
Symbolic Optimization 
with SMT Solvers

Aws Albarghouthi / UToronto
Marsha Chechik / UToronto

Arie Gurfinkel / CMU
Zachary Kincaid / UToronto

Yi Li / UToronto

POPL 2014 / San Diego, CA



SMT Explosion!

SMT solvers appear everywhere. Why?
• Amazing performance!

• Support a large range of logical theories

• We’ve become really good at casting problems as 
SMT queries!
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SMT Applications
Verification

• Checking VCs, invariant generation, etc.

Bug finding
• Symbolic execution, BMC, fuzzing, etc.

Synthesis
• Circuit synthesis, sketching, superoptimization, etc.

Functional programming
• Liquid types
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~22% of POPL’14 papers mention SMT solvers!



Finding models
• Bug finding: erroneous traces

• Synthesis: program/circuit

Proving unsatisfiability (validity)
• Verification: VC holds

• Refinement types: subtyping relation holds

4

How are SMT Solvers Used?
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How are SMT Solvers Used?

What about 
optimization?
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Why Should You Care?

Plenty of applications for optimization:
• Numerical invariant generation

• Counterexample generation

• Program synthesis

• Constraint programming

• ... and many others
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' 2 T [ LRA
signature disjoint

z � 3
3x+ 2y  0 _E.g.:

f1, . . . , fnSet of linear objective functions: 
E.g.:  

x+ 2y, z

m1 |= ' s.t. max f1(m1)

mn |= ' s.t. max fn(mn)

. . .

Goal: find assignments m1, . . . ,mn
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' 2 T [ LRA
f1, . . . , fnSet of linear objective functions: 

f1  k1

f2  k2

^

i2[1,n]

fi  ki

Find strongest

that contains '
'

'

'

Problem Statement



Challenges & Contributions

Symba: an SMT-based optimization 
algorithm

• Non-convex optimization

• Linear arithmetic modulo theories

• Multiple independent objectives

• SMT solver as a black box
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Outline

Symba by example

Application and evaluation

What’s next?
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Example

11

' ⌘ 1  y  3 ^ (1  x  3 _ x � 4)
Objective functions:{y, x+ y}
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Figure 1. Illustration of SYMBA on a 2-D example.
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Figure 2. Illustration of SYMBA on a 3-D example.

UNBOUNDED (p1, y) To check if y is unbounded, SYMBA ap-
plies UNBOUNDED starting from p1. Since it cannot prove that y
is unbounded, it finds the point p2 = (0, 1, 1), where [p1] ⇢ [p2]

and y(p1) < y(p2), i.e., a point showing that increasing the value
of y from p1 can hit a boundary. After applying UNBOUNDED to
p2, SYMBA can get the point p3, and then point p4 (after apply-
ing UNBOUNDED to p3). As a result, U ⌘ y 6 2. From point p4,
SYMBA cannot apply UNBOUNDED, since there does not exist a
point p0 where [p

0
] = [p4] that increases the value of y. Intuitively,

p4 represents a local maximum.

Second GLOBALPUSH To escape the local maximum, SYMBA
uses GLOBALPUSH to query the SMT solver for a point outside U .
In this case, it might find the point p5 = (1.8, 2.1, 1), and thus U
becomes y 6 2.1.

UNBOUNDED (p5, y) SYMBA continues trying to prove that y is
unbounded by performing UNBOUNDED from p5, leading to p6 and
then p7. SYMBA detects that p7 represents the maximum value of y
in ' and terminates with the optimal solution y 6 3.

We have illustrated the workings of SYMBA on two formu-
las representing non-convex shapes, and showed how it utilizes an
SMT solver to find least upper bounds and detect unboundedness of
arbitrary linear expressions (objective functions). In the following
sections, we describe SYMBA formally and discuss our implemen-
tation and experimental results.

3. SYMBA: The Symbolic Optimization
Algorithm

In this section, we provide definitions required for the rest of the
paper and formalize SYMBA as a set of inference rules.

3.1 Definitions
Formulas Let L be a topologically-closed (i.e., all atoms are non-
strict inequalities) subset of Quantifier Free Linear Real Arithmetic
(QF LRA), defined as follows:

' 2 L ::= true | false | P ^ P 0 | P _ P 0

P, P 0 2 Atoms ::= c1x1 + · · ·+ cnxn 6 k, n 2 N
xi 2 Vars ::= {x1, . . . , xn},

where ci, k 2 R.
We use J'K to denote the set of all satisfying assignments

(models) of '. A model p : Vars ! R of ', denoted p |=
', is a valuation of the variables of ' such that '(p) ⌘ true,
where '(p) is ' with every occurrence of a variable x replaced
by p(x). Geometrically, p is a point in Rn, and in what follows,
we use the terms model and point to refer to p interchangeably. We

use Atoms(') to denote the set of all Atoms appearing in ', and
Vars(') to denote the set of all Vars appearing in '.

Optimal Solutions Let ' be a formula in L. Let T = {t1, . . . , tn}
be a set of linear expressions, objective functions, where each
ti is of the form c1x1 + · · · + cmxm, where ci 2 R and
Vars(') = {x1, . . . , xm}. The goal of SYMBA is to compute a
vector (k1, . . . , kn), where each ki 2 R [ {1,�1}, such that
for each ti, ' ) ti 6 ki and there does not exist k0

i < ki where
' ) ti 6 k0

i. We say that (k1, . . . , kn) is the optimal solution
of T w.r.t. ', and denote it as optT ('). We call each value ki the
optimal value (or the least upper bound) of ti in '.

Given such a vector V = (k1, . . . , kn), where n = |T |, we use
formT (V ) to denote the formula

V
i2[1,n] ti 6 ki. Given a model

p of ', we use pT to denote the vector (t1(p), . . . , t|T |(p)).
Given two vectors V1 and V2 of equal length, we use min(V1, V2)

and max(V1, V2) to denote the pointwise minimum and maxi-
mum of the two vectors, respectively. We say V1 6 V2 if each
element of V1 is less than or equal to its corresponding element
in V2, or if there exists a �1 in V1. Intuitively, V1 6 V2 iff
formT (V1) ) formT (V2). Therefore, we say that V2 is weaker
than V1 if V1 < V2 (or V1 is stronger than V2).

Combinations of Theories For clarity of presentation, we restrict
ourselves to applying SYMBA to formulas in L. It is important to
note, however, that SYMBA is applicable to quantifier-free formu-
las over any combination of theories T [ LRA6, where T is an
arbitrary combination of theories, and LRA6 is linear real arith-
metic restricted to non-strict inequalities. The only restriction we
require is that T and LRA6 have disjoint signatures. In other
words, atomic formulas should be over T or LRA6, exclusively.
For example, T can be the combination of the theories of bitvec-
tors and arrays (perhaps for modelling program executions). The
rest of our presentation can apply directly to SMT formulas over
T [ LRA6 without any modification.

3.2 SYMBA Formalized
We now formalize the symbolic optimization algorithm SYMBA as
a set of inference rules shown in Fig. 3.

Given a set of objectives T = {t1, . . . , tn} and a formula '
in L, SYMBA computes optT ('). The state of SYMBA is a tuple
hM,U,Oi, where M is a set of models of '; U is an under-
approximation of optT (') (i.e., U 6 optT (') is invariant); and
O is an over-approximation of optT (') (i.e., optT (') 6 O is
invariant). Note that for clarity of presentation, we treated optT ('),
U , and O as formulas in Sec. 2, whereas here we treat them as
vectors and use formT (V ) to convert a vector V to the formula it
represents.

Objective functions:{y, x+ y}
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Objective functions:{y, x+ y}
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tors and arrays (perhaps for modelling program executions). The
rest of our presentation can apply directly to SMT formulas over
T [ LRA6 without any modification.

3.2 SYMBA Formalized
We now formalize the symbolic optimization algorithm SYMBA as
a set of inference rules shown in Fig. 3.

Given a set of objectives T = {t1, . . . , tn} and a formula '
in L, SYMBA computes optT ('). The state of SYMBA is a tuple
hM,U,Oi, where M is a set of models of '; U is an under-
approximation of optT (') (i.e., U 6 optT (') is invariant); and
O is an over-approximation of optT (') (i.e., optT (') 6 O is
invariant). Note that for clarity of presentation, we treated optT ('),
U , and O as formulas in Sec. 2, whereas here we treat them as
vectors and use formT (V ) to convert a vector V to the formula it
represents.

Example
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UNBOUNDED (p1, y) To check if y is unbounded, SYMBA ap-
plies UNBOUNDED starting from p1. Since it cannot prove that y
is unbounded, it finds the point p2 = (0, 1, 1), where [p1] ⇢ [p2]

and y(p1) < y(p2), i.e., a point showing that increasing the value
of y from p1 can hit a boundary. After applying UNBOUNDED to
p2, SYMBA can get the point p3, and then point p4 (after apply-
ing UNBOUNDED to p3). As a result, U ⌘ y 6 2. From point p4,
SYMBA cannot apply UNBOUNDED, since there does not exist a
point p0 where [p

0
] = [p4] that increases the value of y. Intuitively,

p4 represents a local maximum.

Second GLOBALPUSH To escape the local maximum, SYMBA
uses GLOBALPUSH to query the SMT solver for a point outside U .
In this case, it might find the point p5 = (1.8, 2.1, 1), and thus U
becomes y 6 2.1.

UNBOUNDED (p5, y) SYMBA continues trying to prove that y is
unbounded by performing UNBOUNDED from p5, leading to p6 and
then p7. SYMBA detects that p7 represents the maximum value of y
in ' and terminates with the optimal solution y 6 3.

We have illustrated the workings of SYMBA on two formu-
las representing non-convex shapes, and showed how it utilizes an
SMT solver to find least upper bounds and detect unboundedness of
arbitrary linear expressions (objective functions). In the following
sections, we describe SYMBA formally and discuss our implemen-
tation and experimental results.

3. SYMBA: The Symbolic Optimization
Algorithm

In this section, we provide definitions required for the rest of the
paper and formalize SYMBA as a set of inference rules.

3.1 Definitions
Formulas Let L be a topologically-closed (i.e., all atoms are non-
strict inequalities) subset of Quantifier Free Linear Real Arithmetic
(QF LRA), defined as follows:

' 2 L ::= true | false | P ^ P 0 | P _ P 0

P, P 0 2 Atoms ::= c1x1 + · · ·+ cnxn 6 k, n 2 N
xi 2 Vars ::= {x1, . . . , xn},

where ci, k 2 R.
We use J'K to denote the set of all satisfying assignments

(models) of '. A model p : Vars ! R of ', denoted p |=
', is a valuation of the variables of ' such that '(p) ⌘ true,
where '(p) is ' with every occurrence of a variable x replaced
by p(x). Geometrically, p is a point in Rn, and in what follows,
we use the terms model and point to refer to p interchangeably. We

use Atoms(') to denote the set of all Atoms appearing in ', and
Vars(') to denote the set of all Vars appearing in '.

Optimal Solutions Let ' be a formula in L. Let T = {t1, . . . , tn}
be a set of linear expressions, objective functions, where each
ti is of the form c1x1 + · · · + cmxm, where ci 2 R and
Vars(') = {x1, . . . , xm}. The goal of SYMBA is to compute a
vector (k1, . . . , kn), where each ki 2 R [ {1,�1}, such that
for each ti, ' ) ti 6 ki and there does not exist k0

i < ki where
' ) ti 6 k0

i. We say that (k1, . . . , kn) is the optimal solution
of T w.r.t. ', and denote it as optT ('). We call each value ki the
optimal value (or the least upper bound) of ti in '.

Given such a vector V = (k1, . . . , kn), where n = |T |, we use
formT (V ) to denote the formula

V
i2[1,n] ti 6 ki. Given a model

p of ', we use pT to denote the vector (t1(p), . . . , t|T |(p)).
Given two vectors V1 and V2 of equal length, we use min(V1, V2)

and max(V1, V2) to denote the pointwise minimum and maxi-
mum of the two vectors, respectively. We say V1 6 V2 if each
element of V1 is less than or equal to its corresponding element
in V2, or if there exists a �1 in V1. Intuitively, V1 6 V2 iff
formT (V1) ) formT (V2). Therefore, we say that V2 is weaker
than V1 if V1 < V2 (or V1 is stronger than V2).

Combinations of Theories For clarity of presentation, we restrict
ourselves to applying SYMBA to formulas in L. It is important to
note, however, that SYMBA is applicable to quantifier-free formu-
las over any combination of theories T [ LRA6, where T is an
arbitrary combination of theories, and LRA6 is linear real arith-
metic restricted to non-strict inequalities. The only restriction we
require is that T and LRA6 have disjoint signatures. In other
words, atomic formulas should be over T or LRA6, exclusively.
For example, T can be the combination of the theories of bitvec-
tors and arrays (perhaps for modelling program executions). The
rest of our presentation can apply directly to SMT formulas over
T [ LRA6 without any modification.

3.2 SYMBA Formalized
We now formalize the symbolic optimization algorithm SYMBA as
a set of inference rules shown in Fig. 3.

Given a set of objectives T = {t1, . . . , tn} and a formula '
in L, SYMBA computes optT ('). The state of SYMBA is a tuple
hM,U,Oi, where M is a set of models of '; U is an under-
approximation of optT (') (i.e., U 6 optT (') is invariant); and
O is an over-approximation of optT (') (i.e., optT (') 6 O is
invariant). Note that for clarity of presentation, we treated optT ('),
U , and O as formulas in Sec. 2, whereas here we treat them as
vectors and use formT (V ) to convert a vector V to the formula it
represents.

Phase 1: Grow under-approximation
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UNBOUNDED (p1, y) To check if y is unbounded, SYMBA ap-
plies UNBOUNDED starting from p1. Since it cannot prove that y
is unbounded, it finds the point p2 = (0, 1, 1), where [p1] ⇢ [p2]

and y(p1) < y(p2), i.e., a point showing that increasing the value
of y from p1 can hit a boundary. After applying UNBOUNDED to
p2, SYMBA can get the point p3, and then point p4 (after apply-
ing UNBOUNDED to p3). As a result, U ⌘ y 6 2. From point p4,
SYMBA cannot apply UNBOUNDED, since there does not exist a
point p0 where [p

0
] = [p4] that increases the value of y. Intuitively,

p4 represents a local maximum.

Second GLOBALPUSH To escape the local maximum, SYMBA
uses GLOBALPUSH to query the SMT solver for a point outside U .
In this case, it might find the point p5 = (1.8, 2.1, 1), and thus U
becomes y 6 2.1.

UNBOUNDED (p5, y) SYMBA continues trying to prove that y is
unbounded by performing UNBOUNDED from p5, leading to p6 and
then p7. SYMBA detects that p7 represents the maximum value of y
in ' and terminates with the optimal solution y 6 3.

We have illustrated the workings of SYMBA on two formu-
las representing non-convex shapes, and showed how it utilizes an
SMT solver to find least upper bounds and detect unboundedness of
arbitrary linear expressions (objective functions). In the following
sections, we describe SYMBA formally and discuss our implemen-
tation and experimental results.

3. SYMBA: The Symbolic Optimization
Algorithm

In this section, we provide definitions required for the rest of the
paper and formalize SYMBA as a set of inference rules.

3.1 Definitions
Formulas Let L be a topologically-closed (i.e., all atoms are non-
strict inequalities) subset of Quantifier Free Linear Real Arithmetic
(QF LRA), defined as follows:

' 2 L ::= true | false | P ^ P 0 | P _ P 0

P, P 0 2 Atoms ::= c1x1 + · · ·+ cnxn 6 k, n 2 N
xi 2 Vars ::= {x1, . . . , xn},

where ci, k 2 R.
We use J'K to denote the set of all satisfying assignments

(models) of '. A model p : Vars ! R of ', denoted p |=
', is a valuation of the variables of ' such that '(p) ⌘ true,
where '(p) is ' with every occurrence of a variable x replaced
by p(x). Geometrically, p is a point in Rn, and in what follows,
we use the terms model and point to refer to p interchangeably. We

use Atoms(') to denote the set of all Atoms appearing in ', and
Vars(') to denote the set of all Vars appearing in '.

Optimal Solutions Let ' be a formula in L. Let T = {t1, . . . , tn}
be a set of linear expressions, objective functions, where each
ti is of the form c1x1 + · · · + cmxm, where ci 2 R and
Vars(') = {x1, . . . , xm}. The goal of SYMBA is to compute a
vector (k1, . . . , kn), where each ki 2 R [ {1,�1}, such that
for each ti, ' ) ti 6 ki and there does not exist k0

i < ki where
' ) ti 6 k0

i. We say that (k1, . . . , kn) is the optimal solution
of T w.r.t. ', and denote it as optT ('). We call each value ki the
optimal value (or the least upper bound) of ti in '.

Given such a vector V = (k1, . . . , kn), where n = |T |, we use
formT (V ) to denote the formula

V
i2[1,n] ti 6 ki. Given a model

p of ', we use pT to denote the vector (t1(p), . . . , t|T |(p)).
Given two vectors V1 and V2 of equal length, we use min(V1, V2)

and max(V1, V2) to denote the pointwise minimum and maxi-
mum of the two vectors, respectively. We say V1 6 V2 if each
element of V1 is less than or equal to its corresponding element
in V2, or if there exists a �1 in V1. Intuitively, V1 6 V2 iff
formT (V1) ) formT (V2). Therefore, we say that V2 is weaker
than V1 if V1 < V2 (or V1 is stronger than V2).

Combinations of Theories For clarity of presentation, we restrict
ourselves to applying SYMBA to formulas in L. It is important to
note, however, that SYMBA is applicable to quantifier-free formu-
las over any combination of theories T [ LRA6, where T is an
arbitrary combination of theories, and LRA6 is linear real arith-
metic restricted to non-strict inequalities. The only restriction we
require is that T and LRA6 have disjoint signatures. In other
words, atomic formulas should be over T or LRA6, exclusively.
For example, T can be the combination of the theories of bitvec-
tors and arrays (perhaps for modelling program executions). The
rest of our presentation can apply directly to SMT formulas over
T [ LRA6 without any modification.

3.2 SYMBA Formalized
We now formalize the symbolic optimization algorithm SYMBA as
a set of inference rules shown in Fig. 3.

Given a set of objectives T = {t1, . . . , tn} and a formula '
in L, SYMBA computes optT ('). The state of SYMBA is a tuple
hM,U,Oi, where M is a set of models of '; U is an under-
approximation of optT (') (i.e., U 6 optT (') is invariant); and
O is an over-approximation of optT (') (i.e., optT (') 6 O is
invariant). Note that for clarity of presentation, we treated optT ('),
U , and O as formulas in Sec. 2, whereas here we treat them as
vectors and use formT (V ) to convert a vector V to the formula it
represents.

Example
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UNBOUNDED (p1, y) To check if y is unbounded, SYMBA ap-
plies UNBOUNDED starting from p1. Since it cannot prove that y
is unbounded, it finds the point p2 = (0, 1, 1), where [p1] ⇢ [p2]

and y(p1) < y(p2), i.e., a point showing that increasing the value
of y from p1 can hit a boundary. After applying UNBOUNDED to
p2, SYMBA can get the point p3, and then point p4 (after apply-
ing UNBOUNDED to p3). As a result, U ⌘ y 6 2. From point p4,
SYMBA cannot apply UNBOUNDED, since there does not exist a
point p0 where [p

0
] = [p4] that increases the value of y. Intuitively,

p4 represents a local maximum.

Second GLOBALPUSH To escape the local maximum, SYMBA
uses GLOBALPUSH to query the SMT solver for a point outside U .
In this case, it might find the point p5 = (1.8, 2.1, 1), and thus U
becomes y 6 2.1.

UNBOUNDED (p5, y) SYMBA continues trying to prove that y is
unbounded by performing UNBOUNDED from p5, leading to p6 and
then p7. SYMBA detects that p7 represents the maximum value of y
in ' and terminates with the optimal solution y 6 3.

We have illustrated the workings of SYMBA on two formu-
las representing non-convex shapes, and showed how it utilizes an
SMT solver to find least upper bounds and detect unboundedness of
arbitrary linear expressions (objective functions). In the following
sections, we describe SYMBA formally and discuss our implemen-
tation and experimental results.

3. SYMBA: The Symbolic Optimization
Algorithm

In this section, we provide definitions required for the rest of the
paper and formalize SYMBA as a set of inference rules.

3.1 Definitions
Formulas Let L be a topologically-closed (i.e., all atoms are non-
strict inequalities) subset of Quantifier Free Linear Real Arithmetic
(QF LRA), defined as follows:

' 2 L ::= true | false | P ^ P 0 | P _ P 0

P, P 0 2 Atoms ::= c1x1 + · · ·+ cnxn 6 k, n 2 N
xi 2 Vars ::= {x1, . . . , xn},

where ci, k 2 R.
We use J'K to denote the set of all satisfying assignments

(models) of '. A model p : Vars ! R of ', denoted p |=
', is a valuation of the variables of ' such that '(p) ⌘ true,
where '(p) is ' with every occurrence of a variable x replaced
by p(x). Geometrically, p is a point in Rn, and in what follows,
we use the terms model and point to refer to p interchangeably. We

use Atoms(') to denote the set of all Atoms appearing in ', and
Vars(') to denote the set of all Vars appearing in '.

Optimal Solutions Let ' be a formula in L. Let T = {t1, . . . , tn}
be a set of linear expressions, objective functions, where each
ti is of the form c1x1 + · · · + cmxm, where ci 2 R and
Vars(') = {x1, . . . , xm}. The goal of SYMBA is to compute a
vector (k1, . . . , kn), where each ki 2 R [ {1,�1}, such that
for each ti, ' ) ti 6 ki and there does not exist k0

i < ki where
' ) ti 6 k0

i. We say that (k1, . . . , kn) is the optimal solution
of T w.r.t. ', and denote it as optT ('). We call each value ki the
optimal value (or the least upper bound) of ti in '.

Given such a vector V = (k1, . . . , kn), where n = |T |, we use
formT (V ) to denote the formula

V
i2[1,n] ti 6 ki. Given a model

p of ', we use pT to denote the vector (t1(p), . . . , t|T |(p)).
Given two vectors V1 and V2 of equal length, we use min(V1, V2)

and max(V1, V2) to denote the pointwise minimum and maxi-
mum of the two vectors, respectively. We say V1 6 V2 if each
element of V1 is less than or equal to its corresponding element
in V2, or if there exists a �1 in V1. Intuitively, V1 6 V2 iff
formT (V1) ) formT (V2). Therefore, we say that V2 is weaker
than V1 if V1 < V2 (or V1 is stronger than V2).

Combinations of Theories For clarity of presentation, we restrict
ourselves to applying SYMBA to formulas in L. It is important to
note, however, that SYMBA is applicable to quantifier-free formu-
las over any combination of theories T [ LRA6, where T is an
arbitrary combination of theories, and LRA6 is linear real arith-
metic restricted to non-strict inequalities. The only restriction we
require is that T and LRA6 have disjoint signatures. In other
words, atomic formulas should be over T or LRA6, exclusively.
For example, T can be the combination of the theories of bitvec-
tors and arrays (perhaps for modelling program executions). The
rest of our presentation can apply directly to SMT formulas over
T [ LRA6 without any modification.

3.2 SYMBA Formalized
We now formalize the symbolic optimization algorithm SYMBA as
a set of inference rules shown in Fig. 3.

Given a set of objectives T = {t1, . . . , tn} and a formula '
in L, SYMBA computes optT ('). The state of SYMBA is a tuple
hM,U,Oi, where M is a set of models of '; U is an under-
approximation of optT (') (i.e., U 6 optT (') is invariant); and
O is an over-approximation of optT (') (i.e., optT (') 6 O is
invariant). Note that for clarity of presentation, we treated optT ('),
U , and O as formulas in Sec. 2, whereas here we treat them as
vectors and use formT (V ) to convert a vector V to the formula it
represents.

New under-approx:

y  2 ^
x+ y  4
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UNBOUNDED (p1, y) To check if y is unbounded, SYMBA ap-
plies UNBOUNDED starting from p1. Since it cannot prove that y
is unbounded, it finds the point p2 = (0, 1, 1), where [p1] ⇢ [p2]

and y(p1) < y(p2), i.e., a point showing that increasing the value
of y from p1 can hit a boundary. After applying UNBOUNDED to
p2, SYMBA can get the point p3, and then point p4 (after apply-
ing UNBOUNDED to p3). As a result, U ⌘ y 6 2. From point p4,
SYMBA cannot apply UNBOUNDED, since there does not exist a
point p0 where [p

0
] = [p4] that increases the value of y. Intuitively,

p4 represents a local maximum.

Second GLOBALPUSH To escape the local maximum, SYMBA
uses GLOBALPUSH to query the SMT solver for a point outside U .
In this case, it might find the point p5 = (1.8, 2.1, 1), and thus U
becomes y 6 2.1.

UNBOUNDED (p5, y) SYMBA continues trying to prove that y is
unbounded by performing UNBOUNDED from p5, leading to p6 and
then p7. SYMBA detects that p7 represents the maximum value of y
in ' and terminates with the optimal solution y 6 3.

We have illustrated the workings of SYMBA on two formu-
las representing non-convex shapes, and showed how it utilizes an
SMT solver to find least upper bounds and detect unboundedness of
arbitrary linear expressions (objective functions). In the following
sections, we describe SYMBA formally and discuss our implemen-
tation and experimental results.

3. SYMBA: The Symbolic Optimization
Algorithm

In this section, we provide definitions required for the rest of the
paper and formalize SYMBA as a set of inference rules.

3.1 Definitions
Formulas Let L be a topologically-closed (i.e., all atoms are non-
strict inequalities) subset of Quantifier Free Linear Real Arithmetic
(QF LRA), defined as follows:

' 2 L ::= true | false | P ^ P 0 | P _ P 0

P, P 0 2 Atoms ::= c1x1 + · · ·+ cnxn 6 k, n 2 N
xi 2 Vars ::= {x1, . . . , xn},

where ci, k 2 R.
We use J'K to denote the set of all satisfying assignments

(models) of '. A model p : Vars ! R of ', denoted p |=
', is a valuation of the variables of ' such that '(p) ⌘ true,
where '(p) is ' with every occurrence of a variable x replaced
by p(x). Geometrically, p is a point in Rn, and in what follows,
we use the terms model and point to refer to p interchangeably. We

use Atoms(') to denote the set of all Atoms appearing in ', and
Vars(') to denote the set of all Vars appearing in '.

Optimal Solutions Let ' be a formula in L. Let T = {t1, . . . , tn}
be a set of linear expressions, objective functions, where each
ti is of the form c1x1 + · · · + cmxm, where ci 2 R and
Vars(') = {x1, . . . , xm}. The goal of SYMBA is to compute a
vector (k1, . . . , kn), where each ki 2 R [ {1,�1}, such that
for each ti, ' ) ti 6 ki and there does not exist k0

i < ki where
' ) ti 6 k0

i. We say that (k1, . . . , kn) is the optimal solution
of T w.r.t. ', and denote it as optT ('). We call each value ki the
optimal value (or the least upper bound) of ti in '.

Given such a vector V = (k1, . . . , kn), where n = |T |, we use
formT (V ) to denote the formula

V
i2[1,n] ti 6 ki. Given a model

p of ', we use pT to denote the vector (t1(p), . . . , t|T |(p)).
Given two vectors V1 and V2 of equal length, we use min(V1, V2)

and max(V1, V2) to denote the pointwise minimum and maxi-
mum of the two vectors, respectively. We say V1 6 V2 if each
element of V1 is less than or equal to its corresponding element
in V2, or if there exists a �1 in V1. Intuitively, V1 6 V2 iff
formT (V1) ) formT (V2). Therefore, we say that V2 is weaker
than V1 if V1 < V2 (or V1 is stronger than V2).

Combinations of Theories For clarity of presentation, we restrict
ourselves to applying SYMBA to formulas in L. It is important to
note, however, that SYMBA is applicable to quantifier-free formu-
las over any combination of theories T [ LRA6, where T is an
arbitrary combination of theories, and LRA6 is linear real arith-
metic restricted to non-strict inequalities. The only restriction we
require is that T and LRA6 have disjoint signatures. In other
words, atomic formulas should be over T or LRA6, exclusively.
For example, T can be the combination of the theories of bitvec-
tors and arrays (perhaps for modelling program executions). The
rest of our presentation can apply directly to SMT formulas over
T [ LRA6 without any modification.

3.2 SYMBA Formalized
We now formalize the symbolic optimization algorithm SYMBA as
a set of inference rules shown in Fig. 3.

Given a set of objectives T = {t1, . . . , tn} and a formula '
in L, SYMBA computes optT ('). The state of SYMBA is a tuple
hM,U,Oi, where M is a set of models of '; U is an under-
approximation of optT (') (i.e., U 6 optT (') is invariant); and
O is an over-approximation of optT (') (i.e., optT (') 6 O is
invariant). Note that for clarity of presentation, we treated optT ('),
U , and O as formulas in Sec. 2, whereas here we treat them as
vectors and use formT (V ) to convert a vector V to the formula it
represents.

Example
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UNBOUNDED (p1, y) To check if y is unbounded, SYMBA ap-
plies UNBOUNDED starting from p1. Since it cannot prove that y
is unbounded, it finds the point p2 = (0, 1, 1), where [p1] ⇢ [p2]

and y(p1) < y(p2), i.e., a point showing that increasing the value
of y from p1 can hit a boundary. After applying UNBOUNDED to
p2, SYMBA can get the point p3, and then point p4 (after apply-
ing UNBOUNDED to p3). As a result, U ⌘ y 6 2. From point p4,
SYMBA cannot apply UNBOUNDED, since there does not exist a
point p0 where [p

0
] = [p4] that increases the value of y. Intuitively,

p4 represents a local maximum.

Second GLOBALPUSH To escape the local maximum, SYMBA
uses GLOBALPUSH to query the SMT solver for a point outside U .
In this case, it might find the point p5 = (1.8, 2.1, 1), and thus U
becomes y 6 2.1.

UNBOUNDED (p5, y) SYMBA continues trying to prove that y is
unbounded by performing UNBOUNDED from p5, leading to p6 and
then p7. SYMBA detects that p7 represents the maximum value of y
in ' and terminates with the optimal solution y 6 3.

We have illustrated the workings of SYMBA on two formu-
las representing non-convex shapes, and showed how it utilizes an
SMT solver to find least upper bounds and detect unboundedness of
arbitrary linear expressions (objective functions). In the following
sections, we describe SYMBA formally and discuss our implemen-
tation and experimental results.

3. SYMBA: The Symbolic Optimization
Algorithm

In this section, we provide definitions required for the rest of the
paper and formalize SYMBA as a set of inference rules.

3.1 Definitions
Formulas Let L be a topologically-closed (i.e., all atoms are non-
strict inequalities) subset of Quantifier Free Linear Real Arithmetic
(QF LRA), defined as follows:

' 2 L ::= true | false | P ^ P 0 | P _ P 0

P, P 0 2 Atoms ::= c1x1 + · · ·+ cnxn 6 k, n 2 N
xi 2 Vars ::= {x1, . . . , xn},

where ci, k 2 R.
We use J'K to denote the set of all satisfying assignments

(models) of '. A model p : Vars ! R of ', denoted p |=
', is a valuation of the variables of ' such that '(p) ⌘ true,
where '(p) is ' with every occurrence of a variable x replaced
by p(x). Geometrically, p is a point in Rn, and in what follows,
we use the terms model and point to refer to p interchangeably. We

use Atoms(') to denote the set of all Atoms appearing in ', and
Vars(') to denote the set of all Vars appearing in '.

Optimal Solutions Let ' be a formula in L. Let T = {t1, . . . , tn}
be a set of linear expressions, objective functions, where each
ti is of the form c1x1 + · · · + cmxm, where ci 2 R and
Vars(') = {x1, . . . , xm}. The goal of SYMBA is to compute a
vector (k1, . . . , kn), where each ki 2 R [ {1,�1}, such that
for each ti, ' ) ti 6 ki and there does not exist k0

i < ki where
' ) ti 6 k0

i. We say that (k1, . . . , kn) is the optimal solution
of T w.r.t. ', and denote it as optT ('). We call each value ki the
optimal value (or the least upper bound) of ti in '.

Given such a vector V = (k1, . . . , kn), where n = |T |, we use
formT (V ) to denote the formula

V
i2[1,n] ti 6 ki. Given a model

p of ', we use pT to denote the vector (t1(p), . . . , t|T |(p)).
Given two vectors V1 and V2 of equal length, we use min(V1, V2)

and max(V1, V2) to denote the pointwise minimum and maxi-
mum of the two vectors, respectively. We say V1 6 V2 if each
element of V1 is less than or equal to its corresponding element
in V2, or if there exists a �1 in V1. Intuitively, V1 6 V2 iff
formT (V1) ) formT (V2). Therefore, we say that V2 is weaker
than V1 if V1 < V2 (or V1 is stronger than V2).

Combinations of Theories For clarity of presentation, we restrict
ourselves to applying SYMBA to formulas in L. It is important to
note, however, that SYMBA is applicable to quantifier-free formu-
las over any combination of theories T [ LRA6, where T is an
arbitrary combination of theories, and LRA6 is linear real arith-
metic restricted to non-strict inequalities. The only restriction we
require is that T and LRA6 have disjoint signatures. In other
words, atomic formulas should be over T or LRA6, exclusively.
For example, T can be the combination of the theories of bitvec-
tors and arrays (perhaps for modelling program executions). The
rest of our presentation can apply directly to SMT formulas over
T [ LRA6 without any modification.

3.2 SYMBA Formalized
We now formalize the symbolic optimization algorithm SYMBA as
a set of inference rules shown in Fig. 3.

Given a set of objectives T = {t1, . . . , tn} and a formula '
in L, SYMBA computes optT ('). The state of SYMBA is a tuple
hM,U,Oi, where M is a set of models of '; U is an under-
approximation of optT (') (i.e., U 6 optT (') is invariant); and
O is an over-approximation of optT (') (i.e., optT (') 6 O is
invariant). Note that for clarity of presentation, we treated optT ('),
U , and O as formulas in Sec. 2, whereas here we treat them as
vectors and use formT (V ) to convert a vector V to the formula it
represents.
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UNBOUNDED (p1, y) To check if y is unbounded, SYMBA ap-
plies UNBOUNDED starting from p1. Since it cannot prove that y
is unbounded, it finds the point p2 = (0, 1, 1), where [p1] ⇢ [p2]

and y(p1) < y(p2), i.e., a point showing that increasing the value
of y from p1 can hit a boundary. After applying UNBOUNDED to
p2, SYMBA can get the point p3, and then point p4 (after apply-
ing UNBOUNDED to p3). As a result, U ⌘ y 6 2. From point p4,
SYMBA cannot apply UNBOUNDED, since there does not exist a
point p0 where [p

0
] = [p4] that increases the value of y. Intuitively,

p4 represents a local maximum.

Second GLOBALPUSH To escape the local maximum, SYMBA
uses GLOBALPUSH to query the SMT solver for a point outside U .
In this case, it might find the point p5 = (1.8, 2.1, 1), and thus U
becomes y 6 2.1.

UNBOUNDED (p5, y) SYMBA continues trying to prove that y is
unbounded by performing UNBOUNDED from p5, leading to p6 and
then p7. SYMBA detects that p7 represents the maximum value of y
in ' and terminates with the optimal solution y 6 3.

We have illustrated the workings of SYMBA on two formu-
las representing non-convex shapes, and showed how it utilizes an
SMT solver to find least upper bounds and detect unboundedness of
arbitrary linear expressions (objective functions). In the following
sections, we describe SYMBA formally and discuss our implemen-
tation and experimental results.

3. SYMBA: The Symbolic Optimization
Algorithm

In this section, we provide definitions required for the rest of the
paper and formalize SYMBA as a set of inference rules.

3.1 Definitions
Formulas Let L be a topologically-closed (i.e., all atoms are non-
strict inequalities) subset of Quantifier Free Linear Real Arithmetic
(QF LRA), defined as follows:

' 2 L ::= true | false | P ^ P 0 | P _ P 0

P, P 0 2 Atoms ::= c1x1 + · · ·+ cnxn 6 k, n 2 N
xi 2 Vars ::= {x1, . . . , xn},

where ci, k 2 R.
We use J'K to denote the set of all satisfying assignments

(models) of '. A model p : Vars ! R of ', denoted p |=
', is a valuation of the variables of ' such that '(p) ⌘ true,
where '(p) is ' with every occurrence of a variable x replaced
by p(x). Geometrically, p is a point in Rn, and in what follows,
we use the terms model and point to refer to p interchangeably. We

use Atoms(') to denote the set of all Atoms appearing in ', and
Vars(') to denote the set of all Vars appearing in '.

Optimal Solutions Let ' be a formula in L. Let T = {t1, . . . , tn}
be a set of linear expressions, objective functions, where each
ti is of the form c1x1 + · · · + cmxm, where ci 2 R and
Vars(') = {x1, . . . , xm}. The goal of SYMBA is to compute a
vector (k1, . . . , kn), where each ki 2 R [ {1,�1}, such that
for each ti, ' ) ti 6 ki and there does not exist k0

i < ki where
' ) ti 6 k0

i. We say that (k1, . . . , kn) is the optimal solution
of T w.r.t. ', and denote it as optT ('). We call each value ki the
optimal value (or the least upper bound) of ti in '.

Given such a vector V = (k1, . . . , kn), where n = |T |, we use
formT (V ) to denote the formula

V
i2[1,n] ti 6 ki. Given a model

p of ', we use pT to denote the vector (t1(p), . . . , t|T |(p)).
Given two vectors V1 and V2 of equal length, we use min(V1, V2)

and max(V1, V2) to denote the pointwise minimum and maxi-
mum of the two vectors, respectively. We say V1 6 V2 if each
element of V1 is less than or equal to its corresponding element
in V2, or if there exists a �1 in V1. Intuitively, V1 6 V2 iff
formT (V1) ) formT (V2). Therefore, we say that V2 is weaker
than V1 if V1 < V2 (or V1 is stronger than V2).

Combinations of Theories For clarity of presentation, we restrict
ourselves to applying SYMBA to formulas in L. It is important to
note, however, that SYMBA is applicable to quantifier-free formu-
las over any combination of theories T [ LRA6, where T is an
arbitrary combination of theories, and LRA6 is linear real arith-
metic restricted to non-strict inequalities. The only restriction we
require is that T and LRA6 have disjoint signatures. In other
words, atomic formulas should be over T or LRA6, exclusively.
For example, T can be the combination of the theories of bitvec-
tors and arrays (perhaps for modelling program executions). The
rest of our presentation can apply directly to SMT formulas over
T [ LRA6 without any modification.

3.2 SYMBA Formalized
We now formalize the symbolic optimization algorithm SYMBA as
a set of inference rules shown in Fig. 3.

Given a set of objectives T = {t1, . . . , tn} and a formula '
in L, SYMBA computes optT ('). The state of SYMBA is a tuple
hM,U,Oi, where M is a set of models of '; U is an under-
approximation of optT (') (i.e., U 6 optT (') is invariant); and
O is an over-approximation of optT (') (i.e., optT (') 6 O is
invariant). Note that for clarity of presentation, we treated optT ('),
U , and O as formulas in Sec. 2, whereas here we treat them as
vectors and use formT (V ) to convert a vector V to the formula it
represents.

Phase 2: Check if     is unbounded y
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UNBOUNDED (p1, y) To check if y is unbounded, SYMBA ap-
plies UNBOUNDED starting from p1. Since it cannot prove that y
is unbounded, it finds the point p2 = (0, 1, 1), where [p1] ⇢ [p2]

and y(p1) < y(p2), i.e., a point showing that increasing the value
of y from p1 can hit a boundary. After applying UNBOUNDED to
p2, SYMBA can get the point p3, and then point p4 (after apply-
ing UNBOUNDED to p3). As a result, U ⌘ y 6 2. From point p4,
SYMBA cannot apply UNBOUNDED, since there does not exist a
point p0 where [p

0
] = [p4] that increases the value of y. Intuitively,

p4 represents a local maximum.

Second GLOBALPUSH To escape the local maximum, SYMBA
uses GLOBALPUSH to query the SMT solver for a point outside U .
In this case, it might find the point p5 = (1.8, 2.1, 1), and thus U
becomes y 6 2.1.

UNBOUNDED (p5, y) SYMBA continues trying to prove that y is
unbounded by performing UNBOUNDED from p5, leading to p6 and
then p7. SYMBA detects that p7 represents the maximum value of y
in ' and terminates with the optimal solution y 6 3.

We have illustrated the workings of SYMBA on two formu-
las representing non-convex shapes, and showed how it utilizes an
SMT solver to find least upper bounds and detect unboundedness of
arbitrary linear expressions (objective functions). In the following
sections, we describe SYMBA formally and discuss our implemen-
tation and experimental results.

3. SYMBA: The Symbolic Optimization
Algorithm

In this section, we provide definitions required for the rest of the
paper and formalize SYMBA as a set of inference rules.

3.1 Definitions
Formulas Let L be a topologically-closed (i.e., all atoms are non-
strict inequalities) subset of Quantifier Free Linear Real Arithmetic
(QF LRA), defined as follows:

' 2 L ::= true | false | P ^ P 0 | P _ P 0

P, P 0 2 Atoms ::= c1x1 + · · ·+ cnxn 6 k, n 2 N
xi 2 Vars ::= {x1, . . . , xn},

where ci, k 2 R.
We use J'K to denote the set of all satisfying assignments

(models) of '. A model p : Vars ! R of ', denoted p |=
', is a valuation of the variables of ' such that '(p) ⌘ true,
where '(p) is ' with every occurrence of a variable x replaced
by p(x). Geometrically, p is a point in Rn, and in what follows,
we use the terms model and point to refer to p interchangeably. We

use Atoms(') to denote the set of all Atoms appearing in ', and
Vars(') to denote the set of all Vars appearing in '.

Optimal Solutions Let ' be a formula in L. Let T = {t1, . . . , tn}
be a set of linear expressions, objective functions, where each
ti is of the form c1x1 + · · · + cmxm, where ci 2 R and
Vars(') = {x1, . . . , xm}. The goal of SYMBA is to compute a
vector (k1, . . . , kn), where each ki 2 R [ {1,�1}, such that
for each ti, ' ) ti 6 ki and there does not exist k0

i < ki where
' ) ti 6 k0

i. We say that (k1, . . . , kn) is the optimal solution
of T w.r.t. ', and denote it as optT ('). We call each value ki the
optimal value (or the least upper bound) of ti in '.

Given such a vector V = (k1, . . . , kn), where n = |T |, we use
formT (V ) to denote the formula

V
i2[1,n] ti 6 ki. Given a model

p of ', we use pT to denote the vector (t1(p), . . . , t|T |(p)).
Given two vectors V1 and V2 of equal length, we use min(V1, V2)

and max(V1, V2) to denote the pointwise minimum and maxi-
mum of the two vectors, respectively. We say V1 6 V2 if each
element of V1 is less than or equal to its corresponding element
in V2, or if there exists a �1 in V1. Intuitively, V1 6 V2 iff
formT (V1) ) formT (V2). Therefore, we say that V2 is weaker
than V1 if V1 < V2 (or V1 is stronger than V2).

Combinations of Theories For clarity of presentation, we restrict
ourselves to applying SYMBA to formulas in L. It is important to
note, however, that SYMBA is applicable to quantifier-free formu-
las over any combination of theories T [ LRA6, where T is an
arbitrary combination of theories, and LRA6 is linear real arith-
metic restricted to non-strict inequalities. The only restriction we
require is that T and LRA6 have disjoint signatures. In other
words, atomic formulas should be over T or LRA6, exclusively.
For example, T can be the combination of the theories of bitvec-
tors and arrays (perhaps for modelling program executions). The
rest of our presentation can apply directly to SMT formulas over
T [ LRA6 without any modification.

3.2 SYMBA Formalized
We now formalize the symbolic optimization algorithm SYMBA as
a set of inference rules shown in Fig. 3.

Given a set of objectives T = {t1, . . . , tn} and a formula '
in L, SYMBA computes optT ('). The state of SYMBA is a tuple
hM,U,Oi, where M is a set of models of '; U is an under-
approximation of optT (') (i.e., U 6 optT (') is invariant); and
O is an over-approximation of optT (') (i.e., optT (') 6 O is
invariant). Note that for clarity of presentation, we treated optT ('),
U , and O as formulas in Sec. 2, whereas here we treat them as
vectors and use formT (V ) to convert a vector V to the formula it
represents.
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UNBOUNDED (p1, y) To check if y is unbounded, SYMBA ap-
plies UNBOUNDED starting from p1. Since it cannot prove that y
is unbounded, it finds the point p2 = (0, 1, 1), where [p1] ⇢ [p2]

and y(p1) < y(p2), i.e., a point showing that increasing the value
of y from p1 can hit a boundary. After applying UNBOUNDED to
p2, SYMBA can get the point p3, and then point p4 (after apply-
ing UNBOUNDED to p3). As a result, U ⌘ y 6 2. From point p4,
SYMBA cannot apply UNBOUNDED, since there does not exist a
point p0 where [p

0
] = [p4] that increases the value of y. Intuitively,

p4 represents a local maximum.

Second GLOBALPUSH To escape the local maximum, SYMBA
uses GLOBALPUSH to query the SMT solver for a point outside U .
In this case, it might find the point p5 = (1.8, 2.1, 1), and thus U
becomes y 6 2.1.

UNBOUNDED (p5, y) SYMBA continues trying to prove that y is
unbounded by performing UNBOUNDED from p5, leading to p6 and
then p7. SYMBA detects that p7 represents the maximum value of y
in ' and terminates with the optimal solution y 6 3.

We have illustrated the workings of SYMBA on two formu-
las representing non-convex shapes, and showed how it utilizes an
SMT solver to find least upper bounds and detect unboundedness of
arbitrary linear expressions (objective functions). In the following
sections, we describe SYMBA formally and discuss our implemen-
tation and experimental results.

3. SYMBA: The Symbolic Optimization
Algorithm

In this section, we provide definitions required for the rest of the
paper and formalize SYMBA as a set of inference rules.

3.1 Definitions
Formulas Let L be a topologically-closed (i.e., all atoms are non-
strict inequalities) subset of Quantifier Free Linear Real Arithmetic
(QF LRA), defined as follows:

' 2 L ::= true | false | P ^ P 0 | P _ P 0

P, P 0 2 Atoms ::= c1x1 + · · ·+ cnxn 6 k, n 2 N
xi 2 Vars ::= {x1, . . . , xn},

where ci, k 2 R.
We use J'K to denote the set of all satisfying assignments

(models) of '. A model p : Vars ! R of ', denoted p |=
', is a valuation of the variables of ' such that '(p) ⌘ true,
where '(p) is ' with every occurrence of a variable x replaced
by p(x). Geometrically, p is a point in Rn, and in what follows,
we use the terms model and point to refer to p interchangeably. We

use Atoms(') to denote the set of all Atoms appearing in ', and
Vars(') to denote the set of all Vars appearing in '.

Optimal Solutions Let ' be a formula in L. Let T = {t1, . . . , tn}
be a set of linear expressions, objective functions, where each
ti is of the form c1x1 + · · · + cmxm, where ci 2 R and
Vars(') = {x1, . . . , xm}. The goal of SYMBA is to compute a
vector (k1, . . . , kn), where each ki 2 R [ {1,�1}, such that
for each ti, ' ) ti 6 ki and there does not exist k0

i < ki where
' ) ti 6 k0

i. We say that (k1, . . . , kn) is the optimal solution
of T w.r.t. ', and denote it as optT ('). We call each value ki the
optimal value (or the least upper bound) of ti in '.

Given such a vector V = (k1, . . . , kn), where n = |T |, we use
formT (V ) to denote the formula

V
i2[1,n] ti 6 ki. Given a model

p of ', we use pT to denote the vector (t1(p), . . . , t|T |(p)).
Given two vectors V1 and V2 of equal length, we use min(V1, V2)

and max(V1, V2) to denote the pointwise minimum and maxi-
mum of the two vectors, respectively. We say V1 6 V2 if each
element of V1 is less than or equal to its corresponding element
in V2, or if there exists a �1 in V1. Intuitively, V1 6 V2 iff
formT (V1) ) formT (V2). Therefore, we say that V2 is weaker
than V1 if V1 < V2 (or V1 is stronger than V2).

Combinations of Theories For clarity of presentation, we restrict
ourselves to applying SYMBA to formulas in L. It is important to
note, however, that SYMBA is applicable to quantifier-free formu-
las over any combination of theories T [ LRA6, where T is an
arbitrary combination of theories, and LRA6 is linear real arith-
metic restricted to non-strict inequalities. The only restriction we
require is that T and LRA6 have disjoint signatures. In other
words, atomic formulas should be over T or LRA6, exclusively.
For example, T can be the combination of the theories of bitvec-
tors and arrays (perhaps for modelling program executions). The
rest of our presentation can apply directly to SMT formulas over
T [ LRA6 without any modification.

3.2 SYMBA Formalized
We now formalize the symbolic optimization algorithm SYMBA as
a set of inference rules shown in Fig. 3.

Given a set of objectives T = {t1, . . . , tn} and a formula '
in L, SYMBA computes optT ('). The state of SYMBA is a tuple
hM,U,Oi, where M is a set of models of '; U is an under-
approximation of optT (') (i.e., U 6 optT (') is invariant); and
O is an over-approximation of optT (') (i.e., optT (') 6 O is
invariant). Note that for clarity of presentation, we treated optT ('),
U , and O as formulas in Sec. 2, whereas here we treat them as
vectors and use formT (V ) to convert a vector V to the formula it
represents.
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UNBOUNDED (p1, y) To check if y is unbounded, SYMBA ap-
plies UNBOUNDED starting from p1. Since it cannot prove that y
is unbounded, it finds the point p2 = (0, 1, 1), where [p1] ⇢ [p2]

and y(p1) < y(p2), i.e., a point showing that increasing the value
of y from p1 can hit a boundary. After applying UNBOUNDED to
p2, SYMBA can get the point p3, and then point p4 (after apply-
ing UNBOUNDED to p3). As a result, U ⌘ y 6 2. From point p4,
SYMBA cannot apply UNBOUNDED, since there does not exist a
point p0 where [p

0
] = [p4] that increases the value of y. Intuitively,

p4 represents a local maximum.

Second GLOBALPUSH To escape the local maximum, SYMBA
uses GLOBALPUSH to query the SMT solver for a point outside U .
In this case, it might find the point p5 = (1.8, 2.1, 1), and thus U
becomes y 6 2.1.

UNBOUNDED (p5, y) SYMBA continues trying to prove that y is
unbounded by performing UNBOUNDED from p5, leading to p6 and
then p7. SYMBA detects that p7 represents the maximum value of y
in ' and terminates with the optimal solution y 6 3.

We have illustrated the workings of SYMBA on two formu-
las representing non-convex shapes, and showed how it utilizes an
SMT solver to find least upper bounds and detect unboundedness of
arbitrary linear expressions (objective functions). In the following
sections, we describe SYMBA formally and discuss our implemen-
tation and experimental results.

3. SYMBA: The Symbolic Optimization
Algorithm

In this section, we provide definitions required for the rest of the
paper and formalize SYMBA as a set of inference rules.

3.1 Definitions
Formulas Let L be a topologically-closed (i.e., all atoms are non-
strict inequalities) subset of Quantifier Free Linear Real Arithmetic
(QF LRA), defined as follows:

' 2 L ::= true | false | P ^ P 0 | P _ P 0

P, P 0 2 Atoms ::= c1x1 + · · ·+ cnxn 6 k, n 2 N
xi 2 Vars ::= {x1, . . . , xn},

where ci, k 2 R.
We use J'K to denote the set of all satisfying assignments

(models) of '. A model p : Vars ! R of ', denoted p |=
', is a valuation of the variables of ' such that '(p) ⌘ true,
where '(p) is ' with every occurrence of a variable x replaced
by p(x). Geometrically, p is a point in Rn, and in what follows,
we use the terms model and point to refer to p interchangeably. We

use Atoms(') to denote the set of all Atoms appearing in ', and
Vars(') to denote the set of all Vars appearing in '.

Optimal Solutions Let ' be a formula in L. Let T = {t1, . . . , tn}
be a set of linear expressions, objective functions, where each
ti is of the form c1x1 + · · · + cmxm, where ci 2 R and
Vars(') = {x1, . . . , xm}. The goal of SYMBA is to compute a
vector (k1, . . . , kn), where each ki 2 R [ {1,�1}, such that
for each ti, ' ) ti 6 ki and there does not exist k0

i < ki where
' ) ti 6 k0

i. We say that (k1, . . . , kn) is the optimal solution
of T w.r.t. ', and denote it as optT ('). We call each value ki the
optimal value (or the least upper bound) of ti in '.

Given such a vector V = (k1, . . . , kn), where n = |T |, we use
formT (V ) to denote the formula

V
i2[1,n] ti 6 ki. Given a model

p of ', we use pT to denote the vector (t1(p), . . . , t|T |(p)).
Given two vectors V1 and V2 of equal length, we use min(V1, V2)

and max(V1, V2) to denote the pointwise minimum and maxi-
mum of the two vectors, respectively. We say V1 6 V2 if each
element of V1 is less than or equal to its corresponding element
in V2, or if there exists a �1 in V1. Intuitively, V1 6 V2 iff
formT (V1) ) formT (V2). Therefore, we say that V2 is weaker
than V1 if V1 < V2 (or V1 is stronger than V2).

Combinations of Theories For clarity of presentation, we restrict
ourselves to applying SYMBA to formulas in L. It is important to
note, however, that SYMBA is applicable to quantifier-free formu-
las over any combination of theories T [ LRA6, where T is an
arbitrary combination of theories, and LRA6 is linear real arith-
metic restricted to non-strict inequalities. The only restriction we
require is that T and LRA6 have disjoint signatures. In other
words, atomic formulas should be over T or LRA6, exclusively.
For example, T can be the combination of the theories of bitvec-
tors and arrays (perhaps for modelling program executions). The
rest of our presentation can apply directly to SMT formulas over
T [ LRA6 without any modification.

3.2 SYMBA Formalized
We now formalize the symbolic optimization algorithm SYMBA as
a set of inference rules shown in Fig. 3.

Given a set of objectives T = {t1, . . . , tn} and a formula '
in L, SYMBA computes optT ('). The state of SYMBA is a tuple
hM,U,Oi, where M is a set of models of '; U is an under-
approximation of optT (') (i.e., U 6 optT (') is invariant); and
O is an over-approximation of optT (') (i.e., optT (') 6 O is
invariant). Note that for clarity of presentation, we treated optT ('),
U , and O as formulas in Sec. 2, whereas here we treat them as
vectors and use formT (V ) to convert a vector V to the formula it
represents.
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UNBOUNDED (p1, y) To check if y is unbounded, SYMBA ap-
plies UNBOUNDED starting from p1. Since it cannot prove that y
is unbounded, it finds the point p2 = (0, 1, 1), where [p1] ⇢ [p2]

and y(p1) < y(p2), i.e., a point showing that increasing the value
of y from p1 can hit a boundary. After applying UNBOUNDED to
p2, SYMBA can get the point p3, and then point p4 (after apply-
ing UNBOUNDED to p3). As a result, U ⌘ y 6 2. From point p4,
SYMBA cannot apply UNBOUNDED, since there does not exist a
point p0 where [p

0
] = [p4] that increases the value of y. Intuitively,

p4 represents a local maximum.

Second GLOBALPUSH To escape the local maximum, SYMBA
uses GLOBALPUSH to query the SMT solver for a point outside U .
In this case, it might find the point p5 = (1.8, 2.1, 1), and thus U
becomes y 6 2.1.

UNBOUNDED (p5, y) SYMBA continues trying to prove that y is
unbounded by performing UNBOUNDED from p5, leading to p6 and
then p7. SYMBA detects that p7 represents the maximum value of y
in ' and terminates with the optimal solution y 6 3.

We have illustrated the workings of SYMBA on two formu-
las representing non-convex shapes, and showed how it utilizes an
SMT solver to find least upper bounds and detect unboundedness of
arbitrary linear expressions (objective functions). In the following
sections, we describe SYMBA formally and discuss our implemen-
tation and experimental results.

3. SYMBA: The Symbolic Optimization
Algorithm

In this section, we provide definitions required for the rest of the
paper and formalize SYMBA as a set of inference rules.

3.1 Definitions
Formulas Let L be a topologically-closed (i.e., all atoms are non-
strict inequalities) subset of Quantifier Free Linear Real Arithmetic
(QF LRA), defined as follows:

' 2 L ::= true | false | P ^ P 0 | P _ P 0

P, P 0 2 Atoms ::= c1x1 + · · ·+ cnxn 6 k, n 2 N
xi 2 Vars ::= {x1, . . . , xn},

where ci, k 2 R.
We use J'K to denote the set of all satisfying assignments

(models) of '. A model p : Vars ! R of ', denoted p |=
', is a valuation of the variables of ' such that '(p) ⌘ true,
where '(p) is ' with every occurrence of a variable x replaced
by p(x). Geometrically, p is a point in Rn, and in what follows,
we use the terms model and point to refer to p interchangeably. We

use Atoms(') to denote the set of all Atoms appearing in ', and
Vars(') to denote the set of all Vars appearing in '.

Optimal Solutions Let ' be a formula in L. Let T = {t1, . . . , tn}
be a set of linear expressions, objective functions, where each
ti is of the form c1x1 + · · · + cmxm, where ci 2 R and
Vars(') = {x1, . . . , xm}. The goal of SYMBA is to compute a
vector (k1, . . . , kn), where each ki 2 R [ {1,�1}, such that
for each ti, ' ) ti 6 ki and there does not exist k0

i < ki where
' ) ti 6 k0

i. We say that (k1, . . . , kn) is the optimal solution
of T w.r.t. ', and denote it as optT ('). We call each value ki the
optimal value (or the least upper bound) of ti in '.

Given such a vector V = (k1, . . . , kn), where n = |T |, we use
formT (V ) to denote the formula

V
i2[1,n] ti 6 ki. Given a model

p of ', we use pT to denote the vector (t1(p), . . . , t|T |(p)).
Given two vectors V1 and V2 of equal length, we use min(V1, V2)

and max(V1, V2) to denote the pointwise minimum and maxi-
mum of the two vectors, respectively. We say V1 6 V2 if each
element of V1 is less than or equal to its corresponding element
in V2, or if there exists a �1 in V1. Intuitively, V1 6 V2 iff
formT (V1) ) formT (V2). Therefore, we say that V2 is weaker
than V1 if V1 < V2 (or V1 is stronger than V2).

Combinations of Theories For clarity of presentation, we restrict
ourselves to applying SYMBA to formulas in L. It is important to
note, however, that SYMBA is applicable to quantifier-free formu-
las over any combination of theories T [ LRA6, where T is an
arbitrary combination of theories, and LRA6 is linear real arith-
metic restricted to non-strict inequalities. The only restriction we
require is that T and LRA6 have disjoint signatures. In other
words, atomic formulas should be over T or LRA6, exclusively.
For example, T can be the combination of the theories of bitvec-
tors and arrays (perhaps for modelling program executions). The
rest of our presentation can apply directly to SMT formulas over
T [ LRA6 without any modification.

3.2 SYMBA Formalized
We now formalize the symbolic optimization algorithm SYMBA as
a set of inference rules shown in Fig. 3.

Given a set of objectives T = {t1, . . . , tn} and a formula '
in L, SYMBA computes optT ('). The state of SYMBA is a tuple
hM,U,Oi, where M is a set of models of '; U is an under-
approximation of optT (') (i.e., U 6 optT (') is invariant); and
O is an over-approximation of optT (') (i.e., optT (') 6 O is
invariant). Note that for clarity of presentation, we treated optT ('),
U , and O as formulas in Sec. 2, whereas here we treat them as
vectors and use formT (V ) to convert a vector V to the formula it
represents.

Objective functions:{y, x+ y}
Example
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UNBOUNDED (p1, y) To check if y is unbounded, SYMBA ap-
plies UNBOUNDED starting from p1. Since it cannot prove that y
is unbounded, it finds the point p2 = (0, 1, 1), where [p1] ⇢ [p2]

and y(p1) < y(p2), i.e., a point showing that increasing the value
of y from p1 can hit a boundary. After applying UNBOUNDED to
p2, SYMBA can get the point p3, and then point p4 (after apply-
ing UNBOUNDED to p3). As a result, U ⌘ y 6 2. From point p4,
SYMBA cannot apply UNBOUNDED, since there does not exist a
point p0 where [p

0
] = [p4] that increases the value of y. Intuitively,

p4 represents a local maximum.

Second GLOBALPUSH To escape the local maximum, SYMBA
uses GLOBALPUSH to query the SMT solver for a point outside U .
In this case, it might find the point p5 = (1.8, 2.1, 1), and thus U
becomes y 6 2.1.

UNBOUNDED (p5, y) SYMBA continues trying to prove that y is
unbounded by performing UNBOUNDED from p5, leading to p6 and
then p7. SYMBA detects that p7 represents the maximum value of y
in ' and terminates with the optimal solution y 6 3.

We have illustrated the workings of SYMBA on two formu-
las representing non-convex shapes, and showed how it utilizes an
SMT solver to find least upper bounds and detect unboundedness of
arbitrary linear expressions (objective functions). In the following
sections, we describe SYMBA formally and discuss our implemen-
tation and experimental results.

3. SYMBA: The Symbolic Optimization
Algorithm

In this section, we provide definitions required for the rest of the
paper and formalize SYMBA as a set of inference rules.

3.1 Definitions
Formulas Let L be a topologically-closed (i.e., all atoms are non-
strict inequalities) subset of Quantifier Free Linear Real Arithmetic
(QF LRA), defined as follows:

' 2 L ::= true | false | P ^ P 0 | P _ P 0

P, P 0 2 Atoms ::= c1x1 + · · ·+ cnxn 6 k, n 2 N
xi 2 Vars ::= {x1, . . . , xn},

where ci, k 2 R.
We use J'K to denote the set of all satisfying assignments

(models) of '. A model p : Vars ! R of ', denoted p |=
', is a valuation of the variables of ' such that '(p) ⌘ true,
where '(p) is ' with every occurrence of a variable x replaced
by p(x). Geometrically, p is a point in Rn, and in what follows,
we use the terms model and point to refer to p interchangeably. We

use Atoms(') to denote the set of all Atoms appearing in ', and
Vars(') to denote the set of all Vars appearing in '.

Optimal Solutions Let ' be a formula in L. Let T = {t1, . . . , tn}
be a set of linear expressions, objective functions, where each
ti is of the form c1x1 + · · · + cmxm, where ci 2 R and
Vars(') = {x1, . . . , xm}. The goal of SYMBA is to compute a
vector (k1, . . . , kn), where each ki 2 R [ {1,�1}, such that
for each ti, ' ) ti 6 ki and there does not exist k0

i < ki where
' ) ti 6 k0

i. We say that (k1, . . . , kn) is the optimal solution
of T w.r.t. ', and denote it as optT ('). We call each value ki the
optimal value (or the least upper bound) of ti in '.

Given such a vector V = (k1, . . . , kn), where n = |T |, we use
formT (V ) to denote the formula

V
i2[1,n] ti 6 ki. Given a model

p of ', we use pT to denote the vector (t1(p), . . . , t|T |(p)).
Given two vectors V1 and V2 of equal length, we use min(V1, V2)

and max(V1, V2) to denote the pointwise minimum and maxi-
mum of the two vectors, respectively. We say V1 6 V2 if each
element of V1 is less than or equal to its corresponding element
in V2, or if there exists a �1 in V1. Intuitively, V1 6 V2 iff
formT (V1) ) formT (V2). Therefore, we say that V2 is weaker
than V1 if V1 < V2 (or V1 is stronger than V2).

Combinations of Theories For clarity of presentation, we restrict
ourselves to applying SYMBA to formulas in L. It is important to
note, however, that SYMBA is applicable to quantifier-free formu-
las over any combination of theories T [ LRA6, where T is an
arbitrary combination of theories, and LRA6 is linear real arith-
metic restricted to non-strict inequalities. The only restriction we
require is that T and LRA6 have disjoint signatures. In other
words, atomic formulas should be over T or LRA6, exclusively.
For example, T can be the combination of the theories of bitvec-
tors and arrays (perhaps for modelling program executions). The
rest of our presentation can apply directly to SMT formulas over
T [ LRA6 without any modification.

3.2 SYMBA Formalized
We now formalize the symbolic optimization algorithm SYMBA as
a set of inference rules shown in Fig. 3.

Given a set of objectives T = {t1, . . . , tn} and a formula '
in L, SYMBA computes optT ('). The state of SYMBA is a tuple
hM,U,Oi, where M is a set of models of '; U is an under-
approximation of optT (') (i.e., U 6 optT (') is invariant); and
O is an over-approximation of optT (') (i.e., optT (') 6 O is
invariant). Note that for clarity of presentation, we treated optT ('),
U , and O as formulas in Sec. 2, whereas here we treat them as
vectors and use formT (V ) to convert a vector V to the formula it
represents.

Objective functions:{y, x+ y}

New under-approx:

y  3 ^
x+ y  8

Example
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UNBOUNDED (p1, y) To check if y is unbounded, SYMBA ap-
plies UNBOUNDED starting from p1. Since it cannot prove that y
is unbounded, it finds the point p2 = (0, 1, 1), where [p1] ⇢ [p2]

and y(p1) < y(p2), i.e., a point showing that increasing the value
of y from p1 can hit a boundary. After applying UNBOUNDED to
p2, SYMBA can get the point p3, and then point p4 (after apply-
ing UNBOUNDED to p3). As a result, U ⌘ y 6 2. From point p4,
SYMBA cannot apply UNBOUNDED, since there does not exist a
point p0 where [p

0
] = [p4] that increases the value of y. Intuitively,

p4 represents a local maximum.

Second GLOBALPUSH To escape the local maximum, SYMBA
uses GLOBALPUSH to query the SMT solver for a point outside U .
In this case, it might find the point p5 = (1.8, 2.1, 1), and thus U
becomes y 6 2.1.

UNBOUNDED (p5, y) SYMBA continues trying to prove that y is
unbounded by performing UNBOUNDED from p5, leading to p6 and
then p7. SYMBA detects that p7 represents the maximum value of y
in ' and terminates with the optimal solution y 6 3.

We have illustrated the workings of SYMBA on two formu-
las representing non-convex shapes, and showed how it utilizes an
SMT solver to find least upper bounds and detect unboundedness of
arbitrary linear expressions (objective functions). In the following
sections, we describe SYMBA formally and discuss our implemen-
tation and experimental results.

3. SYMBA: The Symbolic Optimization
Algorithm

In this section, we provide definitions required for the rest of the
paper and formalize SYMBA as a set of inference rules.

3.1 Definitions
Formulas Let L be a topologically-closed (i.e., all atoms are non-
strict inequalities) subset of Quantifier Free Linear Real Arithmetic
(QF LRA), defined as follows:

' 2 L ::= true | false | P ^ P 0 | P _ P 0

P, P 0 2 Atoms ::= c1x1 + · · ·+ cnxn 6 k, n 2 N
xi 2 Vars ::= {x1, . . . , xn},

where ci, k 2 R.
We use J'K to denote the set of all satisfying assignments

(models) of '. A model p : Vars ! R of ', denoted p |=
', is a valuation of the variables of ' such that '(p) ⌘ true,
where '(p) is ' with every occurrence of a variable x replaced
by p(x). Geometrically, p is a point in Rn, and in what follows,
we use the terms model and point to refer to p interchangeably. We

use Atoms(') to denote the set of all Atoms appearing in ', and
Vars(') to denote the set of all Vars appearing in '.

Optimal Solutions Let ' be a formula in L. Let T = {t1, . . . , tn}
be a set of linear expressions, objective functions, where each
ti is of the form c1x1 + · · · + cmxm, where ci 2 R and
Vars(') = {x1, . . . , xm}. The goal of SYMBA is to compute a
vector (k1, . . . , kn), where each ki 2 R [ {1,�1}, such that
for each ti, ' ) ti 6 ki and there does not exist k0

i < ki where
' ) ti 6 k0

i. We say that (k1, . . . , kn) is the optimal solution
of T w.r.t. ', and denote it as optT ('). We call each value ki the
optimal value (or the least upper bound) of ti in '.

Given such a vector V = (k1, . . . , kn), where n = |T |, we use
formT (V ) to denote the formula

V
i2[1,n] ti 6 ki. Given a model

p of ', we use pT to denote the vector (t1(p), . . . , t|T |(p)).
Given two vectors V1 and V2 of equal length, we use min(V1, V2)

and max(V1, V2) to denote the pointwise minimum and maxi-
mum of the two vectors, respectively. We say V1 6 V2 if each
element of V1 is less than or equal to its corresponding element
in V2, or if there exists a �1 in V1. Intuitively, V1 6 V2 iff
formT (V1) ) formT (V2). Therefore, we say that V2 is weaker
than V1 if V1 < V2 (or V1 is stronger than V2).

Combinations of Theories For clarity of presentation, we restrict
ourselves to applying SYMBA to formulas in L. It is important to
note, however, that SYMBA is applicable to quantifier-free formu-
las over any combination of theories T [ LRA6, where T is an
arbitrary combination of theories, and LRA6 is linear real arith-
metic restricted to non-strict inequalities. The only restriction we
require is that T and LRA6 have disjoint signatures. In other
words, atomic formulas should be over T or LRA6, exclusively.
For example, T can be the combination of the theories of bitvec-
tors and arrays (perhaps for modelling program executions). The
rest of our presentation can apply directly to SMT formulas over
T [ LRA6 without any modification.

3.2 SYMBA Formalized
We now formalize the symbolic optimization algorithm SYMBA as
a set of inference rules shown in Fig. ??.

Given a set of objectives T = {t1, . . . , tn} and a formula '
in L, SYMBA computes optT ('). The state of SYMBA is a tuple
hM,U,Oi, where M is a set of models of '; U is an under-
approximation of optT (') (i.e., U 6 optT (') is invariant); and
O is an over-approximation of optT (') (i.e., optT (') 6 O is
invariant). Note that for clarity of presentation, we treated optT ('),
U , and O as formulas in Sec. ??, whereas here we treat them as
vectors and use formT (V ) to convert a vector V to the formula it
represents.

Objective functions:{y, x+ y}
Example
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UNBOUNDED (p1, y) To check if y is unbounded, SYMBA ap-
plies UNBOUNDED starting from p1. Since it cannot prove that y
is unbounded, it finds the point p2 = (0, 1, 1), where [p1] ⇢ [p2]

and y(p1) < y(p2), i.e., a point showing that increasing the value
of y from p1 can hit a boundary. After applying UNBOUNDED to
p2, SYMBA can get the point p3, and then point p4 (after apply-
ing UNBOUNDED to p3). As a result, U ⌘ y 6 2. From point p4,
SYMBA cannot apply UNBOUNDED, since there does not exist a
point p0 where [p

0
] = [p4] that increases the value of y. Intuitively,

p4 represents a local maximum.

Second GLOBALPUSH To escape the local maximum, SYMBA
uses GLOBALPUSH to query the SMT solver for a point outside U .
In this case, it might find the point p5 = (1.8, 2.1, 1), and thus U
becomes y 6 2.1.

UNBOUNDED (p5, y) SYMBA continues trying to prove that y is
unbounded by performing UNBOUNDED from p5, leading to p6 and
then p7. SYMBA detects that p7 represents the maximum value of y
in ' and terminates with the optimal solution y 6 3.

We have illustrated the workings of SYMBA on two formu-
las representing non-convex shapes, and showed how it utilizes an
SMT solver to find least upper bounds and detect unboundedness of
arbitrary linear expressions (objective functions). In the following
sections, we describe SYMBA formally and discuss our implemen-
tation and experimental results.

3. SYMBA: The Symbolic Optimization
Algorithm

In this section, we provide definitions required for the rest of the
paper and formalize SYMBA as a set of inference rules.

3.1 Definitions
Formulas Let L be a topologically-closed (i.e., all atoms are non-
strict inequalities) subset of Quantifier Free Linear Real Arithmetic
(QF LRA), defined as follows:

' 2 L ::= true | false | P ^ P 0 | P _ P 0

P, P 0 2 Atoms ::= c1x1 + · · ·+ cnxn 6 k, n 2 N
xi 2 Vars ::= {x1, . . . , xn},

where ci, k 2 R.
We use J'K to denote the set of all satisfying assignments

(models) of '. A model p : Vars ! R of ', denoted p |=
', is a valuation of the variables of ' such that '(p) ⌘ true,
where '(p) is ' with every occurrence of a variable x replaced
by p(x). Geometrically, p is a point in Rn, and in what follows,
we use the terms model and point to refer to p interchangeably. We

use Atoms(') to denote the set of all Atoms appearing in ', and
Vars(') to denote the set of all Vars appearing in '.

Optimal Solutions Let ' be a formula in L. Let T = {t1, . . . , tn}
be a set of linear expressions, objective functions, where each
ti is of the form c1x1 + · · · + cmxm, where ci 2 R and
Vars(') = {x1, . . . , xm}. The goal of SYMBA is to compute a
vector (k1, . . . , kn), where each ki 2 R [ {1,�1}, such that
for each ti, ' ) ti 6 ki and there does not exist k0

i < ki where
' ) ti 6 k0

i. We say that (k1, . . . , kn) is the optimal solution
of T w.r.t. ', and denote it as optT ('). We call each value ki the
optimal value (or the least upper bound) of ti in '.

Given such a vector V = (k1, . . . , kn), where n = |T |, we use
formT (V ) to denote the formula

V
i2[1,n] ti 6 ki. Given a model

p of ', we use pT to denote the vector (t1(p), . . . , t|T |(p)).
Given two vectors V1 and V2 of equal length, we use min(V1, V2)

and max(V1, V2) to denote the pointwise minimum and maxi-
mum of the two vectors, respectively. We say V1 6 V2 if each
element of V1 is less than or equal to its corresponding element
in V2, or if there exists a �1 in V1. Intuitively, V1 6 V2 iff
formT (V1) ) formT (V2). Therefore, we say that V2 is weaker
than V1 if V1 < V2 (or V1 is stronger than V2).

Combinations of Theories For clarity of presentation, we restrict
ourselves to applying SYMBA to formulas in L. It is important to
note, however, that SYMBA is applicable to quantifier-free formu-
las over any combination of theories T [ LRA6, where T is an
arbitrary combination of theories, and LRA6 is linear real arith-
metic restricted to non-strict inequalities. The only restriction we
require is that T and LRA6 have disjoint signatures. In other
words, atomic formulas should be over T or LRA6, exclusively.
For example, T can be the combination of the theories of bitvec-
tors and arrays (perhaps for modelling program executions). The
rest of our presentation can apply directly to SMT formulas over
T [ LRA6 without any modification.

3.2 SYMBA Formalized
We now formalize the symbolic optimization algorithm SYMBA as
a set of inference rules shown in Fig. ??.

Given a set of objectives T = {t1, . . . , tn} and a formula '
in L, SYMBA computes optT ('). The state of SYMBA is a tuple
hM,U,Oi, where M is a set of models of '; U is an under-
approximation of optT (') (i.e., U 6 optT (') is invariant); and
O is an over-approximation of optT (') (i.e., optT (') 6 O is
invariant). Note that for clarity of presentation, we treated optT ('),
U , and O as formulas in Sec. ??, whereas here we treat them as
vectors and use formT (V ) to convert a vector V to the formula it
represents.

Objective functions:{y, x+ y}
Example



16

Phase 2: Check if             is unbounded x+ y

Can keep increasing without hitting a boundaryy

x
1 2 3 4 5 6 7 8

1

2

3

p1

p

0
1

p2
p3

0

Figure 1. Illustration of SYMBA on a 2-D example.

0

2

3

p7

2(p4)

3

z

x

y

p1

p2

1

p3

p5

p6

Figure 2. Illustration of SYMBA on a 3-D example.

UNBOUNDED (p1, y) To check if y is unbounded, SYMBA ap-
plies UNBOUNDED starting from p1. Since it cannot prove that y
is unbounded, it finds the point p2 = (0, 1, 1), where [p1] ⇢ [p2]

and y(p1) < y(p2), i.e., a point showing that increasing the value
of y from p1 can hit a boundary. After applying UNBOUNDED to
p2, SYMBA can get the point p3, and then point p4 (after apply-
ing UNBOUNDED to p3). As a result, U ⌘ y 6 2. From point p4,
SYMBA cannot apply UNBOUNDED, since there does not exist a
point p0 where [p

0
] = [p4] that increases the value of y. Intuitively,

p4 represents a local maximum.

Second GLOBALPUSH To escape the local maximum, SYMBA
uses GLOBALPUSH to query the SMT solver for a point outside U .
In this case, it might find the point p5 = (1.8, 2.1, 1), and thus U
becomes y 6 2.1.

UNBOUNDED (p5, y) SYMBA continues trying to prove that y is
unbounded by performing UNBOUNDED from p5, leading to p6 and
then p7. SYMBA detects that p7 represents the maximum value of y
in ' and terminates with the optimal solution y 6 3.

We have illustrated the workings of SYMBA on two formu-
las representing non-convex shapes, and showed how it utilizes an
SMT solver to find least upper bounds and detect unboundedness of
arbitrary linear expressions (objective functions). In the following
sections, we describe SYMBA formally and discuss our implemen-
tation and experimental results.

3. SYMBA: The Symbolic Optimization
Algorithm

In this section, we provide definitions required for the rest of the
paper and formalize SYMBA as a set of inference rules.

3.1 Definitions
Formulas Let L be a topologically-closed (i.e., all atoms are non-
strict inequalities) subset of Quantifier Free Linear Real Arithmetic
(QF LRA), defined as follows:

' 2 L ::= true | false | P ^ P 0 | P _ P 0

P, P 0 2 Atoms ::= c1x1 + · · ·+ cnxn 6 k, n 2 N
xi 2 Vars ::= {x1, . . . , xn},

where ci, k 2 R.
We use J'K to denote the set of all satisfying assignments

(models) of '. A model p : Vars ! R of ', denoted p |=
', is a valuation of the variables of ' such that '(p) ⌘ true,
where '(p) is ' with every occurrence of a variable x replaced
by p(x). Geometrically, p is a point in Rn, and in what follows,
we use the terms model and point to refer to p interchangeably. We

use Atoms(') to denote the set of all Atoms appearing in ', and
Vars(') to denote the set of all Vars appearing in '.

Optimal Solutions Let ' be a formula in L. Let T = {t1, . . . , tn}
be a set of linear expressions, objective functions, where each
ti is of the form c1x1 + · · · + cmxm, where ci 2 R and
Vars(') = {x1, . . . , xm}. The goal of SYMBA is to compute a
vector (k1, . . . , kn), where each ki 2 R [ {1,�1}, such that
for each ti, ' ) ti 6 ki and there does not exist k0

i < ki where
' ) ti 6 k0

i. We say that (k1, . . . , kn) is the optimal solution
of T w.r.t. ', and denote it as optT ('). We call each value ki the
optimal value (or the least upper bound) of ti in '.

Given such a vector V = (k1, . . . , kn), where n = |T |, we use
formT (V ) to denote the formula

V
i2[1,n] ti 6 ki. Given a model

p of ', we use pT to denote the vector (t1(p), . . . , t|T |(p)).
Given two vectors V1 and V2 of equal length, we use min(V1, V2)

and max(V1, V2) to denote the pointwise minimum and maxi-
mum of the two vectors, respectively. We say V1 6 V2 if each
element of V1 is less than or equal to its corresponding element
in V2, or if there exists a �1 in V1. Intuitively, V1 6 V2 iff
formT (V1) ) formT (V2). Therefore, we say that V2 is weaker
than V1 if V1 < V2 (or V1 is stronger than V2).

Combinations of Theories For clarity of presentation, we restrict
ourselves to applying SYMBA to formulas in L. It is important to
note, however, that SYMBA is applicable to quantifier-free formu-
las over any combination of theories T [ LRA6, where T is an
arbitrary combination of theories, and LRA6 is linear real arith-
metic restricted to non-strict inequalities. The only restriction we
require is that T and LRA6 have disjoint signatures. In other
words, atomic formulas should be over T or LRA6, exclusively.
For example, T can be the combination of the theories of bitvec-
tors and arrays (perhaps for modelling program executions). The
rest of our presentation can apply directly to SMT formulas over
T [ LRA6 without any modification.

3.2 SYMBA Formalized
We now formalize the symbolic optimization algorithm SYMBA as
a set of inference rules shown in Fig. ??.

Given a set of objectives T = {t1, . . . , tn} and a formula '
in L, SYMBA computes optT ('). The state of SYMBA is a tuple
hM,U,Oi, where M is a set of models of '; U is an under-
approximation of optT (') (i.e., U 6 optT (') is invariant); and
O is an over-approximation of optT (') (i.e., optT (') 6 O is
invariant). Note that for clarity of presentation, we treated optT ('),
U , and O as formulas in Sec. ??, whereas here we treat them as
vectors and use formT (V ) to convert a vector V to the formula it
represents.

Optimal solution:

y  3 ^
x+ y  1

Objective functions:{y, x+ y}
Example
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Evaluation

Instrumented UFO [CAV’12] to generate 
abstract post queries from SV-COMP 
programs

• Took the ~1000 hardest benchmarks

• Average # of variables: ~900 (max: ~19,000)

• Average # of objective functions: 56 (max: 386)
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Figure 5. Performance comparison between (a) SYMBA(100) vs. OPT-MATHSAT, (b) SYMBA(100) vs. LS(OPT-Z3), and (c)
SYMBA(40)OPT-Z3 vs LS(OPT-Z3).

CONFIGURATION TOTAL TIME(s) # SMT QUERIES # SOLVED # GLOBALPUSH # UNBOUNDEDIMPL
1 SYMBA(100) 3,841 394,579 1,046 24,387 164,156
2 SYMBA(60) 5,720 577,068 1,015 120,112 179,278
3 SYMBA(20) 2,716 231,906 766 132,051 42,227
4 SYMBAONEOBJ 6,867 445,181 1,045 83,421 162,796
5 SYMBA(40)OPT-Z3 1,087 84,814 1,065 7,007 51,898
6 OPT-MATHSAT 5,992 - 1,052 - -
7 LS(OPT-Z3) 1,521 20,829 a 1,058 - -
8 LS(GLPK) 3,098 20,854 1,063 - -
9 LS(SOPLEX) 2,791 20,920 1,065 - -

a We do not count calls to LP solver (including OPT-Z3) in step B.

Table 2. Overall results for different SYMBA and LS configurations, as well as OPT-MATHSAT, on the 1065 SMT-LIB2 benchmarks.

Results: SYMBA’s Configurations Table ?? summarizes the re-
sults of running all the aforementioned algorithms and configura-
tions on the same set of benchmarks with a timeout of 100 seconds
per benchmark. The results of running SYMBA(100) are summa-
rized in row 1 of Table ??. SYMBA(100) was able to solve 1,046
out of 1,065 benchmarks in 3,841 seconds. In the process, it made
⇠395K SMT queries using 24,387 invocations of GLOBALPUSH
and 164,156 invocations of UNBOUNDEDIMPL.

Rows 2-3 capture the results of running SYMBA(X), where
X is 60 and 20, respectively. When X is 60 (time spent in UN-
BOUNDEDIMPL is restricted to 60% of the total time) the num-
ber of GLOBALPUSH calls goes up by about 400%. Time is spent
in making unguided discovery rather than big leap towards the
goal. This even affects UNBOUNDEDIMPL, the number of calls
slightly increases since more points are sampled. When X is 20,
it was only able to solve 766 benchmarks, for which the number
of calls to GLOBALPUSH goes above 130K while the number of
calls to UNBOUNDEDIMPL drops to ⇠42K. Our experiments show
that 100 is the best value for balance when running SYMBA(X)6.
Conversely, when running SYMBA(X)

OPT-Z3, we found that we
greatly benefit from a lower balance value (balance=40 gives us
best performance), since there the GLOBALPUSH rule can discover
unbounded objectives, alleviating the pressure on UNBOUNDED-
IMPL.

SYMBAONEOBJ (see Row 4 of Table ??) was able to solve
1,045 problems in 6,867 seconds. SYMBAONEOBJ uses the same
configuration as SYMBA(100) except that it finds solutions for mul-

6 We omit SYMBA(40) and SYMBA(80) from the table as they exhibit
similar performance to SYMBA(60).

tiple objectives independently, without reusing models amongst
different objectives (as SYMBA does). Using SYMBAONEOBJ
causes the number of SMT queries to go up by 15% and the num-
ber of GLOBALPUSH calls to increase by 300%. Optimizing mul-
tiple objective functions simultaneously ensures that all objectives
benefit from the sampled models and potentially avoids repeating
expensive SMT calls.

Summary The experiments compare our proposed SMT-based
symbolic optimization algorithm with existing techniques and
highlight the effectiveness of various implementation heuristics
and optimizations. We compared SYMBA with OPT-MATHSAT
as well as two LP based implementations of its algorithm on a
large set of benchmarks generated from program analysis tasks.
The results demonstrate the power of SYMBA’s approach. A con-
figuration that employs both efficient scheduling policy and convex
optimization outperforms them all and solves all the benchmarks.
Our experiments also demonstrate the importance of SYMBA’s
multi-objective-function capability.

5. Related Work
Our work intersects with different areas of research. In this section,
we compare SYMBA with (1) other optimization techniques in SAT
and SMT solvers; (2) optimization techniques employed within the
context of abstract interpretation [? ]; (3) linear programming tech-
niques; and (4) classification techniques from the machine learning
community.

Optimization in SAT/SMT Within the SMT and SAT solving
arena, numerous forms of optimization have been proposed (e.g.,
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a We do not count calls to LP solver (including OPT-Z3) in step B.

Table 2. Overall results for different SYMBA and LS configurations, as well as OPT-MATHSAT, on the 1065 SMT-LIB2 benchmarks.

Results: SYMBA’s Configurations Table ?? summarizes the re-
sults of running all the aforementioned algorithms and configura-
tions on the same set of benchmarks with a timeout of 100 seconds
per benchmark. The results of running SYMBA(100) are summa-
rized in row 1 of Table ??. SYMBA(100) was able to solve 1,046
out of 1,065 benchmarks in 3,841 seconds. In the process, it made
⇠395K SMT queries using 24,387 invocations of GLOBALPUSH
and 164,156 invocations of UNBOUNDEDIMPL.

Rows 2-3 capture the results of running SYMBA(X), where
X is 60 and 20, respectively. When X is 60 (time spent in UN-
BOUNDEDIMPL is restricted to 60% of the total time) the num-
ber of GLOBALPUSH calls goes up by about 400%. Time is spent
in making unguided discovery rather than big leap towards the
goal. This even affects UNBOUNDEDIMPL, the number of calls
slightly increases since more points are sampled. When X is 20,
it was only able to solve 766 benchmarks, for which the number
of calls to GLOBALPUSH goes above 130K while the number of
calls to UNBOUNDEDIMPL drops to ⇠42K. Our experiments show
that 100 is the best value for balance when running SYMBA(X)6.
Conversely, when running SYMBA(X)

OPT-Z3, we found that we
greatly benefit from a lower balance value (balance=40 gives us
best performance), since there the GLOBALPUSH rule can discover
unbounded objectives, alleviating the pressure on UNBOUNDED-
IMPL.

SYMBAONEOBJ (see Row 4 of Table ??) was able to solve
1,045 problems in 6,867 seconds. SYMBAONEOBJ uses the same
configuration as SYMBA(100) except that it finds solutions for mul-

6 We omit SYMBA(40) and SYMBA(80) from the table as they exhibit
similar performance to SYMBA(60).

tiple objectives independently, without reusing models amongst
different objectives (as SYMBA does). Using SYMBAONEOBJ
causes the number of SMT queries to go up by 15% and the num-
ber of GLOBALPUSH calls to increase by 300%. Optimizing mul-
tiple objective functions simultaneously ensures that all objectives
benefit from the sampled models and potentially avoids repeating
expensive SMT calls.

Summary The experiments compare our proposed SMT-based
symbolic optimization algorithm with existing techniques and
highlight the effectiveness of various implementation heuristics
and optimizations. We compared SYMBA with OPT-MATHSAT
as well as two LP based implementations of its algorithm on a
large set of benchmarks generated from program analysis tasks.
The results demonstrate the power of SYMBA’s approach. A con-
figuration that employs both efficient scheduling policy and convex
optimization outperforms them all and solves all the benchmarks.
Our experiments also demonstrate the importance of SYMBA’s
multi-objective-function capability.

5. Related Work
Our work intersects with different areas of research. In this section,
we compare SYMBA with (1) other optimization techniques in SAT
and SMT solvers; (2) optimization techniques employed within the
context of abstract interpretation [? ]; (3) linear programming tech-
niques; and (4) classification techniques from the machine learning
community.

Optimization in SAT/SMT Within the SMT and SAT solving
arena, numerous forms of optimization have been proposed (e.g.,
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a We do not count calls to LP solver (including OPT-Z3) in step B.

Table 2. Overall results for different SYMBA and LS configurations, as well as OPT-MATHSAT, on the 1065 SMT-LIB2 benchmarks.

Results: SYMBA’s Configurations Table ?? summarizes the re-
sults of running all the aforementioned algorithms and configura-
tions on the same set of benchmarks with a timeout of 100 seconds
per benchmark. The results of running SYMBA(100) are summa-
rized in row 1 of Table ??. SYMBA(100) was able to solve 1,046
out of 1,065 benchmarks in 3,841 seconds. In the process, it made
⇠395K SMT queries using 24,387 invocations of GLOBALPUSH
and 164,156 invocations of UNBOUNDEDIMPL.

Rows 2-3 capture the results of running SYMBA(X), where
X is 60 and 20, respectively. When X is 60 (time spent in UN-
BOUNDEDIMPL is restricted to 60% of the total time) the num-
ber of GLOBALPUSH calls goes up by about 400%. Time is spent
in making unguided discovery rather than big leap towards the
goal. This even affects UNBOUNDEDIMPL, the number of calls
slightly increases since more points are sampled. When X is 20,
it was only able to solve 766 benchmarks, for which the number
of calls to GLOBALPUSH goes above 130K while the number of
calls to UNBOUNDEDIMPL drops to ⇠42K. Our experiments show
that 100 is the best value for balance when running SYMBA(X)6.
Conversely, when running SYMBA(X)

OPT-Z3, we found that we
greatly benefit from a lower balance value (balance=40 gives us
best performance), since there the GLOBALPUSH rule can discover
unbounded objectives, alleviating the pressure on UNBOUNDED-
IMPL.

SYMBAONEOBJ (see Row 4 of Table ??) was able to solve
1,045 problems in 6,867 seconds. SYMBAONEOBJ uses the same
configuration as SYMBA(100) except that it finds solutions for mul-

6 We omit SYMBA(40) and SYMBA(80) from the table as they exhibit
similar performance to SYMBA(60).

tiple objectives independently, without reusing models amongst
different objectives (as SYMBA does). Using SYMBAONEOBJ
causes the number of SMT queries to go up by 15% and the num-
ber of GLOBALPUSH calls to increase by 300%. Optimizing mul-
tiple objective functions simultaneously ensures that all objectives
benefit from the sampled models and potentially avoids repeating
expensive SMT calls.

Summary The experiments compare our proposed SMT-based
symbolic optimization algorithm with existing techniques and
highlight the effectiveness of various implementation heuristics
and optimizations. We compared SYMBA with OPT-MATHSAT
as well as two LP based implementations of its algorithm on a
large set of benchmarks generated from program analysis tasks.
The results demonstrate the power of SYMBA’s approach. A con-
figuration that employs both efficient scheduling policy and convex
optimization outperforms them all and solves all the benchmarks.
Our experiments also demonstrate the importance of SYMBA’s
multi-objective-function capability.

5. Related Work
Our work intersects with different areas of research. In this section,
we compare SYMBA with (1) other optimization techniques in SAT
and SMT solvers; (2) optimization techniques employed within the
context of abstract interpretation [? ]; (3) linear programming tech-
niques; and (4) classification techniques from the machine learning
community.

Optimization in SAT/SMT Within the SMT and SAT solving
arena, numerous forms of optimization have been proposed (e.g.,
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1 SYMBA(100) 3,841 394,579 1,046 24,387 164,156
2 SYMBA(60) 5,720 577,068 1,015 120,112 179,278
3 SYMBA(20) 2,716 231,906 766 132,051 42,227
4 SYMBAONEOBJ 6,867 445,181 1,045 83,421 162,796
5 SYMBA(40)OPT-Z3 1,087 84,814 1,065 7,007 51,898
6 OPT-MATHSAT 5,992 - 1,052 - -
7 LS(OPT-Z3) 1,521 20,829 a 1,058 - -
8 LS(GLPK) 3,098 20,854 1,063 - -
9 LS(SOPLEX) 2,791 20,920 1,065 - -

a We do not count calls to LP solver (including OPT-Z3) in step B.

Table 2. Overall results for different SYMBA and LS configurations, as well as OPT-MATHSAT, on the 1065 SMT-LIB2 benchmarks.

Results: SYMBA’s Configurations Table ?? summarizes the re-
sults of running all the aforementioned algorithms and configura-
tions on the same set of benchmarks with a timeout of 100 seconds
per benchmark. The results of running SYMBA(100) are summa-
rized in row 1 of Table ??. SYMBA(100) was able to solve 1,046
out of 1,065 benchmarks in 3,841 seconds. In the process, it made
⇠395K SMT queries using 24,387 invocations of GLOBALPUSH
and 164,156 invocations of UNBOUNDEDIMPL.

Rows 2-3 capture the results of running SYMBA(X), where
X is 60 and 20, respectively. When X is 60 (time spent in UN-
BOUNDEDIMPL is restricted to 60% of the total time) the num-
ber of GLOBALPUSH calls goes up by about 400%. Time is spent
in making unguided discovery rather than big leap towards the
goal. This even affects UNBOUNDEDIMPL, the number of calls
slightly increases since more points are sampled. When X is 20,
it was only able to solve 766 benchmarks, for which the number
of calls to GLOBALPUSH goes above 130K while the number of
calls to UNBOUNDEDIMPL drops to ⇠42K. Our experiments show
that 100 is the best value for balance when running SYMBA(X)6.
Conversely, when running SYMBA(X)

OPT-Z3, we found that we
greatly benefit from a lower balance value (balance=40 gives us
best performance), since there the GLOBALPUSH rule can discover
unbounded objectives, alleviating the pressure on UNBOUNDED-
IMPL.

SYMBAONEOBJ (see Row 4 of Table ??) was able to solve
1,045 problems in 6,867 seconds. SYMBAONEOBJ uses the same
configuration as SYMBA(100) except that it finds solutions for mul-

6 We omit SYMBA(40) and SYMBA(80) from the table as they exhibit
similar performance to SYMBA(60).

tiple objectives independently, without reusing models amongst
different objectives (as SYMBA does). Using SYMBAONEOBJ
causes the number of SMT queries to go up by 15% and the num-
ber of GLOBALPUSH calls to increase by 300%. Optimizing mul-
tiple objective functions simultaneously ensures that all objectives
benefit from the sampled models and potentially avoids repeating
expensive SMT calls.

Summary The experiments compare our proposed SMT-based
symbolic optimization algorithm with existing techniques and
highlight the effectiveness of various implementation heuristics
and optimizations. We compared SYMBA with OPT-MATHSAT
as well as two LP based implementations of its algorithm on a
large set of benchmarks generated from program analysis tasks.
The results demonstrate the power of SYMBA’s approach. A con-
figuration that employs both efficient scheduling policy and convex
optimization outperforms them all and solves all the benchmarks.
Our experiments also demonstrate the importance of SYMBA’s
multi-objective-function capability.

5. Related Work
Our work intersects with different areas of research. In this section,
we compare SYMBA with (1) other optimization techniques in SAT
and SMT solvers; (2) optimization techniques employed within the
context of abstract interpretation [? ]; (3) linear programming tech-
niques; and (4) classification techniques from the machine learning
community.

Optimization in SAT/SMT Within the SMT and SAT solving
arena, numerous forms of optimization have been proposed (e.g.,
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Figure 5. P e r f o r m a n c e c o m p a r i s o n b e t w e e n ( a ) S Y M B A ( 1 0 0 ) v s . O P T - M A T H S A T , ( b ) S Y M B A ( 1 0 0 ) v s . L S ( O P T - Z 3 ) , a n d ( c )
S Y M B A (40) O P T - Z 3 v s L S ( O P T - Z 3 ) .

C O N F I G U R A T I O N T O T A L T I M E ( s ) # S M T Q U E R I E S # S O L V E D # G L O B A L P U S H # U N B O U N D E D I M P L
1 S Y M B A ( 1 0 0 ) 3 , 8 4 1 3 9 4 , 5 7 9 1 , 0 4 6 2 4 , 3 8 7 1 6 4 , 1 5 6
2 S Y M B A ( 6 0 ) 5 , 7 2 0 5 7 7 , 0 6 8 1 , 0 1 5 1 2 0 , 1 1 2 1 7 9 , 2 7 8
3 S Y M B A ( 2 0 ) 2 , 7 1 6 2 3 1 , 9 0 6 7 6 6 1 3 2 , 0 5 1 4 2 , 2 2 7
4 S Y M B A O N E O B J 6 , 8 6 7 4 4 5 , 1 8 1 1 , 0 4 5 8 3 , 4 2 1 1 6 2 , 7 9 6
5 S Y M B A (40) O P T - Z 3 1 , 0 8 7 8 4 , 8 1 4 1 , 0 6 5 7 , 0 0 7 5 1 , 8 9 8
6 O P T - M A T H S A T 5 , 9 9 2 - 1 , 0 5 2 - -
7 L S ( O P T - Z 3 ) 1 , 5 2 1 2 0 , 8 2 9 a 1 , 0 5 8 - -
8 L S ( G L P K ) 3 , 0 9 8 2 0 , 8 5 4 1 , 0 6 3 - -
9 L S ( S O P L E X ) 2 , 7 9 1 2 0 , 9 2 0 1 , 0 6 5 - -

a W e d o n o t c o u n t c a l l s t o L P s o l v e r ( i n c l u d i n g O P T - Z 3 ) i n s t e p B.

Table 2. O v e r a l l r e s u l t s f o r d i f f e r e n t S Y M B A a n d L S c o n fi g u r a t i o n s , a s w e l l a s O P T - M A T H S A T , o n t h e 1 0 6 5 S M T - L I B 2 b e n c h m a r k s .

Results: SYMBA’s Configurations T a b l e ?? s u m m a r i z e s t h e r e -
s u l t s o f r u n n i n g a l l t h e a f o r e m e n t i o n e d a l g o r i t h m s a n d c o n fi g u r a -
t i o n s o n t h e s a m e s e t o f b e n c h m a r k s w i t h a t i m e o u t o f 1 0 0 s e c o n d s
p e r b e n c h m a r k . T h e r e s u l t s o f r u n n i n g S Y M B A ( 1 0 0 ) a r e s u m m a -
r i z e d i n r o w 1 o f T a b l e ??. S Y M B A ( 1 0 0 ) w a s a b l e t o s o l v e 1 , 0 4 6
o u t o f 1 , 0 6 5 b e n c h m a r k s i n 3 , 8 4 1 s e c o n d s . I n t h e p r o c e s s , i t m a d e
⇠ 3 9 5 K S M T q u e r i e s u s i n g 2 4 , 3 8 7 i n v o c a t i o n s o f G L O B A L P U S H
a n d 1 6 4 , 1 5 6 i n v o c a t i o n s o f U N B O U N D E D I M P L .

R o w s 2 - 3 c a p t u r e t h e r e s u l t s o f r u n n i n g S Y M B A ( X ) , w h e r e
X i s 6 0 a n d 2 0 , r e s p e c t i v e l y . W h e n X i s 6 0 ( t i m e s p e n t i n U N -
B O U N D E D I M P L i s r e s t r i c t e d t o 6 0 % o f t h e t o t a l t i m e ) t h e n u m -
b e r o f G L O B A L P U S H c a l l s g o e s u p b y a b o u t 4 0 0 % . T i m e i s s p e n t
i n m a k i n g u n g u i d e d d i s c o v e r y r a t h e r t h a n b i g l e a p t o w a r d s t h e
g o a l . T h i s e v e n a f f e c t s U N B O U N D E D I M P L , t h e n u m b e r o f c a l l s
s l i g h t l y i n c r e a s e s s i n c e m o r e p o i n t s a r e s a m p l e d . W h e n X i s 2 0 ,
i t w a s o n l y a b l e t o s o l v e 7 6 6 b e n c h m a r k s , f o r w h i c h t h e n u m b e r
o f c a l l s t o G L O B A L P U S H g o e s a b o v e 1 3 0 K w h i l e t h e n u m b e r o f
c a l l s t o U N B O U N D E D I M P L d r o p s t o ⇠ 4 2 K . O u r e x p e r i m e n t s s h o w
t h a t 1 0 0 i s t h e b e s t v a l u e f o r balance w h e n r u n n i n g S Y M B A ( X ) 6 .
C o n v e r s e l y , w h e n r u n n i n g S Y M B A (X)

O P T - Z 3 , w e f o u n d t h a t w e
g r e a t l y b e n e fi t f r o m a l o w e r balance v a l u e ( balance= 4 0 g i v e s u s
b e s t p e r f o r m a n c e ) , s i n c e t h e r e t h e G L O B A L P U S H r u l e c a n d i s c o v e r
u n b o u n d e d o b j e c t i v e s , a l l e v i a t i n g t h e p r e s s u r e o n U N B O U N D E D -
I M P L .

S Y M B A O N E O B J ( s e e R o w 4 o f T a b l e ??) w a s a b l e t o s o l v e
1 , 0 4 5 p r o b l e m s i n 6 , 8 6 7 s e c o n d s . S Y M B A O N E O B J u s e s t h e s a m e
c o n fi g u r a t i o n a s S Y M B A ( 1 0 0 ) e x c e p t t h a t i t fi n d s s o l u t i o n s f o r m u l -

6 W e o m i t S Y M B A ( 4 0 ) a n d S Y M B A ( 8 0 ) f r o m t h e t a b l e a s t h e y e x h i b i t
s i m i l a r p e r f o r m a n c e t o S Y M B A ( 6 0 ) .

t i p l e o b j e c t i v e s i n d e p e n d e n t l y , w i t h o u t r e u s i n g m o d e l s a m o n g s t
d i f f e r e n t o b j e c t i v e s ( a s S Y M B A d o e s ) . U s i n g S Y M B A O N E O B J
c a u s e s t h e n u m b e r o f S M T q u e r i e s t o g o u p b y 1 5 % a n d t h e n u m -
b e r o f G L O B A L P U S H c a l l s t o i n c r e a s e b y 3 0 0 % . O p t i m i z i n g m u l -
t i p l e o b j e c t i v e f u n c t i o n s s i m u l t a n e o u s l y e n s u r e s t h a t a l l o b j e c t i v e s
b e n e fi t f r o m t h e s a m p l e d m o d e l s a n d p o t e n t i a l l y a v o i d s r e p e a t i n g
e x p e n s i v e S M T c a l l s .

Summary T h e e x p e r i m e n t s c o m p a r e o u r p r o p o s e d S M T - b a s e d
s y m b o l i c o p t i m i z a t i o n a l g o r i t h m w i t h e x i s t i n g t e c h n i q u e s a n d
h i g h l i g h t t h e e f f e c t i v e n e s s o f v a r i o u s i m p l e m e n t a t i o n h e u r i s t i c s
a n d o p t i m i z a t i o n s . W e c o m p a r e d S Y M B A w i t h O P T - M A T H S A T
a s w e l l a s t w o L P b a s e d i m p l e m e n t a t i o n s o f i t s a l g o r i t h m o n a
l a r g e s e t o f b e n c h m a r k s g e n e r a t e d f r o m p r o g r a m a n a l y s i s t a s k s .
T h e r e s u l t s d e m o n s t r a t e t h e p o w e r o f S Y M B A ’ s a p p r o a c h . A c o n -
fi g u r a t i o n t h a t e m p l o y s b o t h e f fi c i e n t s c h e d u l i n g p o l i c y a n d c o n v e x
o p t i m i z a t i o n o u t p e r f o r m s t h e m a l l a n d s o l v e s a l l t h e b e n c h m a r k s .
O u r e x p e r i m e n t s a l s o d e m o n s t r a t e t h e i m p o r t a n c e o f S Y M B A ’ s
m u l t i - o b j e c t i v e - f u n c t i o n c a p a b i l i t y .

5. Related Work
O u r w o r k i n t e r s e c t s w i t h d i f f e r e n t a r e a s o f r e s e a r c h . I n t h i s s e c t i o n ,
w e c o m p a r e S Y M B A w i t h ( 1 ) o t h e r o p t i m i z a t i o n t e c h n i q u e s i n S A T
a n d S M T s o l v e r s ; ( 2 ) o p t i m i z a t i o n t e c h n i q u e s e m p l o y e d w i t h i n t h e
c o n t e x t o f a b s t r a c t i n t e r p r e t a t i o n [ ? ] ; ( 3 ) l i n e a r p r o g r a m m i n g t e c h -
n i q u e s ; a n d ( 4 ) c l a s s i fi c a t i o n t e c h n i q u e s f r o m t h e m a c h i n e l e a r n i n g
c o m m u n i t y .

Optimization in SAT/SMT W i t h i n t h e S M T a n d S A T s o l v i n g
a r e n a , n u m e r o u s f o r m s o f o p t i m i z a t i o n h a v e b e e n p r o p o s e d ( e . g . ,
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Figure 5. P e r f o r m a n c e c o m p a r i s o n b e t w e e n ( a ) S Y M B A ( 1 0 0 ) v s . O P T - M A T H S A T , ( b ) S Y M B A ( 1 0 0 ) v s . L S ( O P T - Z 3 ) , a n d ( c )
S Y M B A (40) O P T - Z 3 v s L S ( O P T - Z 3 ) .

C O N F I G U R A T I O N T O T A L T I M E ( s ) # S M T Q U E R I E S # S O L V E D # G L O B A L P U S H # U N B O U N D E D I M P L
1 S Y M B A ( 1 0 0 ) 3 , 8 4 1 3 9 4 , 5 7 9 1 , 0 4 6 2 4 , 3 8 7 1 6 4 , 1 5 6
2 S Y M B A ( 6 0 ) 5 , 7 2 0 5 7 7 , 0 6 8 1 , 0 1 5 1 2 0 , 1 1 2 1 7 9 , 2 7 8
3 S Y M B A ( 2 0 ) 2 , 7 1 6 2 3 1 , 9 0 6 7 6 6 1 3 2 , 0 5 1 4 2 , 2 2 7
4 S Y M B A O N E O B J 6 , 8 6 7 4 4 5 , 1 8 1 1 , 0 4 5 8 3 , 4 2 1 1 6 2 , 7 9 6
5 S Y M B A (40) O P T - Z 3 1 , 0 8 7 8 4 , 8 1 4 1 , 0 6 5 7 , 0 0 7 5 1 , 8 9 8
6 O P T - M A T H S A T 5 , 9 9 2 - 1 , 0 5 2 - -
7 L S ( O P T - Z 3 ) 1 , 5 2 1 2 0 , 8 2 9 a 1 , 0 5 8 - -
8 L S ( G L P K ) 3 , 0 9 8 2 0 , 8 5 4 1 , 0 6 3 - -
9 L S ( S O P L E X ) 2 , 7 9 1 2 0 , 9 2 0 1 , 0 6 5 - -

a W e d o n o t c o u n t c a l l s t o L P s o l v e r ( i n c l u d i n g O P T - Z 3 ) i n s t e p B.

Table 2. O v e r a l l r e s u l t s f o r d i f f e r e n t S Y M B A a n d L S c o n fi g u r a t i o n s , a s w e l l a s O P T - M A T H S A T , o n t h e 1 0 6 5 S M T - L I B 2 b e n c h m a r k s .

Results: SYMBA’s Configurations T a b l e ?? s u m m a r i z e s t h e r e -
s u l t s o f r u n n i n g a l l t h e a f o r e m e n t i o n e d a l g o r i t h m s a n d c o n fi g u r a -
t i o n s o n t h e s a m e s e t o f b e n c h m a r k s w i t h a t i m e o u t o f 1 0 0 s e c o n d s
p e r b e n c h m a r k . T h e r e s u l t s o f r u n n i n g S Y M B A ( 1 0 0 ) a r e s u m m a -
r i z e d i n r o w 1 o f T a b l e ??. S Y M B A ( 1 0 0 ) w a s a b l e t o s o l v e 1 , 0 4 6
o u t o f 1 , 0 6 5 b e n c h m a r k s i n 3 , 8 4 1 s e c o n d s . I n t h e p r o c e s s , i t m a d e
⇠ 3 9 5 K S M T q u e r i e s u s i n g 2 4 , 3 8 7 i n v o c a t i o n s o f G L O B A L P U S H
a n d 1 6 4 , 1 5 6 i n v o c a t i o n s o f U N B O U N D E D I M P L .

R o w s 2 - 3 c a p t u r e t h e r e s u l t s o f r u n n i n g S Y M B A ( X ) , w h e r e
X i s 6 0 a n d 2 0 , r e s p e c t i v e l y . W h e n X i s 6 0 ( t i m e s p e n t i n U N -
B O U N D E D I M P L i s r e s t r i c t e d t o 6 0 % o f t h e t o t a l t i m e ) t h e n u m -
b e r o f G L O B A L P U S H c a l l s g o e s u p b y a b o u t 4 0 0 % . T i m e i s s p e n t
i n m a k i n g u n g u i d e d d i s c o v e r y r a t h e r t h a n b i g l e a p t o w a r d s t h e
g o a l . T h i s e v e n a f f e c t s U N B O U N D E D I M P L , t h e n u m b e r o f c a l l s
s l i g h t l y i n c r e a s e s s i n c e m o r e p o i n t s a r e s a m p l e d . W h e n X i s 2 0 ,
i t w a s o n l y a b l e t o s o l v e 7 6 6 b e n c h m a r k s , f o r w h i c h t h e n u m b e r
o f c a l l s t o G L O B A L P U S H g o e s a b o v e 1 3 0 K w h i l e t h e n u m b e r o f
c a l l s t o U N B O U N D E D I M P L d r o p s t o ⇠ 4 2 K . O u r e x p e r i m e n t s s h o w
t h a t 1 0 0 i s t h e b e s t v a l u e f o r balance w h e n r u n n i n g S Y M B A ( X ) 6 .
C o n v e r s e l y , w h e n r u n n i n g S Y M B A (X)

O P T - Z 3 , w e f o u n d t h a t w e
g r e a t l y b e n e fi t f r o m a l o w e r balance v a l u e ( balance= 4 0 g i v e s u s
b e s t p e r f o r m a n c e ) , s i n c e t h e r e t h e G L O B A L P U S H r u l e c a n d i s c o v e r
u n b o u n d e d o b j e c t i v e s , a l l e v i a t i n g t h e p r e s s u r e o n U N B O U N D E D -
I M P L .

S Y M B A O N E O B J ( s e e R o w 4 o f T a b l e ??) w a s a b l e t o s o l v e
1 , 0 4 5 p r o b l e m s i n 6 , 8 6 7 s e c o n d s . S Y M B A O N E O B J u s e s t h e s a m e
c o n fi g u r a t i o n a s S Y M B A ( 1 0 0 ) e x c e p t t h a t i t fi n d s s o l u t i o n s f o r m u l -

6 W e o m i t S Y M B A ( 4 0 ) a n d S Y M B A ( 8 0 ) f r o m t h e t a b l e a s t h e y e x h i b i t
s i m i l a r p e r f o r m a n c e t o S Y M B A ( 6 0 ) .

t i p l e o b j e c t i v e s i n d e p e n d e n t l y , w i t h o u t r e u s i n g m o d e l s a m o n g s t
d i f f e r e n t o b j e c t i v e s ( a s S Y M B A d o e s ) . U s i n g S Y M B A O N E O B J
c a u s e s t h e n u m b e r o f S M T q u e r i e s t o g o u p b y 1 5 % a n d t h e n u m -
b e r o f G L O B A L P U S H c a l l s t o i n c r e a s e b y 3 0 0 % . O p t i m i z i n g m u l -
t i p l e o b j e c t i v e f u n c t i o n s s i m u l t a n e o u s l y e n s u r e s t h a t a l l o b j e c t i v e s
b e n e fi t f r o m t h e s a m p l e d m o d e l s a n d p o t e n t i a l l y a v o i d s r e p e a t i n g
e x p e n s i v e S M T c a l l s .

Summary T h e e x p e r i m e n t s c o m p a r e o u r p r o p o s e d S M T - b a s e d
s y m b o l i c o p t i m i z a t i o n a l g o r i t h m w i t h e x i s t i n g t e c h n i q u e s a n d
h i g h l i g h t t h e e f f e c t i v e n e s s o f v a r i o u s i m p l e m e n t a t i o n h e u r i s t i c s
a n d o p t i m i z a t i o n s . W e c o m p a r e d S Y M B A w i t h O P T - M A T H S A T
a s w e l l a s t w o L P b a s e d i m p l e m e n t a t i o n s o f i t s a l g o r i t h m o n a
l a r g e s e t o f b e n c h m a r k s g e n e r a t e d f r o m p r o g r a m a n a l y s i s t a s k s .
T h e r e s u l t s d e m o n s t r a t e t h e p o w e r o f S Y M B A ’ s a p p r o a c h . A c o n -
fi g u r a t i o n t h a t e m p l o y s b o t h e f fi c i e n t s c h e d u l i n g p o l i c y a n d c o n v e x
o p t i m i z a t i o n o u t p e r f o r m s t h e m a l l a n d s o l v e s a l l t h e b e n c h m a r k s .
O u r e x p e r i m e n t s a l s o d e m o n s t r a t e t h e i m p o r t a n c e o f S Y M B A ’ s
m u l t i - o b j e c t i v e - f u n c t i o n c a p a b i l i t y .

5. Related Work
O u r w o r k i n t e r s e c t s w i t h d i f f e r e n t a r e a s o f r e s e a r c h . I n t h i s s e c t i o n ,
w e c o m p a r e S Y M B A w i t h ( 1 ) o t h e r o p t i m i z a t i o n t e c h n i q u e s i n S A T
a n d S M T s o l v e r s ; ( 2 ) o p t i m i z a t i o n t e c h n i q u e s e m p l o y e d w i t h i n t h e
c o n t e x t o f a b s t r a c t i n t e r p r e t a t i o n [ ? ] ; ( 3 ) l i n e a r p r o g r a m m i n g t e c h -
n i q u e s ; a n d ( 4 ) c l a s s i fi c a t i o n t e c h n i q u e s f r o m t h e m a c h i n e l e a r n i n g
c o m m u n i t y .

Optimization in SAT/SMT W i t h i n t h e S M T a n d S A T s o l v i n g
a r e n a , n u m e r o u s f o r m s o f o p t i m i z a t i o n h a v e b e e n p r o p o s e d ( e . g . ,

1.5x speedup over
OptMathSAT(Z3) 

Best Symba config.
(see paper for more)

No timeouts
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