Symbolic Optimization with SMT Solvers

<u>Aws Albarghouthi</u> / UToronto Marsha Chechik / UToronto Arie Gurfinkel / CMU Zachary Kincaid / UToronto Yi Li / UToronto

POPL 2014 / San Diego, CA

SMT Explosion!

SMT solvers appear everywhere. Why?

- Amazing <u>performance</u>!
- Support a large <u>range of logical theories</u>
- We've become really good at casting problems as SMT queries!

SMT Applications

Verification

• Checking VCs, invariant generation, etc.

Bug finding

• Symbolic execution, BMC, fuzzing, etc.

Synthesis

• Circuit synthesis, sketching, superoptimization, etc.

Functional programming

• Liquid types

SMT Applications

Verification

• Checking VCs, invariant generation, etc.

Bug finding

• Symbolic execution, BMC, fuzzing, etc.

Synthesis

• Circuit synthesis, sketching, superoptimization, etc.

Functional programming

• Liquid types

~22% of POPL'14 papers mention SMT solvers!

How are SMT Solvers Used?

Finding models

- <u>Bug finding</u>: erroneous traces
- <u>Synthesis</u>: program/circuit

Proving unsatisfiability (validity)

- <u>Verification</u>:VC holds
- <u>Refinement types</u>: subtyping relation holds

How are SMT Solvers Used?

What about optimization?

Why Should You Care?

Plenty of applications for optimization:

- Numerical invariant generation
- Counterexample generation
- Program synthesis
- Constraint programming
- ... and many others

Problem Statement

 $\varphi \in \mathcal{T} \cup \mathcal{LRA}$
signature disjoint

$$\begin{array}{c|c} \textbf{Problem Statement} \\ \varphi \in \mathcal{T} \cup \mathcal{LRA} \\ \hline \textbf{signature disjoint} \end{array} \stackrel{\textbf{E.g.: } 3x + 2y \leq 0 \lor \\ z \geq 3 \end{array}$$

$$\begin{array}{c} \textbf{Set of linear objective functions: } f_1, \dots, f_n \\ \textbf{E.g.: } x + 2y, z \end{array}$$

$$\begin{array}{c} \textbf{Goal: find assignments } m_1, \dots, m_n \\ m_1 \models \varphi \ s.t. \ \max \ f_1(m_1) \\ \dots \\ m_n \models \varphi \ s.t. \ \max \ f_n(m_n) \end{array}$$

Problem Statement $\varphi \in \mathcal{T} \cup \mathcal{LRA}$ Set of linear <u>objective functions</u>: f_1, \ldots, f_n

Problem Statement $\varphi \in \mathcal{T} \cup \mathcal{LRA}$ Set of linear <u>objective functions</u>: f_1, \ldots, f_n

Problem Statement $\varphi \in \mathcal{T} \cup \mathcal{LRA}$ Set of linear <u>objective functions</u>: f_1, \ldots, f_n

Challenges & Contributions

<u>Symba</u>: an SMT-based optimization algorithm

- Non-convex optimization
- Linear arithmetic modulo theories
- Multiple independent objectives
- SMT solver as a black box

Outline

Symba by example

Application and evaluation

What's next?

 $\varphi \equiv 1 \leq y \leq 3 \land (1 \leq x \leq 3 \lor x \geq 4)$ Objective functions: $\{y, x + y\}$

$$\label{eq:phi} \begin{split} \varphi &\equiv 1 \leq y \leq 3 \land (1 \leq x \leq 3 \lor x \geq 4) \\ \text{Objective functions:} \left\{y, x + y\right\} \end{split}$$

$\varphi \equiv 1 \leq y \leq 3 \land (1 \leq x \leq 3 \lor x \geq 4)$ Objective functions: $\{y, x + y\}$

$\varphi \equiv 1 \leq y \leq 3 \land (1 \leq x \leq 3 \lor x \geq 4)$ Objective functions: $\{y, x + y\}$

$\begin{array}{l} & {\rm Example} \\ {\rm Objective \ functions:} \left\{ {y,x + y} \right\} \\ \\ & {\rm \underline{Under-approximation}} \ {\rm of \ optimal \ solution:} \ \underline{false} \end{array}$

Objective functions: $\{y, x + y\}$

<u>Under-approximation</u> of optimal solution: false

Objective functions: $\{y, x + y\}$

<u>Under-approximation</u> of optimal solution: false

ExampleObjective functions: $\{y, x + y\}$ Under-approximation of optimal solution: false

$\begin{array}{l} \mathsf{Example}\\ \mathsf{Objective functions:} \left\{y, x+y\right\}\end{array}$

Phase 2: Check if \mathcal{Y} is unbounded

Phase 2: Check if \mathcal{Y} is unbounded

Pick point p_1 Find point p'_1 s.t.

 \mathcal{Y}

- increases value of ${\it Y}$
- sits on the <u>same</u> boundaries

Phase 2: Check if \mathcal{Y} is unbounded

Pick point P_1 Find point p'_1 s.t.

 \boldsymbol{y}

- increases value of ${\it Y}$
- sits on the <u>same</u> boundaries

Find point P₂ s.t.

- increases value of ${\it Y}$
- sits on <u>more</u> boundaries

Phase 2: Check if \mathcal{Y} is unbounded

Pick point P_1 Find point p'_1 s.t.

 \boldsymbol{y}

- increases value of ${\it Y}$
- sits on the <u>same</u> boundaries

Find point P₂ s.t.

- increases value of ${m y}$
- sits on <u>more</u> boundaries

Example Objective functions: $\{y, x + y\}$

Phase I: Grow under-approximation

Example Objective functions: $\{y, x + y\}$

Example Objective functions: $\{y, x + y\}$

Phase I: Grow under-approximation \mathcal{Y} New under-approx: **p**₃ 3 p₂ $y \leq 3 \land$ 2 $x + y \leq 8$ 1 ${\mathcal X}$ 8 5 0 2 3 7 1 4 6

Example

Objective functions: $\{y, x + y\}$

Phase 2: Check if x + y is unbounded

Example

Objective functions: $\{y, x + y\}$

Phase 2: Check if x + y is unbounded

Example

Objective functions: $\{y, x + y\}$

Phase 2: Check if x + y is unbounded

Symba in a Nutshell

Alternate between two phases

- Sampling: grow under-approximation
- Check if objective function is unbounded

Symba in a Nutshell

Alternate between two phases

- Sampling: grow under-approximation
- Check if objective function is unbounded

Fair alternation ensures completeness

Symba in a Nutshell

Alternate between two phases

- Sampling: grow under-approximation
- Check if objective function is unbounded

Fair alternation ensures completeness

Algorithm also maintains an <u>over-approx</u>

• See paper

Arrange infinitely many models into finitely many <u>boundary classes</u>

Arrange infinitely many models into finitely many boundary classes

No boundaries Find p_1, p_2 in same boundary class s.t. $f(p_1) < f(p_2)$ no p_3 exists in stronger boundary class where $f(p_3) \ge f(p_2)$ All boundaries

Arrange infinitely many models into finitely many boundary classes

Find p_1, p_2 in same boundary class s.t. $f(p_1) < f(p_2)$

no p_3 exists in stronger boundary class where $f(p_3) \ge f(p_2)$

Necessary and sufficient condition to prove unboundedness of f

Arrange infinitely many models into finitely many boundary classes

Find p_1, p_2 in same boundary class s.t. $f(p_1) < f(p_2)$

no p_3 exists in stronger boundary class where $f(p_3) \ge f(p_2)$

 $\frac{Necessary\ and\ sufficient\ condition}{to\ prove\ unboundedness\ of\ f}$

Symba searches through lattice of classes!

Arrange infinitely many models into finitely many boundary classes

Find p_1, p_2 in same boundary class s.t. $f(p_1) < f(p_2)$

no p_3 exists in stronger boundary class where $f(p_3) \ge f(p_2)$

 $\frac{\text{Necessary and sufficient condition}}{\text{to prove unboundedness of }f}$

Symba searches through lattice of classes!

Arrange infinitely many models into finitely many boundary classes

Find p_1, p_2 in same boundary class s.t. $f(p_1) < f(p_2)$

no p_3 exists in stronger boundary class where $f(p_3) \ge f(p_2)$

 $\frac{\text{Necessary and sufficient condition}}{\text{to prove unboundedness of }f}$

Symba searches through lattice of classes!

Arrange infinitely many models into finitely many boundary classes

No boundaries Find p_1, p_2 in same boundary class s.t. $f(p_1) < f(p_2)$ no p_3 exists in stronger boundary class where $f(p_3) \ge f(p_2)$ Necessary and sufficient condition to prove unboundedness of fSymba searches through lattice of classes! All boundaries

Implemented Symba using Z3

Application: Computing *precise abstract transformers*:

- TCM domains (intervals, octagons, etc.) [Sankaranarayanan et al.,VMCAI'05]
- Complex transition relations (multiple paths)

Implemented Symba using Z3

Application: Computing *precise abstract transformers*:

- TCM domains (intervals, octagons, etc.) [Sankaranarayanan et al.,VMCAI'05]
- Complex transition relations (multiple paths)

S / Initial states

Implemented Symba using Z3

Application: Computing *precise abstract transformers*:

- TCM domains (intervals, octagons, etc.) [Sankaranarayanan et al.,VMCAI'05]
- Complex transition relations (multiple paths)

Implemented Symba using Z3

Application: Computing *precise abstract transformers*:

- TCM domains (intervals, octagons, etc.) [Sankaranarayanan et al.,VMCAI'05]
- Complex transition relations (multiple paths)

Implemented Symba using Z3

Application: Computing *precise abstract transformers*:

- TCM domains (intervals, octagons, etc.) [Sankaranarayanan et al.,VMCAI'05]
- Complex transition relations (multiple paths)

Objective functions:

Intervals domain: $\{x, -x, \ldots\}$

Implemented Symba using Z3

Application: Computing *precise abstract transformers*:

- TCM domains (intervals, octagons, etc.) [Sankaranarayanan et al.,VMCAI'05]
- Complex transition relations (multiple paths)

Objective functions:

Instrumented UFO [CAV'12] to generate abstract post queries from SV-COMP programs

- Took the ~1000 hardest benchmarks
- Average # of variables: ~900 (max: ~19,000)
- Average # of objective functions: 56 (max: 386)

Compared w/ OptMathSAT [Sebastiani & Tomasi IJCAR'12]

- Modifies SIMPLEX within SMT solver to find a local optimum
- Handles a single objective function at a time

Compared w/ OptMathSAT [Sebastiani & Tomasi IJCAR'12]

- Modifies SIMPLEX within SMT solver to find a local optimum
- Handles a single objective function at a time

Compared w/ OptMathSAT [Sebastiani & Tomasi IJCAR'12]

- Modifies SIMPLEX within SMT solver to find a local optimum
- Handles a single objective function at a time

Implemented [Sebastiani & Tomasi, IJCAR'12] within Z3

• Extended it to optimize multiple objectives simultaneously

Implemented [Sebastiani & Tomasi, IJCAR'12] within Z3

• Extended it to optimize multiple objectives simultaneously

Optimized Symba

- Spends 40% of the time (at most) performing unbounded checks
- Uses a modified, "locally optimal" Z3 for growing under-approx

Optimized Symba

- Spends 40% of the time (at most) performing unbounded checks
- Uses a modified, "locally optimal" Z3 for growing under-approx

Time in s / benchmark

Optimized Symba

- Spends 40% of the time (at most) performing unbounded checks
- Uses a modified, "locally optimal" Z3 for growing under-approx

Time in s / benchmark

I.5x speedup over OptMathSAT(Z3) No timeouts Best Symba config. (see paper for more)

Conclusion

<u>Symba</u>: non-convex optimization

- Efficient SMT-based implementation
- Many applications in program analysis and beyond

Future work

- Integer arithmetic
- Non-linear arithmetic
- Parallelization

Conclusion

bitbucket.org/arieg/ufo

<u>Symba</u>: non-convex optimization

- Efficient SMT-based implementation
- Many applications in program analysis and beyond

Future work

- Integer arithmetic
- Non-linear arithmetic
- Parallelization