Symbolic Optimization
with SMT Solvers

Aws Albarghouthi / UToronto
Marsha Chechik / UToronto
Arie Gurfinkel / CMU

Zachary Kincaid / UToronto
Yi Li / Uloronto

POPL 2014 / San Diego, CA

SMT Explosion!

SMT solvers appear everywhere.VWhy?

* Amazing performance!

* Support a large range of logical theories

* We've become really good at casting problems as
SMT queries!

SMT Applications

Verification

* Checking VCs, invariant generation, etc.
Bug finding

* Symbolic execution, BMC, fuzzing, etc.

Synthesis

* Circuit synthesis, sketching, superoptimization, etc.

Functional programming
* Liquid types

SMT Applications

Verification

* Checking VCs, invariant generation, etc.
Bug finding

* Symbolic execution, BMC, fuzzing, etc.

Synthesis

* Circuit synthesis, sketching, superoptimization, etc.

Functional programming
* Liquid types

~22% of POPL’ 14 papers mention SMT solvers!

How are SMT Solvers Used?

Finding models

* Bug finding: erroneous traces

* Synthesis: program/circuit

Proving unsatisfiability (validity)
* Verification:VC holds

* Refinement types: subtyping relation holds

How are SMT Solvers Used?

What about
optimization?

Optimal Models

solver

Optimal Models

solver

Optimizing
O, f—» SMT |—»
solver

Optimal Models

solver

Optimizing
L, f—> SMT | —>
solver IN1axX f(TTL)

Why Should You Care!

Plenty of applications for optimization:
* Numerical invariant generation
* Counterexample generation
* Program synthesis
* Constraint programming

* ...and many others

Problem Statement
peTULRA

sighature disjoint

Problem Statement

QOGTUERA E.g.:3CC—|—2y§O\/
z >3

sighature disjoint

Problem Statement

QOGTUER.A Eg: dx + 2y <0 V
z >3

sighature disjoint

Set of linear objective functions: fl, Cee s fn

Eg: I + 2y, Z

Problem Statement

o €eTULRA

sighature disjoint

Eg. 3CC—|—2y§O\/
z >3

Set of linear objective functions: fl, Cee s fn

Eg: X —+ 2y, Z

Goal: find assignments 1701, ..., 1My

m1 = ¢ s.t. max f1(mq)

mn = ¢ s.t. max f,(m,)

Problem Statement
peTULRA

Set of linear objective functions: fl, Cee fn

Problem Statement
peTULRA

Set of linear objective functions: fl, Cee s fn

¢'m

Problem Statement
peTULRA

Set of linear objective functions: fl, Cee s fn

hsk —
M

fo < ko

Problem Statement
peTULRA

Set of linear objective functions: fl, Cee s fn

Problem Statement
peTULRA

Set of linear objective functions: fl, Cee s fn

Find strongest

/\ Ji < k;

1€[1,n]
that contains ¥

Challenges & Contributions

Symba: an SM1-based optimization
algorithm

* Non-convex optimization
e | inear arithmetic modulo theories

* Multiple independent objectives
* SMT solver as a black box

Qutline

Symba by example
Application and evaluation

What’s next?

|10

Example

p=1<y<3N(1<x<3Var>4)
Objective functions: {y, r T Y }

Example

p=1<y<3AN1<xr<3Vzx>4)
Objective functions: {y, r T Y }

Y

Example

p=1<y<3AN1<xr<3Vzx>4)
Objective functions: {y, r T Y }

Y

Optimal Solution:

Example

p=1<y<3N(1<x<3Vzx>4)
Objective functions: {y, r T Y }

Y

Optimal Solution:

Example
Objective functions: {y, X 1 y}

Under-approximation of optimal solution: f alse

12

Example
Objective functions: {y, X 1 y}

Under-approximation of optimal solution: f alse

Phase |: Grow under-approximation

12

Example
Objective functions: {y, X 1 y}

Under-approximation of optimal solution: f alse

Phase |: Grow under-approximation

12

Example
Objective functions: {y, T + y}
Under-approximation of optimal solution: f alse

Phase |: Grow under-approximation

Y

New under-approx:
3 .
AU TR~ O RS Yy < 2N
1 1 r+y<4
0 1 2 3 4 5 6 7 8 N

12

Example
Objective functions: {y, T 1 y}

Phase 2: Check if Y is unbounded

13

Example

Phase 2: Check if Y is unbounded

Pick point P1

o) /
Find point P; s.t.
* increases value of U
Y e sits on the same boundaries

:.pl
B P N

Example

Phase 2: Check if Y is unbounded

Pick point P1
Find point o

* increases value of

Find point P2 s.t.
S.t. * increases value of
* sits on more boundaries

Y e sits on the same boundaries
ep] |
. ..p]_ R P
I 2 3 4 5 6 7 38

|4

Example

Phase 2: Check if Y is unbounded

Pick point P1

.] /
Find point P; s.t.
* increases value of

Find point P2 s.t.
* increases value of
* sits on more boundaries

J e sits on the same boundaries
Ny (Y |
7SR R R S
I 2 3 4 5 6 71 8

|4

Example
Phase 2: Check if Y is unbounded

Pick point P1 Find point P2 s.t.
Find point p/1 S.t. * increases value of
e increases value of U * sits on more boundaries

J e sits on the same boundaries

p2 .

New under-approx:

Yy <3 A

2 3 7 s s 7 0 T+t y<0

|4

Example

Objective functions: {y, T+ y}

Phase |: Grow under-approximation

Y
Y (Y |
2 . g e
1 Z Z
0] 1 2 3 4 5 6 7 8

|5

Example

Objective functions: {y, T+ y}

Phase |: Grow under-approximation

Y
3 : .p.2 - p,3 .
- b1 ' i
2 . e I e
1 ﬁ ﬁ
0) 1 2 3 4 5 6 7 3

|5

Example

Objective functions: {y, T+ y}

Phase |: Grow under-approximation

Y
3 : .p.2 A p’3 -
- 2p1 : :
2 - I O
1 ﬁ ﬁ
0 1 2 3 4 5 6 7 8

New under-approx:

y <3N
r+y<3

|5

Example

Objective functions: {y, T+ y}

Phase 2: Check if * =+ 1/ is unbounded

Y
P3
3 . P2 - - ——eee
- Mp1 ﬁ ﬁ ﬁ ﬁ
2 . € s e
1 ﬁ ﬁ
0 1 2 3 4 5 6 7 8

|6

Example
Objective functions: {y, T + y}
Phase 2: Check if * =+ 1/ is unbounded

Y Can keep increasing without hitting a boundary

Example

Objective functions: {y, T + y}
Phase 2: Check if * =+ 1/ is unbounded

Y Can keep increasing without hitting a boundary

3 . P2 - A N

L« | Optimalsoluton
0 1 2 3 45 6 7 8 vz T Y S S

|6

Symba in a Nutshell

Alternate between two phases
* Sampling: grow under-approximation

* Check if objective function is unbounded

|7

Symba in a Nutshell

Alternate between two phases
* Sampling: grow under-approximation

* Check if objective function is unbounded

Fair alternation ensures completeness

|7

Symba in a Nutshell

Alternate between two phases
* Sampling: grow under-approximation

* Check if objective function is unbounded
Fair alternation ensures completeness

Algorithm also maintains an over-approx

* See paper

|7

Symba Abstractly

Arrange infinitely many models into finitely many boundary classes

No boundaries

Vavy

' All boundaries

18

Symba Abstractly

Arrange infinitely many models into finitely many boundary classes

No boundaries

Find P1,P2 in same boundary class s.t.

f(p1) < f(p2)

no D3 exists in stronger boundary
class where f(ps) = [(p2)

‘ All boundaries

18

Symba Abstractly

Arrange infinitely many models into finitely many boundary classes

No boundaries

Find P1,P2 in same boundary class s.t.

f(p1) < f(p2)

no D3 exists in stronger boundary
class where f(ps) = [(p2)

Necessary and sufficient condition @ ... ‘
to prove unboundedness of f

‘ All boundaries

18

Symba Abstractly

Arrange infinitely many models into finitely many boundary classes

‘ No boundaries
o

Find P1,P2 in same boundary class s.t.

f(p1) < f(p2)

no D3 exists in stronger boundary
class where f(ps) = [(p2)

Necessary and sufficient condition
to prove unboundedness of f

Symba searches through \ /

lattice of classes! AII boundaries

18

Symba Abstractly

Arrange infinitely many models into finitely many boundary classes

No boundaries

Find P1,P2 in same boundary class s.t.

f(p1) < f(p2)

no D3 exists in stronger boundary
class where f(ps) = [(p2)

Necessary and sufficient condition
to prove unboundedness of f

Symba searches through \ /

lattice of classes! AII boundaries

18

Symba Abstractly

Arrange infinitely many models into finitely many boundary classes

No boundaries

Find P1,P2 in same boundary class s.t.

f(p1) < f(p2)

no D3 exists in stronger boundary
class where f(ps) = [(p2)

Necessary and sufficient condition
to prove unboundedness of f

Symba searches through \ /

lattice of classes! AII boundaries

18

Symba Abstractly

Arrange infinitely many models into finitely many boundary classes

No boundaries

Find P1,P2 in same boundary class s.t.

f(p1) < f(p2)

no D3 exists in stronger boundary
class where f(ps) = [(p2)

Necessary and sufficient condition (@) ... ‘ ,,,,,
to prove unboundedness of f

Symba searches through \ /

lattice of classes! AII boundaries

18

Application

Implemented Symba using Z3

Application: Computing precise abstract transformers:

* TCM domains (intervals, octagons, etc.)
[Sankaranarayanan et al., VMCAI‘05]

* Complex transition relations (multiple paths)

19

Application

Implemented Symba using Z3

Application: Computing precise abstract transformers:

* TCM domains (intervals, octagons, etc.)
[Sankaranarayanan et al., VMCAI‘05]

* Complex transition relations (multiple paths)

S
/

Initial states

19

Application

Implemented Symba using Z3

Application: Computing precise abstract transformers:

* TCM domains (intervals, octagons, etc.)
[Sankaranarayanan et al., VMCAI‘05]

* Complex transition relations (multiple paths)

S T
/

Initial states Transition

relation (multiple paths)

19

Application

Implemented Symba using Z3

Application: Computing precise abstract transformers:

* TCM domains (intervals, octagons, etc.)
[Sankaranarayanan et al., VMCAI‘05]

* Complex transition relations (multiple paths)

SNT
/

Initial states Transition

relation (multiple paths)

19

Application

Implemented Symba using Z3

Application: Computing precise abstract transformers:

* TCM domains (intervals, octagons, etc.)
[Sankaranarayanan et al., VMCAI‘05]

* Complex transition relations (multiple paths)

Objective functions:
SNT

/ Intervals domain:

{x,—x,...}

Initial states Transition

relation (multiple paths)

19

Application

Implemented Symba using Z3

Application: Computing precise abstract transformers:

* TCM domains (intervals, octagons, etc.)
[Sankaranarayanan et al., VMCAI‘05]

* Complex transition relations (multiple paths)

Objective functions:
SNT

/ Intervals domain:
Initial states Transition {337 _'CE7 °c }
relation (mUItIPIe PathS) Octagons domain:

lr+y,...}

19

Evaluation

Instrumented UFO [cAv'i2] to generate
abstract post queries from SV-COMP
programs

* Jook the ~1000 hardest benchmarks
* Average # of variables: ~900 (max: ~19,000)

* Average # of objective functions: 56 (max: 386)

20

Evaluation

Compared w/ OptMathSAT [Sebastiani & Tomasi |JCAR’12]
* Modifies SIMPLEX within SMT solver to find a local optimum

* Handles a single objective function at a time

21

Evaluation

Compared w/ OptMathSAT [Sebastiani & Tomasi |JCAR’12]
* Modifies SIMPLEX within SMT solver to find a local optimum

* Handles a single objective function at a time

100

Time in s /| benchmark

4

OptMathSAT |

0.1

0.1 100

Symba (vanlilla)

100

OptMathSAT |

0.1

Evaluation

Compared w/ OptMathSAT [Sebastiani & Tomasi |JCAR’12]
* Modifies SIMPLEX within SMT solver to find a local optimum

* Handles a single objective function at a time

Time in s /| benchmark

4

0.1

Symba (vanlilla)

100

Symba outperforms
OptMathSAT

Average speedup: 2.2x

21

Evaluation

Implemented [Sebastiani & Tomasi, [|CAR’12] within Z3
* Extended it to optimize multiple objectives simultaneously

100

Our

OptMathSAT |

(in Z3)

0.1

Time in s /| benchmark

0.1

100

Symba (vanilla)

22

100

Our ol

OptMathSAT
(in Z3)

0.1

Evaluation

Implemented [Sebastiani & Tomasi, [|CAR’12] within Z3
* Extended it to optimize multiple objectives simultaneously

Time in s /| benchmark

snkoac

0.1

Symba (vanilla)

100

Symba consistently
slower than

OptMathSAT(Z3)

22

Evaluation

Optimized Symba
* Spends 40% of the time (at most) performing unbounded checks

* Uses a modified, “locally optimal” Z3 for growing under-approx

23

Evaluation

Optimized Symba
* Spends 40% of the time (at most) performing unbounded checks

* Uses a modified, “locally optimal” Z3 for growing under-approx

Time in s /| benchmark

100

------- 4xx
Our ol e
OptMathSAT ey
(in Z3) s

0.1

0.1 100

Symba (optimized)

Evaluation

Optimized Symba
* Spends 40% of the time (at most) performing unbounded checks

* Uses a modified, “locally optimal” Z3 for growing under-approx

Time in s /| benchmark

100

S |.5x speedup over
Our | | OptMathSAT(Z3)
OptMathSAT A |
(in Z3) kE No timeouts
| | Best Symba config.
(see paper for more)

0.1

0.1 100

Symba (optimized)

23

Conclusion

Symba: non-convex optimization

* Efficient SMT-based implementation

* Many applications in program analysis and beyond

Future work
* Integer arithmetic
* Non-linear arithmetic

e Parallelization

24

Conclusion

bitbucket.org/arieg/ufo

Symba: non-convex optimization

* Efficient SMT-based implementation

* Many applications in program analysis and beyond

Future work
* Integer arithmetic
* Non-linear arithmetic

e Parallelization

24

