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SMT Explosion!

SMT solvers appear everywhere.VWhy?

* Amazing performance!

* Support a large range of logical theories

* We've become really good at casting problems as
SMT queries!



SMT Applications

Verification

* Checking VCs, invariant generation, etc.
Bug finding

* Symbolic execution, BMC, fuzzing, etc.

Synthesis

* Circuit synthesis, sketching, superoptimization, etc.

Functional programming
* Liquid types
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How are SMT Solvers Used?

Finding models

* Bug finding: erroneous traces

* Synthesis: program/circuit

Proving unsatisfiability (validity)
* Verification:VC holds

* Refinement types: subtyping relation holds



How are SMT Solvers Used?

What about
optimization?



Optimal Models

solver




Optimal Models

solver

Optimizing
O, f—» SMT |—»
solver




Optimal Models

solver

Optimizing
L, f—> SMT | —>
solver IN1axX f(TTL)




Why Should You Care!

Plenty of applications for optimization:
* Numerical invariant generation
* Counterexample generation
* Program synthesis
* Constraint programming

* ...and many others
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Problem Statement

o €eTULRA

sighature disjoint

Eg. 3CC—|—2y§O\/
z >3

Set of linear objective functions: fl, Cee s fn

Eg: X —+ 2y, Z

Goal: find assignments 1701, ..., 1My

m1 = ¢ s.t. max f1(mq)

mn = ¢ s.t. max f,(m,)
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Problem Statement
peTULRA

Set of linear objective functions: fl, Cee s fn

Find strongest

/\ Ji < k;

1€[1,n]
that contains ¥




Challenges & Contributions

Symba: an SM1-based optimization
algorithm

* Non-convex optimization
e | inear arithmetic modulo theories

* Multiple independent objectives
* SMT solver as a black box



Qutline

Symba by example
Application and evaluation

What’s next?
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Example
Objective functions: {y, T + y}
Under-approximation of optimal solution: f alse

Phase |: Grow under-approximation

Y
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Example
Objective functions: {y, T 1 y}

Phase 2: Check if Y is unbounded

13



Example

Phase 2: Check if Y is unbounded

Pick point P1

o ) /
Find point P; s.t.
* increases value of U
Y e sits on the same boundaries

:.pl . . . .
B P N




Example

Phase 2: Check if Y is unbounded

Pick point P1
Find point o

* increases value of

Find point P2 s.t.
S.t. * increases value of
* sits on more boundaries

Y e sits on the same boundaries
ep] |
. ..p]_ R P ........
I 2 3 4 5 6 7 38

|4



Example

Phase 2: Check if Y is unbounded

Pick point P1

. ] /
Find point P; s.t.
* increases value of

Find point P2 s.t.
* increases value of
* sits on more boundaries

J e sits on the same boundaries
Ny (Y |
7SR R R S
I 2 3 4 5 6 71 8

|4



Example
Phase 2: Check if Y is unbounded

Pick point P1 Find point P2 s.t.
Find point p/1 S.t. * increases value of
e increases value of U * sits on more boundaries

J e sits on the same boundaries

p2 .

New under-approx:

Yy <3 A

2 3 7 s s 7 0 T+t y<0
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Example

Objective functions: {y, T+ y}

Phase |: Grow under-approximation
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Example

Objective functions: {y, T+ y}
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Example

Objective functions: {y, T+ y}

Phase 2: Check if * =+ 1/ is unbounded

Y
P3
3 . P2 - - ——eee
- Mp1 ﬁ ﬁ ﬁ ﬁ
2 . € s e ........ .
1 ﬁ ﬁ
0 1 2 3 4 5 6 7 8
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Example
Objective functions: {y, T + y}
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Y Can keep increasing without hitting a boundary




Example

Objective functions: {y, T + y}
Phase 2: Check if * =+ 1/ is unbounded

Y Can keep increasing without hitting a boundary

3 . P2 - A N

L« | Optimalsoluton
0 1 2 3 45 6 7 8 vz T Y S S
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Symba in a Nutshell

Alternate between two phases
* Sampling: grow under-approximation

* Check if objective function is unbounded
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Symba in a Nutshell

Alternate between two phases
* Sampling: grow under-approximation

* Check if objective function is unbounded
Fair alternation ensures completeness

Algorithm also maintains an over-approx

* See paper
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Symba Abstractly

Arrange infinitely many models into finitely many boundary classes

No boundaries

Vavy

' All boundaries
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Application

Implemented Symba using Z3

Application: Computing precise abstract transformers:

* TCM domains (intervals, octagons, etc.)
[Sankaranarayanan et al., VMCAI‘05]

* Complex transition relations (multiple paths)
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Application

Implemented Symba using Z3

Application: Computing precise abstract transformers:

* TCM domains (intervals, octagons, etc.)
[Sankaranarayanan et al., VMCAI‘05]

* Complex transition relations (multiple paths)

Objective functions:
SNT

/ Intervals domain:
Initial states Transition {337 _'CE7 °c }
relation (mUItIPIe PathS) Octagons domain:

lr+y,...}
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Evaluation

Instrumented UFO [cAv'i2] to generate
abstract post queries from SV-COMP
programs

* Jook the ~1000 hardest benchmarks
* Average # of variables: ~900 (max: ~19,000)

* Average # of objective functions: 56 (max: 386)
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Evaluation

Compared w/ OptMathSAT [Sebastiani & Tomasi |JCAR’12]
* Modifies SIMPLEX within SMT solver to find a local optimum

* Handles a single objective function at a time

21



Evaluation

Compared w/ OptMathSAT [Sebastiani & Tomasi |JCAR’12]
* Modifies SIMPLEX within SMT solver to find a local optimum

* Handles a single objective function at a time

100

Time in s /| benchmark

4

OptMathSAT |

0.1

0.1 100

Symba ( vanlilla)



100

OptMathSAT |

0.1

Evaluation

Compared w/ OptMathSAT [Sebastiani & Tomasi |JCAR’12]
* Modifies SIMPLEX within SMT solver to find a local optimum

* Handles a single objective function at a time

Time in s /| benchmark

4

0.1

Symba ( vanlilla)

100

Symba outperforms
OptMathSAT

Average speedup: 2.2x
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Evaluation

Implemented [Sebastiani & Tomasi, [|CAR’12] within Z3
* Extended it to optimize multiple objectives simultaneously
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Evaluation

Implemented [Sebastiani & Tomasi, [|CAR’12] within Z3
* Extended it to optimize multiple objectives simultaneously

Time in s /| benchmark

snkoac

0.1

Symba (vanilla)

100

Symba consistently
slower than

OptMathSAT(Z3)
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Evaluation

Optimized Symba
* Spends 40% of the time (at most) performing unbounded checks

* Uses a modified, “locally optimal” Z3 for growing under-approx
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Evaluation

Optimized Symba
* Spends 40% of the time (at most) performing unbounded checks

* Uses a modified, “locally optimal” Z3 for growing under-approx

Time in s /| benchmark

100

S |.5x speedup over
Our | | OptMathSAT(Z3)
OptMathSAT A |
(in Z3) kE No timeouts
| | Best Symba config.
(see paper for more)

0.1

0.1 100

Symba (optimized)
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Conclusion

Symba: non-convex optimization

* Efficient SMT-based implementation

* Many applications in program analysis and beyond

Future work
* Integer arithmetic
* Non-linear arithmetic

e Parallelization

24



Conclusion

bitbucket.org/arieg/ufo

Symba: non-convex optimization

* Efficient SMT-based implementation

* Many applications in program analysis and beyond
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