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Component-based Software Engineering
modularity, reusability, separation of concerns
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Previous Work: (] [ICSE’13]

a e [ocal liming Requirements

(— =) .
) (LTR) synthesis

i ! | ‘ E e |Web Services - BPEL

LTR:

e Monolithic representation

= (0<tpsAl<tpsA1l=<tps)
A((0<tpsAO<trsAO=<tps)=tps<3)
A((0=<tpsAO<trs<1AO=<tps)=tps+trs<3)
A(O<tpsA1=<trsAO<tps<1)=tps+tps<2)
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EXIsting Approach: LIR

LTR - monolithic constraint E’ 3]

Must finis
Pros:

+ distills complicated composition structures into a
single formula

ents

+ precisely captures all feasible combinations

Cons:
- Imposes dependencies across components on
- lacks support for localized debugging/repairing
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LTR:

~(0<tpsAl=<tpsAl=<tps)

Previous Work: (] [ICSE’13]

e [ocal liming Requirements
(LTR) synthesis

e |Web Services - BPEL

e Monolithic representation

uLTR:

A((0<tpsAO<trsAO=<tps)=tps<3) | (0<tps<1AO=<tps<1)
A(O=<tpsAO=<trs<1AO<tps)=tps+trs=<3) v(0<tps<1AO=<tps<1)
A(O<tpsA1=<trsAO<tps<1)=tps+tps<2)
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IR vs. ULlR

LTR:

a(0<tpsAl=<trsAl=<tps) ULTR:
A(0<tpsAO<trsAO<tps)=tps<3) (0<tps<1AO=<tps<1)
A((0<tpsAO=<trs<1AO=<tps)=tps+trs=<3) < <
A(O=<tpsAl=<tpsAO<tps<1)=tps+tps<2) V(O_tDS< 1/\O_tPS< 1)
e Component-dependent e Component-independent
timing requirement under-approximated LTR
e [Inear real arithmetic e Intervals
e Precise e Under-approximated

e Monolithic e [ocalized



IR vs. ULlR

All possible timing configurations,

e.g., tos=1,trs = 0.5, tps = 0.8
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Checklist

What is uLTR?

e Component-independent under-approximated LTH

e Soundness: ensure timing safety

How to break up the monolithic constraint?
e Compute uLTR from LTR

* Precision: preserve as many choices as possible

How can localized constraints support the
management of timing requirements?

e ULTR for component selection

e ULTR for runtime adaptation and recovery
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Compute uLTR from LTR
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Compute uLTR from LTR

Q. .
A(0<tpsAl=<trsAl=<tps) | B .
A((0=<tpsAO=<trpsAO=<tps)=tps<3) | / (OStDS< 1/\OStFS< 1)

A((0=tpsAO=<trs<1AO=<tps)=tps+trs<3) ¢
A(0<tpsAl<trsAO<tps<1)=tps+tps<2) V(0<tps<1AO=<tps<1)
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Compute uLTR from LTR

Bi= MaxCube(w)
InfCube(w,B1) T /
Bo= MaxCube(wp) -
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Compute uLTR from LTR

B1= MaxCube(wyp)
InfCube(,B1) r

B>= MaxCube(yp) [~

1
B=Merge(B,..,Bi) IIFO"\. : 7/75
if (h(Bi)<w) s

return;



Compute uLTR from LTR
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B1= MaxCube(wp)
InfCube(w,B1) 0

B>= MaxCube(y) I v

1
B=Merge(B1,..,Bi) /F"“ 7/75
0) —
| v T T x5
1f (h(Bi)<w) N a— e

return;
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MCIXCUbG((P) //return the hypercube in ¢ with maximum volume
// sample arbitrary hyper-rectangle
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MCIXCUbGC(P) //return the hypercube in ¢ with maximum volume
e _dcbitrary hyper-rectangle

Symbolic Optimization ) - (( A L < v <ug) = )
vi€Vars(p)
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SMT Encodings

MCIXCUbE((P) //return the hypercube in ¢ with maximum volume
// sample arbitrary hyper-rectangle

0 =VVars(p)-(( N\ L <v; <u;) = @)

vi€EVars(yp)

// sample maximal hyper-cube

OpTiMIZE(OA( A (u;—1; =h)),h)

vi€Vars(p)
InfCube(cp,B) //relax in one direction if possible

UNSAT? (—=(B|l;/oo| = ¢))  // relax lower bound

UNSAT? (~(B|u;/oo] = ¢))  // relax upper bound

// heights of sampled hyper-cubes form a non-increasing sequence
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e Soundness: ensure timing safety
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* Precision: preserve as many choices as possible

How can localized constraints support the
management of timing requirements?

e ULTR for component selection

e ULTR for runtime adaptation and recovery
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ULTR for component
selection

Rs

finds the “best”

match given localized
constraints
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Precision of ULTR model (%)

ULTR for component
selection

Real-world Web Service data: QWS dataset

Case studies: online booking service, ...

Evaluate the percentage of false-negatives (precision)
w.r.t. size of the uL.TR model
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ULTR for runtime adaptation
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ULTR for runtime adaptation
and recovery
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ULTR for runtime adaptation
and recovery

Monitor

repairing plan

. . I
=
\./—

~(0<tpsA 1<trsA1<tps)
A((O<tpsAO<trsAO<tps)=1ps<3)

A((O<tpsAO<trs<1 AO<tps)=tps+1trs<3)
A((O<tpsA1<trsAO<tps<1)=tps+tps<?)
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ULTR for runtime adaptation
and recovery

Cd G g Monitor
. > =
=

9 Y epaingpin W
\_ ") repairing plan

—=(0O<tpsA1<trs A 1<tps) ?

|
A((O<tps AO<trs AO<tps)=1ps<3)

A((O<tpsAO<trs<1 AO<tps)=tps+1trs<3) Have to replace
A((O<tpsA1<trsAO<tps<1)=tps+tps<2) both DS and FS.
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ULTR for runtime adaptation
and recovery

Monitor
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ULTR for runtime adaptation
and recovery
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ULTR for runtime adaptation
and recovery

s G s Monitor

? > —

EH ! }Ili  _opaingpn W
repairing plan

Replacing DS is enough!

The "meaning” of LTR:
safe If one of trs and tps IS less than 1.
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ULTR for runtime adaptation
and recovery

Experiments:
e Use real service response time

e Simulate violations by adding uniform random delays to
components

e Compare the length of recovery plans generated by
LTHR and uLTR

e In ~90% cases, uL 1R discovers shorter repairs
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L imitations & Future Work

Limited evaluation

e Need to look at other domains

Proof of concept, not the silver bullet

e (Feneralize the sampling algorithm: allow arbitrary
hyper-rectangles

Scalability issues:
e Quantifier elimination

e Balance between precision and performance
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Checklist

What is uLTR?

e Component-independent under-approximated LTH

e Soundness: ensure timing safety

How to break up the monolithic constraint?
e Compute uLTR from LTR

* Precision: preserve as many choices as possible

How can localized constraints support the
management of timing requirements?

e ULTR for component selection

e ULTR for runtime adaptation and recovery
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Questions?
Thank you!
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