Symbolic Optimization with SMT Solvers

Aws Albarghouthi / UToronto Marsha Chechik / UToronto Arie Gurfinkel / CMU Zachary Kincaid / UToronto Yi Li / UToronto

POPL 2014 / San Diego, CA

SMT Explosion!

SMT solvers appear everywhere. Why?

- *• Amazing performance!*
- *• Support a large range of logical theories*
- *• We've become really good at casting problems as SMT queries!*

SMT Applications

Verification

• Checking VCs, invariant generation, etc.

Bug finding

• Symbolic execution, BMC, fuzzing, etc.

Synthesis

• Circuit synthesis, sketching, superoptimization, etc.

Functional programming

• Liquid types

SMT Applications

Verification

• Checking VCs, invariant generation, etc.

Bug finding

• Symbolic execution, BMC, fuzzing, etc.

Synthesis

• Circuit synthesis, sketching, superoptimization, etc.

Functional programming

• Liquid types

~22% of POPL'14 papers mention SMT solvers!

How are SMT Solvers Used?

Finding models

- *• Bug finding: erroneous traces*
- *• Synthesis: program/circuit*

Proving unsatisfiability (validity)

- *• Verification: VC holds*
- *• Refinement types: subtyping relation holds*

How are SMT Solvers Used?

• Bug finding: erroneous traces What about proving university *• Verification: VC holds optimization?*

• Refinement types: subtyping relation holds

Why Should You Care?

Plenty of applications for optimization:

- *• Numerical invariant generation*
- *• Counterexample generation*
- *• Program synthesis*
- *• Constraint programming*
- *• ... and many others*

Problem Statement

 $\varphi \in \mathcal{T} \cup \mathcal{LRA}$ *signature disjoint*

Problem Statement $\varphi \in I$ \cup LKA *signature disjoint* $z \geq 3$ *E.g.*: $3x + 2y \le 0$ V

Problem Statement	
$\varphi \in \mathcal{T} \cup \mathcal{LRA}$	$E.g.: 3x + 2y \leq 0 \vee$
$z \geq 3$	
Set of linear objective functions: f_1, \ldots, f_n	
$E.g.: x + 2y, z$	
Goal: find assignments m_1, \ldots, m_n	
$m_1 \models \varphi \ s.t. \ \text{max } f_1(m_1)$	
\ldots	
$m_n \models \varphi \ s.t. \ \text{max } f_n(m_n)$	

$\varphi \in \mathcal{T} \cup \mathcal{LRA}$ Set of linear *objective functions:* f_1, \ldots, f_n Problem Statement

$\varphi \in \mathcal{T} \cup \mathcal{LRA}$ Set of linear *objective functions:* f_1, \ldots, f_n Problem Statement

$\varphi \in \mathcal{T} \cup \mathcal{LRA}$ Set of linear *objective functions:* f_1, \ldots, f_n Problem Statement

Challenges & Contributions

Symba: an SMT-based optimization algorithm

- *• Non-convex optimization*
- *• Linear arithmetic modulo theories*
- *• Multiple independent objectives*
- *• SMT solver as a black box*

Outline

Symba by example

Application and evaluation

What's next?

Objective functions:{y, x + *y} Under-approximation of optimal solution: false* Example

Objective functions:{y, x + *y}*

Under-approximation of optimal solution: false

Objective functions:{y, x + *y}*

Under-approximation of optimal solution: false

Objective functions:{y, x + *y} Under-approximation of optimal solution: false* Example

Phase 2: Check if y is unbounded

Phase 2: Check if y *is unbounded*

Pick point P1 Find point P_1' s.t.

y

- *• increases value of y*
- *• sits on the same boundaries*

Phase 2: Check if y **is unbounded**

Pick point P1 Find point P_1' s.t.

y

- *• increases value of y*
- *• sits on the same boundaries*

P1 Find point P2 s.t.

- *• increases value of y*
- *• sits on more boundaries*

Phase 2: Check if y *is unbounded*

Pick point P1 Find point P_1' s.t.

y

- *• increases value of y*
- *• sits on the same boundaries*

P1 Find point P2 s.t.

- *• increases value of y*
- *• sits on more boundaries*

Phase 1: Grow under-approximation

Objective functions:{y, x + *y}*

Phase 2: Check if $x + y$ *is unbounded*

Objective functions:{y, x + *y}*

Phase 2: Check if $x + y$ *is unbounded*

Objective functions:{y, x + *y}*

Phase 2: Check if $x + y$ *is unbounded*

Symba in a Nutshell

Alternate between two phases

- *• Sampling: grow under-approximation*
- *• Check if objective function is unbounded*

Symba in a Nutshell

Alternate between two phases

- *• Sampling: grow under-approximation*
- *• Check if objective function is unbounded*

Fair alternation ensures completeness

Symba in a Nutshell

Alternate between two phases

- *• Sampling: grow under-approximation*
- *• Check if objective function is unbounded*

Fair alternation ensures completeness

Algorithm also maintains an *over-approx*

• See paper

Arrange infinitely many models into finitely many boundary classes

Arrange infinitely many models into finitely many boundary classes

..... *No boundaries All boundaries Find* p_1, p_2 *in same boundary class s.t. no* p_3 *exists in stronger boundary class where* $f(p_3) \ge f(p_2)$ $f(p_1) < f(p_2)$

Arrange infinitely many models into finitely many boundary classes

Find p_1, p_2 *in same boundary class s.t.* $f(p_1) < f(p_2)$

no p_3 *exists in stronger boundary class where* $f(p_3) \ge f(p_2)$

Necessary and sufficient condition to prove unboundedness of f

Arrange infinitely many models into finitely many boundary classes

Find p_1, p_2 *in same boundary class s.t.* $f(p_1) < f(p_2)$

no p_3 *exists in stronger boundary class where* $f(p_3) \ge f(p_2)$

Necessary and sufficient condition to prove unboundedness of f

Symba searches through lattice of classes!

Arrange infinitely many models into finitely many boundary classes

Find p_1, p_2 *in same boundary class s.t.* $f(p_1) < f(p_2)$

no p_3 *exists in stronger boundary class where* $f(p_3) \ge f(p_2)$

Necessary and sufficient condition to prove unboundedness of f

Symba searches through lattice of classes!

Arrange infinitely many models into finitely many boundary classes

Find p_1, p_2 *in same boundary class s.t.* $f(p_1) < f(p_2)$

no p_3 *exists in stronger boundary class where* $f(p_3) \ge f(p_2)$

Necessary and sufficient condition to prove unboundedness of f

Symba searches through lattice of classes!

Arrange infinitely many models into finitely many boundary classes

..... *No boundaries All boundaries* Symba searches through lattice of classes! *Find* p_1, p_2 *in same boundary class s.t. no* p_3 *exists in stronger boundary class where* $f(p_3) \ge f(p_2)$ $f(p_1) < f(p_2)$ *Necessary and sufficient condition to prove unboundedness of f*

Implemented Symba using Z3

Application: Computing *precise abstract transformers*:

- *TCM domains (intervals, octagons, etc.)* [Sankaranarayanan et al., VMCAI'05]
- *Complex transition relations (multiple paths)*

Implemented Symba using Z3

Application: Computing *precise abstract transformers*:

- *TCM domains (intervals, octagons, etc.)* [Sankaranarayanan et al., VMCAI'05]
- *Complex transition relations (multiple paths)*

S Initial states

Implemented Symba using Z3

Application: Computing *precise abstract transformers*:

- *TCM domains (intervals, octagons, etc.)* [Sankaranarayanan et al., VMCAI'05]
- *Complex transition relations (multiple paths)*

Implemented Symba using Z3

Application: Computing *precise abstract transformers*:

- *TCM domains (intervals, octagons, etc.)* [Sankaranarayanan et al., VMCAI'05]
- *Complex transition relations (multiple paths)*

Implemented Symba using Z3

Application: Computing *precise abstract transformers*:

- *TCM domains (intervals, octagons, etc.)* [Sankaranarayanan et al., VMCAI'05]
- *Complex transition relations (multiple paths)*

Objective functions:

Intervals domain: {x, x, . . .}

Implemented Symba using Z3

Application: Computing *precise abstract transformers*:

- *TCM domains (intervals, octagons, etc.)* [Sankaranarayanan et al., VMCAI'05]
- *Complex transition relations (multiple paths)*

Objective functions:

Instrumented UFO [CAV'12] to generate abstract post queries from SV-COMP programs

- *• Took the ~1000 hardest benchmarks*
- *• Average # of variables: ~900 (max: ~19,000)*
- *• Average # of objective functions: 56 (max: 386)*

Compared w/ OptMathSAT [Sebastiani & Tomasi IJCAR'12]

- *• Modifies SIMPLEX within SMT solver to find a local optimum*
- *• Handles a single objective function at a time*

Compared w/ OptMathSAT [Sebastiani & Tomasi IJCAR'12]

- *• Modifies SIMPLEX within SMT solver to find a local optimum*
- *• Handles a single objective function at a time*

Compared w/ OptMathSAT [Sebastiani & Tomasi IJCAR'12]

- *• Modifies SIMPLEX within SMT solver to find a local optimum*
- *• Handles a single objective function at a time*

Implemented [Sebastiani & Tomasi, IJCAR'12] within Z3

• Extended it to optimize multiple objectives simultaneously

Implemented [Sebastiani & Tomasi, IJCAR'12] within Z3

• Extended it to optimize multiple objectives simultaneously

Optimized Symba

- *• Spends 40% of the time (at most) performing unbounded checks*
- *• Uses a modified, "locally optimal" Z3 for growing under-approx*

Optimized Symba

- *• Spends 40% of the time (at most) performing unbounded checks*
- *• Uses a modified, "locally optimal" Z3 for growing under-approx*

Time in s / benchmark

Optimized Symba

- *• Spends 40% of the time (at most) performing unbounded checks*
- *• Uses a modified, "locally optimal" Z3 for growing under-approx*

Time in s / benchmark

Conclusion

Symba: non-convex optimization

- *• Efficient SMT-based implementation*
- *• Many applications in program analysis and beyond*

Future work

- *• Integer arithmetic*
- *• Non-linear arithmetic*
- *• Parallelization*

Conclusion

bitbucket.org/arieg/ufo

Symba: non-convex optimization

- *• Efficient SMT-based implementation*
- *• Many applications in program analysis and beyond*

Future work

- *• Integer arithmetic*
- *• Non-linear arithmetic*
- *• Parallelization*