of ULTR model (|BS|)

12

10

Precision of UL TR mode

60

5 F
0l
30
20 |

10

1111111

llllllllll

Size of ULTR model (|BS])

ULTR for runtime adaptation
and recovery

W Monitor

ULTR for runtime adaptation
and recovery

(st i s
C@E

I\/Iomtor

13

ULTR for runtime adaptation
and recovery

W Monitor
.

=

ﬂ
_

13

ULTR for runtime adaptation
and recovery

s G s Monitor
z) o
i

Q) |4]

ULTR for runtime adaptation
and recovery

s G s Monitor
z) o
i

a9 9| ||

9

ULTR for runtime adaptation
and recovery

Monitor

repairing plan

. . I
=
\./—

~(0<tpsA 1<trsA1<tps)
A((O<tpsAO<trsAO<tps)=1ps<3)

A((O<tpsAO<trs<1 AO<tps)=tps+1trs<3)
A((O<tpsA1<trsAO<tps<1)=tps+tps<?)

13

ULTR for runtime adaptation
and recovery

Cd G g Monitor
. > =
=

9 Y epaingpin W
_ ") repairing plan

—=(0O<tpsA1<trs A 1<tps) ?

|
A((O<tps AO<trs AO<tps)=1ps<3)

A((O<tpsAO<trs<1 AO<tps)=tps+1trs<3) Have to replace
A((O<tpsA1<trsAO<tps<1)=tps+tps<2) both DS and FS.

13

ULTR for runtime adaptation
and recovery

Monitor

H | cspomsine ~
- response time

ULTR for runtime adaptation
and recovery

Cd G g Monitor
¢ 3 _—
5@5 ! H‘ : _opaingpn
repairing plan

Replacing DS is enough!

ULTR for runtime adaptation
and recovery

s G s Monitor

? > —

EH ! }Ili _opaingpn W
repairing plan

Replacing DS is enough!

The "meaning” of LTR:
safe If one of trs and tps IS less than 1.

13

ULTR for runtime adaptation
and recovery

Experiments:
e Use real service response time

e Simulate violations by adding uniform random delays to
components

e Compare the length of recovery plans generated by
LTHR and uLTR

e In ~90% cases, uL 1R discovers shorter repairs

14

L imitations & Future Work

Limited evaluation

e Need to look at other domains

Proof of concept, not the silver bullet

e (Feneralize the sampling algorithm: allow arbitrary
hyper-rectangles

Scalability issues:
e Quantifier elimination

e Balance between precision and performance

15

Checklist

What is uLTR?

e Component-independent under-approximated LTH

e Soundness: ensure timing safety

How to break up the monolithic constraint?
e Compute uLTR from LTR

* Precision: preserve as many choices as possible

How can localized constraints support the
management of timing requirements?

e ULTR for component selection

e ULTR for runtime adaptation and recovery

16

Checklist

What is uLTR?

e Component-independent under-approximated LTH

e Soundness: ensure timing safety

How to break up the monolithic constraint?
e Compute uLTR from LTR

* Precision: preserve as many choices as possible

How can localized constraints support the
management of timing requirements?

e ULTR for component selection

e ULTR for runtime adaptation and recovery

16

Questions?
Thank you!

References

Li, Y., Albarghouthi, A., Gurfinkel, A., Kincaid, Z., Chechik, M.: Symbolic
Optimization with SMT Solvers. In: Proc. of POPL 2014 (2014)

Tan, T.H., André, E., Sun, J., Liu, Y., Dong, J.S., Chen, M.: Dynamic
Synthesis of Local Time Requirement for Service Composition. In: Proc.
of ICSE 2013, pp. 542-551 (2013)

Al-Masri,E.,Mahmoud,Q.H.:QoS-based Discovery and Ranking of Web
Services.In:Proc. of ICCCN 2007, pp. 529-534. [EEE (2007)

Wang, S., Rho, S., Mai, Z., Bettati, R., Zhao, W.: Real-time Component-
based Systems. In: Proc. of RTETAS 2005, pp. 428-437 (2005)

Carminati, B., Ferrari, E., Hung, P.C.: Exploring Privacy Issues in Web
Services Discovery Agencies. IEEE Security & Privacy 3(5), 14-21
(2005)

18

