
FHistorian: Locating Features in Version Histories

Yi Li
University of Toronto
liyi@cs.toronto.edu

Chenguang Zhu
University of Toronto
czhu@cs.toronto.edu

Julia Rubin
University of British Columbia

julia.rubin@ubc.ca

Marsha Chechik
University of Toronto
chechik@cs.toronto.edu

ABSTRACT

Feature location techniques aim to locate software artifacts that

implement a speciic program functionality, a.k.a. a feature. In this

paper, we build upon the previous work of semantic history slicing

to locate features in software version histories. We leverage the in-

formation embedded in version histories for identifying changes im-

plementing features and discovering relationships between features.

The identiied feature changes are fully functional and guaranteed

to preserve the desired behaviors. The resulting feature relationship

graph is precise and can be used to assist in understanding of the

underlying connections between the features.

We evaluate the technique on a number of real-world case studies

and compare our results with developer-speciied feature annota-

tions. We conclude that, when available, historical information of

software changes can lead to precise identiication of features in

existing software artifacts.

CCS CONCEPTS

· Software and its engineering → Software product lines;

Software version control;

KEYWORDS

Feature location, version history, feature relationship

ACM Reference format:

Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. 2017. FHistorian:

Locating Features in Version Histories. In Proceedings of SPLC ’17, Sevilla,

Spain, September 25-29, 2017, 10 pages.

https://doi.org/10.1145/3106195.3106216

1 INTRODUCTION

Feature location techniques aim to locate pieces of code that im-

plement a speciic program functionality, a.k.a. a feature. These

techniques support developers during various maintenance tasks,

e.g., locating code of a faulty feature that requires ixing, and are

extensively studied in the literature [11, 29]. The techniques are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

SPLC ’17, September 25-29, 2017, Sevilla, Spain

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5221-5/17/09. . . $15.00
https://doi.org/10.1145/3106195.3106216

based on static or dynamic program analysis, information retrieval

(IR), change set analysis, or some combination of the above.

Recently, a number of techniques for identifying features in the

Software Product Line (SPL) context have been proposed [2, 3, 21ś

23, 37, 39, 42]. Most such techniques are based on intersecting code

of multiple product variants in order to identify code fragments

shared by variants with a particular feature. The identiied code

fragments can then be attributed to that feature. These intersection-

based techniques operate in a static manner and are efective when

a large number of product variants are available.

Often, we cannot rely on the availability of a large number of

variants. For example, consider a family of related software prod-

ucts realized via cloning (a.k.a. the “clone-and-ownž approach) ś

a routinely used practice where developers create a new product

by copying / branching an existing variant and later modifying it

independently from the original [12]. Such variants are commonly

maintained in a version control system, e.g., Git [14]. Their number

can be relatively small, e.g., 3-10 products, while intersection-based

techniques [23], are typically evaluated for tens or even hundreds

of variants.

Identifying features in cloned variants is important for a variety

of software development tasks. For example, developers often need

to share features between variants. That becomes a challenging task

as it is often unclear which commits correspond to the particular

feature of interest [5, 18, 32]. Refactoring cloned variants into single-

copy SPL representations also relies on the ability to identify and

extract code that implements each feature [5, 28, 30ś32].

As a step towards addressing these problems, this paper con-

tributes a dynamic technique, called FHistorian, for locating fea-

tures in software version histories. Our technique difers from other

work in that it (a) traces features to historical information about

their evolution, (b) leverages version histories to improve the accu-

racy of feature location, and (c) is eicient even if the number of

available product variants is small.

Being dynamic, FHistorian relies on the availability of a test

suite Tf exercising a feature of interest f ; such test suites are com-

monly provided by developers for validating features. Starting from

Tf , our technique “slicesž the history to identify the commits rele-

vant for f . It also analyses the slices produced for multiple features

f1, . . . , fn in order to identify relationships between these features

and build a feature model that represents the extracted information.

The generated feature model guarantees that all product variants

it describes are well-formed, as it captures runtime dependencies

between features.

https://doi.org/10.1145/3106195.3106216
https://doi.org/10.1145/3106195.3106216

SPLC ’17, September 25-29, 2017, Sevilla, Spain Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik

Feature Relationship Graph

Release

f1

f2

f3

relates-to

history

depends-on

∆1 ∆2 ∆3 ∆4

Figure 1: A schematic feature relationship graph for three

features extracted from commons-csv v1.3.

Example. We take a history fragment from the release version

1.3 of an open source software project commons-csv [9] and the

simpliied commit history is shown in Fig. 1 as a sequence of com-

mits ⟨∆1,∆2,∆3,∆4⟩. There are three features implemented in this

fragment: features “CSV-159ž (f1: add IgnoreCase option for ac-

cessing header names), “CSV-179ž (f2: add shortcut method for

using irst record as header to CSVFormat), and “CSV-180ž (f3: add

withHeader(Class? extends Enum>) to CSVFormat).

FHistorian identiies a minimal set of commits required by

each feature and generates a feature relation graph depicting the

relationships between the features as shown in Fig. 1. The commits

implementing f1, f2 and f3 are {∆1}, {∆1,∆2,∆3}, and {∆2,∆3,∆4},

respectively. Since the commit implementing f1, namely, ∆1, is

required by f2 to execute correctly, we say that f2 depends on f1.

Similarly, since f2 and f3 both require commits ∆2 and ∆3, we say

that they relate to each other.

The resulting featuremodel annotatedwith feature-implementing

changes (or feature changes for short) is useful for understanding

dependencies and connections between features from an evolu-

tionary view point. Each valid product has to respect the inferred

depends-on relationships in order to function correctly. The relates-

to relationship indicates connections between features. They often

reveal underlying hidden dependencies which are essential across

the system.

These relationships indeed exist among the analyzed features.

The correct behaviors of CSV-179, “using irst record as headers

to CSVFormatž requires the “IgnoreCase optionž (CSV-159) being

enabled to produce correct headers. Both CSV-179 and CSV-180 add

new functionalities to the CSVFormat class and thus are connected

to each other.

Contributions.Our previous work on semantic history slicing [18,

19] locates feature-implementing changes for a single feature at a

time. This paper extends it in the following ways:

(1) It deines FHistorianś a dynamic approach for locatingmultiple

features in version histories and building a well-formed feature

model representing runtime relationships between the features;

and (2) It improves the precision of the feature location technique

in [18, 19] by performing hunk-level minimizations. (3) We evaluate

the proposed technique on ive real-world examples and show its

accuracy and efectiveness.

The rest of the paper is structured as follows. Sect. 2 provides the

necessary background and deinitions for the rest of the paper. In

Sect. 3, we introduce our history-based feature analysis technique

FHistorian and describe its feature location and feature relation

inference capabilities. Sect. 4 presents the evaluation of FHistorian

in real-world case studies. We discuss related work in Sect. 5 and

conclude in Sect. 6.

2 BACKGROUND

In this section, we provide background and deinitions needed for

the rest of the paper.

Feature and Feature Tests.While there is no universal agreement

on what a feature is (and what it is not), we adopt the deinition by

Kang et al. [17]:

Deinition 2.1. (Feature [8, 17]). A feature is a distinctively iden-

tiiable functional abstraction that must be implemented, tested,

delivered, and maintained. A feature consists of a label and a short

description that identiies its behavior. For conciseness, either the

label or the feature description can be dropped when clear from

the context.

We assume that the functionalities of features can be captured

by test cases and the execution trace of a test case is deterministic.

A test case t is a function t : P 7→ B such that for a given program

p, t(p) is true if the test succeeds, and false otherwise. A test suite

is a collection of unit tests that can exercise and demonstrate the

functionality of interest. Let a test suite T be a set of test cases {ti }.

We write p |= T if and only if a program p passes all tests in T , i.e.,

∀t ∈ T · t(p).

Commit and Commit History. Let ∆ : P 7→ P be a commit

which takes a program version p and transforms it to produce a

new program version ∆(p). A commit is a collection of hunks [13,

18] {δ0, . . . ,δn }, in no particular order, each representing a set of

line changes with an approximate locality. Composing hunks is

equivalent to applying the original commit, i.e., ∆ = δ0 ◦ · · · ◦ δn .

A commit history is a sequence of commits H = ⟨∆1, . . . ,∆k ⟩. A

sub-history is a sub-sequence of a history, i.e., a sequence derived

by removing changes from H without altering the ordering. We

write H ′ ⊆ H indicating that H ′ is a sub-history of H , and refer to

⟨∆i , . . . ,∆j ⟩ asHi ..j . We useH to denote the set of all sub-histories

of H .

Semantics-PreservingHistory Slice.Consider a programp0 ∈ P

and its n subsequent versions p1, . . . ,pn such that they are all well-

formed. Let H be the original commit history from p0 to pn , i.e.,

H1..i (p0) = pi for all integers 0 ≤ i ≤ n. Let T be a set of tests

passed by pn , i.e., pn |= T .

Deinition 2.2. (Semantics-preserving slice [18]). A semantics-

preserving slice of historyH with respect toT , denoted byH ′ ⊆T H ,

is a sub-history of H , i.e., H ′ ⊆ H , such that H ′(p0) |= T .

Deinition 2.3. (Minimal semantics-preserving slice) [20]. A se-

mantics-preserving sliceH∗ is aminimal if ∀Hsub ⊂ H∗ ·Hsub ̸ |= T .

FHistorian: Locating Features in Version Histories SPLC ’17, September 25-29, 2017, Sevilla, Spain

H: all sub-histories of H

H

(non-minimal)

semantics-
preserving slices

H
∗

minimal slices

1-minimal
H

′ ⊆T H

Figure 2: Relationships between various history slices.

As shown in Fig. 2, there are several special kinds of semantics-

preserving slices. First, H is a semantics-preserving slice of itself,

but it may not be minimal. Second, minimal semantic slices (H∗)

are slices which are semantics-preserving and cannot be reduced

further. Finally, computing minimal semantics-preserving slices

is expensive [20], so we often compute an approximation known

as the 1-minimal semantic slice ś a slice which cannot be further

reduced by removing any single commit. In practice, 1-minimal

slices are often minimal [19].

Slicing Software Histories.With the presence of adequate tests

for a feature, and the feature development history, semantic history

slicing [18, 19] is a technique which uses tests (slicing criteria)

to identify commits in the history (i.e., a semantics-preserving

slice) that contribute to the implementation of the given feature.

The history slicing techniques have been successfully applied to

back-porting bug ixes [18], creating self-contained and easy-to-

merge pull requests [20], and transforming existing development

histories [18, 25] to assist evolution understanding.

Currently, two history slicing techniques exist ś CSlicer [18]

and Definer [19]. The key diference between the two is that

CSlicer runs the tests only once to collect test coverage infor-

mation and then computes a semantics-preserving history slice

that is not necessarily minimal. On contrast, Definer derives a

small and precise semantic slice through the more expensive re-

peated test executions in a divide-and-conquer fashion that is very

similar to delta debugging [40]. The high-level idea is to partition

the input history by dropping some subset of the commits and

opportunistically reduce the search space when the target tests

pass on one of the partitions, until a minimal partition is reached.

Definer operates on the commit-level, and the history slices pro-

duced by Definer is guaranteed to be 1-minimal ś removing any

single commit from the history slice will break the desired feature

behaviors.

3 OUR APPROACH

We now present FHistorianś a feature location technique based

on the analysis of commit histories. Software version histories

are often organized not in terms of features, but as a sequence of

incremental development activities, ordered by timestamps. This

usually results in a history mixed with changes to multiple features

which may or may not be related to each other. Given a piece of

history H which is known to implement a set of features F , and

FHISTORIAN

Input History: H

Tfn

Tf1

F
L

O
C

A
T

E

…

Hfn

Hf1

…

F
H

G
R

A
P

H

Feature Model:

(F, Er , Ed , h)

Figure 3: Overview of FHistorian architecture.

each feature f ∈ F exercised by a test suite Tf , we would like to

identify a set of relevant changes for each of the features.

Fig. 3 gives an overview of the FHistorian work low. FHisto-

rian is built on top of the semantic history slicer Definer. First, we

recognize that semantic history slicing, as described in [18, 19] and

summarized in Sec. 2, is directly applicable for dynamically locating

single features, one at a time. An improved version, with hunk-level

minimization, is implemented by the FLocate component shown

in Fig. 3. It receives an input history H and a feature test Tf and

produces a 1-minimal set of changes relevant to this feature. Then,

by consolidating history information of all the target features, the

FHGraph component is able to produce a feature model captur-

ing inter-feature relationships such as the runtime dependencies

between features. We describe these components below.

3.1 Flocate: History Slicing with
Hunk-Minimization

The Flocate component of FHistorian is inspired by the exist-

ing history slicing technique Definer, extended with hunk-level

minimization.

In practice, commits usually contain changes to many iles and

multiple classes and methods, organized as hunks. A hunk is the

smallest unit of code change in language-agnostic version control

systems [13]. Diferent hunks in the same commit are not neces-

sarily logically related or relevant to the same feature. Considering

a commit as an atomic unit does not allow us to remove many

unnecessary changes for the target features.

Example 3.1. Fig. 4 shows a diagram illustrating the sources of

imprecision in commit-level history slicing. The history segment

H contains four commits, i.e., H = ⟨∆1,∆2,∆3,∆4⟩. Each commit

can be further broken into a set of hunks potentially spanning over

multiple iles. For instance, ∆1 has two hunks, δa and δb , over iles

A and B, respectively.

The only feature-related changes in this example are δb and δe ,

shaded in gray. However, when performing history slicing on a

commit level, we have to inevitably include unnecessary changes

due to commit dependencies ś two hunks in the same commit are

commit-dependent on each other. For example, δa is included be-

cause of δb , and δf is included because of δe (commit bundles are

depicted as dashed boxes in Fig. 4).

SPLC ’17, September 25-29, 2017, Sevilla, Spain Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik

File A

File B

File C

!c

!b

!d

!f

!g

∆1 ∆2 ∆3 ∆4

!a

!e

1

2

3

1

3

1

3

history

commit

code

Legend

Figure 4: An illustration of the sources of imprecision in

commit-level history slicing.

Unnecessary changes introduced by commit dependencies can

induce further imprecisions. For example, δf relies on an earlier

hunk δd in order to function correctly (shown as a dashed arrow in

Fig. 4). This is known as a code dependency ś including dependencies

between a child and parent code entities, between a variable usage

and deinition, etc. The inclusion of δf therefore forces us to include

δd as well, due to code dependency.

Thus, with commit-level history slicing, the best result achiev-

able is a sub-history of length three: ⟨∆1,∆2,∆3⟩.

Instead of stopping at the minimal history slices at the commit-

level, we zoom into individual hunks of commits, to obtain minimal

hunk slices. This process yields a set of feature-implementing hunks

which are potentially much smaller than the corresponding original

commits and contain signiicantly fewer unrelated changes. For

example, hunk slicing in Ex. 3.1 allows us to reduce the number of

unnecessary changes, resulting in δb and δe , as intended. In Sect. 4,

we empirically show that hunk-level minimization signiicantly

improves the precision of FLocate in locating feature changes.

3.2 FHGraph: Inferring Feature Relationships

In addition to locating features in version histories, we also utilize

the obtained feature-change information to understand the underly-

ing relationships between features within the same history segment.

In particular, we infer two types of feature relationships: relates-to

and depends-on, and represent them in a feature relationship graph.

The identiied relationships respect well-formedness and function-

alities of target features ś satisfying feature dependencies is the

prerequisite of producing a fully functional product variant. The

produced feature model can also assist developers in recognizing

interactions between software components by revealing underlying

hidden connections.

Feature Relationship Graph. A feature relationship graph with

respect to a set of features F implemented within a history H is

a tuple (F ,Er ,Ed ,h), where (F ,Er) is an undirected graph whose

nodes are features and edges are relates-to relationships. Similarly,

(F ,Ed) is a directed graph for depends-on relationships. h : F 7→ H

is a map from features to feature changes.

δ1 i:int f1(){return 1;}

. . .

δ2 j:int f2(){return f1()+1;}

. . .

δ3 k:int f3(){return f1()-1;}

Tf1 : f1()==1, Tf2 : f2()==2, Tf3 : f3()==0

Figure 5: An example illustrating feature relationships.

Relates-To Relationship. We say that a feature f1 relates to an-

other feature f2 if they both rely on the presence of the same set

of non-empty changes H(f1,f2) ⊆ H in order to function correctly.

Formally, we write f1 ↔ f2 when

∀H ′ ⊆ H · (H ′ |= Tf1 ∧ H
′ |= Tf2) ⇒ H(f1,f2) ⊆ H ′, (H(f1,f2) , ∅).

Depends-On Relationship. Similarly, a feature f1 depends on an-

other feature f2 if f1 functions correctly only when f2 does so as

well. More formally, we write f1 → f2 if

∀H ′ ⊆ H · (H ′ ̸ |= Tf2) ⇒ (H
′ ̸ |= Tf1).

More generally, a product variant deined by the history Hv for

features Fv = { f1, . . . , fn } is semantics-preserving (i.e.,
∧
fi ∈Fv Hv |=

Tfi) only when Fv is closed under their feature dependencies. In

other words, satisfying all of the dependencies is the prerequisite

for the product variant to behave as expected.

Example 3.2. Fig. 5 shows an example of a historyH = ⟨δ1,δ2,δ3⟩

containing changes to three features: F = { f1, f2, f3}. During the

given history, three lines of code are inserted one after another ś

Line i , Line j and then Line k ś each relecting a feature implementa-

tion. The corresponding feature tests {Tf1 ,Tf2 ,Tf3 } are shown at the

bottom. For example, the feature f1 is implemented as a function

f1() which is expected to return an integer 1.

It is easy to see that f2 depends on f1 and f3 depends on f1,

since both functions f2() and f3() require the deinition of f1()

introduced in the change δ1. Likewise, we also have that f2 is related

to f3, and their witness change H(f2,f3) is δ1.

Discovering Feature Relationships. To infer relationships for

the target features, we consolidate all the history slicing results

returned by FLocate and determine pairwise feature relationships

by comparing their minimal semantics-preserving slices.

For example, when the semantic slice of f1 is subsumed by that

of f2, i.e., Hf1 ⊆ Hf2 , we would say f2 depends on f1 and also factor

out Hf1 from the semantic slice of f2. The resulting feature changes

identiied for f2 would beHf2 \Hf1 . More formally, the algorithm for

inferring feature relationships is based on the following theorem.

Theorem 3.3. Suppose the minimal semantics-preserving slices for

f1 and f2 are both unique in H , denoted by Hf1 and Hf2 , respectively.

We have (f1 ↔ f2) ⇔ (Hf1 ∩Hf2) , ∅, and (f2 → f1) ⇔ Hf1 ⊆ Hf2 .

The key for proving this theorem lies in realizing that if the

minimal semantics-preserving slice Hf for a feature f is unique,

then Hf is essential for passing the feature test Tf , i.e., ∀H
′ ⊆

H · H ′ |= Tf ⇒ Hf ⊆ H ′. Hence, Hf1 ∩ Hf2 serves as the witness

for f1 ↔ f2, i.e., H(f1,f2) = Hf1 ∩ Hf2 . Similarly, when Hf1 ⊆ Hf2 ,

Hf1 is essential for both f1 and f2.

FHistorian: Locating Features in Version Histories SPLC ’17, September 25-29, 2017, Sevilla, Spain

1: procedure FHGraph(F ,H)

2: Er ,Ed ,h ← ∅, ∅, ∅

3: for f ∈ F do

4: Hf ← FLocate(H ,Tf) ▷ get minimal slices

5: h(f) ← Hf

6: end for

7: for (f1, f2) ∈ F × F s.t. f1 , f2 do

8: if Hf1 ∩ Hf2 = ∅ then continue

9: if Hf1 ⊆ Hf2 then

10: Ed ← Ed ∪ (f2 → f1) ▷ depends-on

11: h(f2) ← Hf2 \ Hf1 ▷ factor out Hf1 from Hf2
12: else if Hf2 ⊈ Hf1 then

13: Er ← Er ∪ (f1 ↔ f2) ▷ relates-to

14: end if

15: end for

16: return (F ,Er ,Ed ,h)

17: end procedure

Figure 6: An algorithm for constructing a history-based fea-

ture relationship graph.

With the assumption of unique minimal semantics-preserving

slices, an algorithm for constructing feature relationship graph is

given in Fig. 6. The procedure FHGraph receives a set of features F

and the history H implementing them. It updates two edge sets, Er
and Ed , for the relates-to and depends-on relationships, respectively.

It also maintains a map h which stores the inal feature location

results for each feature.

First, we store the minimal semantics-preserving slices returned

by FLocate for all features (Line 4). The algorithm then iterates

through all feature pairs (Line 7 ś 15). For each pair of minimal slices

Hf1 andHf2 , ifHf1 is subsumed byHf2 , then we create a depends-on

edge f2 → f1 and factor out Hf1 from Hf2 and store it into h(f2)

(Line 10 and 11). If there is no depends-on relationship between f1
and f2, then a relates-to edge is constructed instead (Line 13). The

procedure returns a feature relationship graph (F ,Er ,Ed ,h) when

it terminates.

4 EVALUATION

In this section, we present the empirical evaluation of our approach

on real-world software systems. Our goal is to have a better un-

derstanding of the capability of our history-based feature analysis

technique by answering the following research questions:

RQ1: How accurate is the feature location performed by FHisto-

rian? RQ2: How accurate are the feature relationships inferred by

FHistorian?

We implemented FHistorian on top of Definer [19], and used

the interactive mode of the Git add command to automatically split

commits into hunks. We also generated feature relation graphs

represented using the DOT graph format. Our prototype implemen-

tation is available at bitbucket.org/liyistc/gitslice.

4.1 Subjects

To efectively evaluate FHistorian, we need access to project

source code, test cases, and commit histories to run feature analysis,

as well as adequate feature annotations to determine its efective-

ness. In particular, to perform feature location within a history

Table 1: Experimental subjects.

Project & Release #C #F LOC #Issue
Features

#New #Tested

commons-csv v1.3 79 28 2353 12 7 4

commons-compress v1.13 148 144 6650 13 7 6

commons-io v1.4 140 140 8607 24 18 9

commons-io v2.2 136 182 7328 24 15 7

commons-lang v3.4 262 146 8817 63 17 10

segment, FHistorian requires a predeined set of features, known

to be implemented in the history period, along with test cases.

To ind suitable evaluation subjects, we looked for complete

histories between two software releases and referred to release

notes to determine the newly implemented feature set. We selected

experimental subjects from a combination of recently published

history analysis datasets [19, 41] which are well-documented and

organized, and ended up with ive releases accompanied by compre-

hensive release notes and feature annotations. All selected software

projects use JIRA [16] as their issue tracking system. In JIRA, each

feature has a unique developer-assigned ID, referred to as the “issue

keyž, which is associated with an issue report recording detailed

information about the feature. A JIRA issue key is a string with the

format “ABC-123ž, where “ABCž stands for the name of the project

containing this feature, and “123ž is a unique ID. Developers label

commits with issue keys to indicate the purpose of the changes,

which enables us to determine which feature models the developers

had in mind.

The set of features implemented during the release histories was

determined from the release notes. In all the release notes that we

analyzed, newly implemented functionalities are organized as is-

sues including new features, tasks, bug ixes, improvements, etc. For

the purpose of our experiments, we focused on releases that had at

least four implemented and tested features. The resulting subjects

are summarized in Table 1. Each row represents a history segment

for a particular release. Column “Project & Releasež designates the

name of the project from which the releases are chosen, followed

by their version number. Columns “#Cž, “#Fž, “LOCž represent the

number of commits, the number of iles modiied, and the number

of lines of code changed during the the release histories, respec-

tively. Column “#Issuež represents the number of all issues reported.

Column “#Newž and “#Testedž represents the number of all new

features and those with associated tests cases. For example, the sec-

ond row of Table 1 shows that during the development of version

1.13 of the project commons-compress, there were 148 commits,

144 iles were modiied and 6650 lines of code have been changed.

Developers created 13 issues, seven of which were documented

as new features; among them, six were accompanied by test cases

capturing the expected feature behaviors.

4.2 RQ1: Precision of Feature Location

Methodology.We compared the feature location results of FHis-

torian with developers’ feature annotations found in the commit

logs. For each new feature found in the release notes, we used the

assigned JIRA issue key to map the feature with the commits con-

sidered as the feature implementations by the developers. We then

ran FHistorian on the whole feature set, taking feature relations

bitbucket.org/liyistc/gitslice

SPLC ’17, September 25-29, 2017, Sevilla, Spain Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik

into consideration, to compute relevant changes for each feature.

Finally, we repeated the same experiments with hunk-level mini-

mization disabled to decide the efectiveness of our optimizations

on commit-level history slicing.

Results. The studies were conducted on a desktop computer run-

ning Linux with an Intel i7 3.4GHz processor and 16GB of RAM. It

took on average 4,062 seconds for Definer to obtain a 1-minimal

semantic slice for each feature. The hunk minimization on the

resulting slice took on average 3,740 seconds per feature.

Table 2 lists the feature location results of FHistorian, com-

paring them with the developers’ feature annotations. Each row

in the table shows results for a particular feature, identiied by

the feature key. Column “Releasesž lists the release histories being

analyzed. Columns “#Labeledž and “#Foundž show the number of

commits labeled by the developers and identiied by FHistorian,

respectively. We also list the diferences between their results in the

last two columns ś column “#FNž shows the number of commits

labeled by developers but not found by us and vice versa for column

“#FPž. For instance, the developers annotated one commit for feature

“CSV-159ž and FHistorian found the same commit. However, three

commits were annotated by the developers and FHistorian found

one of them with six extra commits and missed the other two.

For 15 out of 36 features, FHistorian’s results match perfectly

with the developers’ annotations. To understand the diferences

in the rest of the cases, we analyzed all of FHistorian’s the false

positives and false negatives.

False Positives. FHistorian includes not only conceptually es-

sential changes but also peripheral changes to guarantee the exe-

cutability of its produced feature models. When committing and

labeling feature changes, developers often overlooked preexisting

changes which support the compilation and execution of the fea-

tures. For example, FHistorian considered commit f8e09945 as

necessary for the feature COMPRESS-369 but it is not labeled by

the developers. We inspected the commit, inding it to be a bug ix

updating the coniguration ile to use a newer Java JDK. The target

feature code cannot be compiled or executed when ignoring this

commit, and thus it is essential.

The second reasonwhy FHistorian detectsmore commits is that

it also takes hunk dependencies [18] speciic to text-based version

control systems into consideration. That is, FHistorian includes ad-

ditional commits providing a necessary context for the application

of the essential commits. We veriied that all the feature changes

found by FHistorian were minimal, i.e., they could not be further

reduced and yet pass the feature tests. Thus, all commits found by

FHistorian but not labeled by the developers were required for

the correct execution of feature tests.

False Negatives. On the other hand, FHistorian occasionally

missed commits labeled by the developers (28% missed). We manu-

ally inspected each missed commit and summarize the most com-

mon reasons below.

Some commits missed by FHistorian contained only changes

which did not afect feature execution. For example, developers

occasionally created separate commits that updated the release

note ile documenting addition of a new feature, and then labeled

them as part of the feature. There were also commits labeled as

feature implementationswhich only updated Javadocs or performed

Table 2: Feature location results of FHistorian compared

with developer annotations.

Releases Feature Keys #Labeled #Found #FN #FP

csv v1.3

CSV-159 1 1 0 0

CSV-175 3 6 2 5

CSV-179 1 8 0 7

CSV-180 1 8 0 7

compress

v1.13

COMPRESS-327 10 17 2 9

COMPRESS-368 6 5 3 2

COMPRESS-369 2 5 1 4

COMPRESS-373 1 7 0 6

COMPRESS-374 1 4 0 3

COMPRESS-375 2 1 1 0

io v1.4

IO-126 1 1 0 0

IO-129 2 1 1 0

IO-130 1 1 0 0

IO-135 2 1 1 0

IO-138 1 1 0 0

IO-144 1 1 0 0

IO-145 1 1 0 0

IO-148 4 1 3 0

IO-153 1 1 0 0

io v2.2

IO-173 1 1 0 0

IO-275 1 1 0 0

IO-288 3 1 2 0

IO-290 1 1 0 0

IO-291 3 2 1 0

IO-297 1 1 0 0

IO-305 1 1 0 0

lang v3.4

LANG-536 1 3 0 2

LANG-883 1 1 0 0

LANG-993 1 1 0 0

LANG-999 1 1 0 0

LANG-1015 1 1 0 0

LANG-1021 1 2 0 1

LANG-1033 1 1 0 0

LANG-1080 1 1 0 0

LANG-1082 1 1 0 0

LANG-1093 2 1 1 0

refactoring. FHistorian also missed commits which performed

minor optimizations which were labeled as part of the feature

but the associated feature tests were not updated to capture the

modiied behaviors.

Efectiveness of Hunk-level Minimization. The comparison

of the feature location precision results of FHistorian with and

without the hunk-level minimization (i.e., staying at the commit

level) are shown in Fig. 7. On average, hunk-level minimization im-

proved FHistorian’s precision 3.47 times. In particular, for releases

commons-io v1.4 and commons-io v2.2, hunk-level minimization

yielded a 16X improvement in precision (from 5.21% to 81.8% and

from 6.32% to 100%, respectively).

Answer to RQ1. FHistorian precisely identiies commits that

implement a speciic feature and required for the feature execution.

Its feature location results coincide with the developer annotations

with regard to essential feature implementation changes, while

they difer from the annotations when considering changes that do

not afect the test execution. The commit-level optimizations for

FHistorian: Locating Features in Version Histories SPLC ’17, September 25-29, 2017, Sevilla, Spain

C
SV

-1
59

C
SV

-1
75

C
SV

-1
79

C
SV

-1
80

C
O
M
P
R
E
SS
-3
27

C
O
M
P
R
E
SS
-3
68

C
O
M
P
R
E
SS
-3
69

C
O
M
P
R
E
SS
-3
73

C
O
M
P
R
E
SS
-3
74

C
O
M
P
R
E
SS
-3
75

IO
-1
26

IO
-1
29

IO
-1
30

IO
-1
35

IO
-1
38

IO
-1
44

IO
-1
45

IO
-1
48

IO
-1
53

IO
-1
73

IO
-2
75

IO
-2
88

IO
-2
90

IO
-2
91

IO
-2
97

IO
-3
05

LA
N
G
-5
36

LA
N
G
-8
83

LA
N
G
-9
93

LA
N
G
-9
99

LA
N
G
-1
01
5

LA
N
G
-1
02
1

LA
N
G
-1
03
3

LA
N
G
-1
08
0

LA
N
G
-1
08
2

LA
N
G
-1
09
3

0

50

100
P
re
c
is
io
n

(%
) Hunk

Commit

Figure 7: Precision of FHistorian’s feature location with and without hunk-level minimization.

history slicing are efective in improving the precision of feature

location.

4.3 RQ2: Accuracy of Feature Relation

Methodology. In this experiment, we evaluated the accuracy of

feature relationships inferred by FHistorian through code inspec-

tions and qualitative studies of feature documentation. For each

subject release, we ran FHistorian with the same feature set used

in answering RQ1 to generate a feature relationship graph. We then

used additional feature annotations extracted from release notes

to reine the feature relationships. Finally, we analyzed each of the

inferred feature relationships and veriied it either by internal code

inspection or external evidence such as log messages and issue

links on JIRA issue pages.

Results. To simplify the discussion, we categorize the ive releases

studied into two groups. In one group, namely, commons-io v1.4

v2.2 and commons-lang v3.4, the feature relationships are rela-

tively sparse and only depends-on relationships are observed. In the

other group, namely, commons-csv v1.3 and commons-compress

v1.13, the feature relationships are more complex and the relates-to

relationships between tested features often reveal “hiddenž untested

features. We show that with the additional knowledge about the hid-

den features, the relates-to relationships can be reined and relect

more accurate relationships among analyzed features.

Case Study 1: commons-io and commons-lang. No feature rela-

tionships were observed for release v2.2 of commons-io. All ana-

lyzed features in this release can be independently executed using

non-overlapping commits.

There are two depends-on edges detected in release v1.4 of

commons-io: from IO-153 to IO-135 and from IO-145 to IO-144

(see Fig. 8a, where feature nodes without relationships are omitted).

Similarly, Fig. 8b illustrates the relationship between the fea-

tures in release v3.4 of commons-lang. This example also has two

depends-on edges: fromLANG-1093 to LANG-1033, and fromLANG-

1015 to LANG-1080.

To verify the feature relationship found by FHistorian, we

report evidence observed from log messages and source code.

(1) IO-144→ IO-145, IO-153→ IO-135, LANG-1093→ LANG-1033.

The three depends-on edges were veriied by inspecting contents

of the commits. For example, feature IO-144 is implemented by a

IO-144

IO-145

depends-on

IO-135

IO-153

depends-on

(a) commons-io v1.4

LANG-1033

LANG-1093

depends-on

LANG-1080

LANG-1015

depends-on

(b) commons-lang v3.4

Figure 8: Feature relationships for commons-io and

commons-lang.

single commit db3e834e with the commit message “add a compare

methodž. We inspected the code changes in this commit and found

that it creates a special “checkCompareTo()ž method for comparing

strings with the ability to adjust case sensitivity. The commit mes-

sage of IO-145 (55dfa6eb) is “add new package of ile comparator

implementationsž. This commit creates and modiies multiple ile

comparator classes. Three of these, namely, “ExtensionFileCom-

paratorž, “NameFileComparatorž, and “PathFileComparatorž, rely

on the “checkCompareTo()ž method for ile name comparison. This

observation conirms that feature IO-145 depends on IO-144 for

its implementation, which in turn supports the identiied feature

relationship. The other two edges are similar ś one feature provides

a utility function which is then used by the other feature, thus

creating a feature dependency between the two.

(2) LANG-1015→ LANG-1080. FHistorian’s results indicate that

feature LANG-1015 is implemented by two commits, one of which

labeled as LANG-1015 and the other as LANG-1080. By inspecting

the commits, we concluded that LANG-1015 depends on LANG-

1080 due to the hunk dependency. Patching the former without the

latter using Git would result in a conlict because the two commits

modify adjacent lines in the same ile. This dependency can of

course be ignored if a language-aware version control system (e.g.,

SemanticMerge [34]) is used instead.

Case study 2: commons-csv and commons-compress. In this case

study, we irst show the feature models produced by FHistorian

using tested features. We then show how additional feature an-

notations extracted from release notes and log messages can be

used to reine these feature models (e.g., with explicating “hidden

features").

SPLC ’17, September 25-29, 2017, Sevilla, Spain Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik

(1) commons-csv. Fig. 9a (top) illustrates the feature relationship

graph originally obtained by FHistorian in the release v1.3 of

commons-csv. In this example, there are three depends-on edges,

indicating that CSV-175 → CSV-159, CSV-179 → CSV-159, and

CSV-180→ CSV-159, respectively. There are also three relates-to

edges, showing that CSV-175, CSV-179, and CSV-180 are related to

each other.

To obtain a more precise relationship between these features,

we took into consideration bug ix annotations in the release notes

and discovered that feature CSV-175’s member commits can be

separated into two groups, with one implementing the feature’s

functionality, and the other, labeled as CSV-169, contributing to a

bug-ix. The bug-ix does not belong to CSV-175 technically. But

since there is no test case associated with it, FHistorian could

not distinguish the bug-ix commit from the feature-implementing

commit.

Using this obtained information, we created a new feature node,

CSV-169, to represent the “hiddenž bug-ix (in dashed box). We use

node CSV-175’ to represent the rest of the commits that originally

belonged to CSV-175. With the updated feature set, FHistorian

computed a newly reined relationship graph shown in Fig. 9a (bot).

Since the commits of CSV-175’ are fully subsumed by both CSV-

179 and CSV-180, Two original relates-to relationships, CSV-179

↔ CSV-175 and CSV-180↔ CSV-175 can be reined into stronger

depends-on relationships, namely, CSV-179→ CSV-175’ and CSV-

180→ CSV-175’.

The reined feature relationships better relect the actual situ-

ation. Some evidences conirming these relationships can be ob-

served from the source code and commit messages. For example,

CSV-179 and CSV-180 both rely on the “ignoreHeaderCasež option,

created by CSV-159, to generate CSV ile headers. This veriied

the inferred depends-on relationships CSV-179 → CSV-159 and

CSV-180→ CSV-159.

(2) commons-compress v1.13. Fig. 9b (top) illustrates the feature

relationships in release v1.13 of commons-compress. From FHis-

torian’s result, we can determine that features COMPRESS-327,

COMPRESS-368, COMPRESS-369, COMPRESS-373, andCOMPRESS-

374 all relate to each other. However, the underlying reasons for

these relationships were unclear without additional knowledge

about the software project.

We inspected the relevant commits, aiming to build a more pre-

cise feature relationship graph. We discovered that all features rely

on a shared commit, 7e35f57, labeled as COMPRESS-327. This

shared commit upgrades a basic component ś it re-implements

the output stream of Zip format using a new class named “Seek-

ableByteChannelž, replacing an old class “RandomAccessFilež. This

upgraded component is widely used as a basis for many other func-

tionalities related to stream compressors. Therefore, this commit

afects all the ive features mentioned earlier.

Another commit f8e09945 is also shared among features. It

contributes to the implementation of four features: COMPRESS-

327, 368, 369, and 373. Upon further investigation, we determined

that it is another bug-ix commit, labeled by the developers as

COMPRESS-360, which updates the project’s minimum JDK version

requirement from 1.6 to 1.7. The change was made in the project

coniguration ile and without this change, the other four features

failed to compile.

We separated the shared commits from COMPRESS-327 to cre-

ate individual nodes for them in the feature relationship graph

(“Seekablež and “COMPRESS-360ž in dashed boxes). As a result, the

reined feature relationship graph is shown in Fig. 9b (bot). The

new graph reveals multiple new feature relationships. First, it now

shows that COMPRESS-327, COMPRESS-368, COMPRESS-369, and

COMPRESS-373 all depend on the hidden nodes “Seekablež and

“COMPRESS-360ž. In addition, COMPRESS-374 also depends on

“Seekablež. The original relates-to edges can be trivially inferred

from the current graph: two nodes depending on the same node

are automatically connected by related-to. We omit those edges in

Fig. 9b (bot).

We now discuss evidences in support of the found feature rela-

tionships. We found direct evidence provided by the developers for

the edge COMPRESS-368↔ COMPRESS-369. Developers explicitly

labeled the relationship between COMPRESS-368 and COMPRESS-

369 with a JIRA issue link, “is related to COMPRESS-369 (allow

archiver extensions through a standard JRE ServiceLoader)ž on the

issue description page of COMPRESS-368.

Answer to RQ2. Feature relationships inferred by FHistorian

are accurate. The depends-on relationships relect runtime depen-

dencies between features. They are essential for ensuring well-

formedness and correct execution of the product variants con-

structed from the target features. The relates-to relationships are

useful in revealing underlying connections between features and

can be further reined into stronger depends-on relationships using

additional project expertise such as issue tracking tickets, developer

conversations, log messages, etc.

4.4 Threats to Validity

While we selected diferent projects and attempted to cover difer-

ent scenarios, our results may not be suiciently representative.

Furthermore, the projects that we selected for evaluation have com-

plete change logs and release notes. While our feature location tech-

nique produces encouraging results on our experimental subjects,

it is not always applicable to projects that are not well-managed.

In the absence of documentation of the release histories and the

corresponding feature information, expert insights are required for

FHistorian to achieve comparable good results.

Due to the absence of adequate feature documentation, it is not

always possible to verify the feature relations obtained by FHisto-

rian rigorously with developers’ conceptual models. For example,

we cannot be certain whether all of the relationships between the

features have been generated. Our results were therefore conirmed

by multiple indirect evidences such as commit messages, contents

of code changes, etc.

5 RELATED WORK

We discuss related work in four areas given below.

Dynamic Feature Location.Dynamic feature location techniques

rely on program execution for identifying source code that corre-

sponds to a feature of interest. More than 10 such techniques are

reviewed in [11, 29]. The earliest dynamic feature location tech-

nique which also became a foundation of future approaches is

FHistorian: Locating Features in Version Histories SPLC ’17, September 25-29, 2017, Sevilla, Spain

CSV-175

CSV-159

CSV-180

CSV-179

relates-todepends-on

depends-on relates-to

relates-to

CSV-175’

CSV-159

CSV-180

CSV-179

depends-ondepends-on

depends-on relates-to

depends-on

CSV-169

d
ep
en
d
s-o
n

d
ep
en
d
s-o
n

d
ep
en
d
s-o
n

(a) commons-csv v1.3

COMPRESS

374

COMPRESS

369

COMPRESS

373

COMPRESS

327

COMPRESS

368

COMPRESS

327’

COMPRESS

373

COMPRESS

369

COMPRESS

374

COMPRESS

368

COMPRESS

360
Seekable

(b) commons-compress v1.13

Figure 9: Feature relationships for commons-csv and commons-compress.

software reconnaissance [38]. It compares execution traces obtained

by exercising the feature of interest to those obtained when the

feature is inactive. The technique runs a set of test cases that invoke

each feature and extracts components (code statements or methods)

executed by each test case. For each feature, it then identiies the

(1) indispensably involved components ś executed by all test cases

of the feature, (2) potentially involved components ś executed by

at least one test case of the feature, and (3) uniquely involved com-

ponents ś executed by at least one test case of the feature and not

executed by any test case of the other features. It also extracts the

set common components executed for all features.

Several later approaches extended this work by involving static

code analysis, information retrieval, and other techniques to further

prune the feature execution traces and improve the accuracy for

feature detection, allowing them to operate on a single trace rather

than on multiple traces corresponding to multiple features [24, 27].

FHistorian also relies on the presence of test cases to perform

feature location. Yet, it detects features in change histories rather

than in the “inalž version of the program, thus assisting in tasks

such as porting features and their histories across multiple branches

in version control systems. It also uses information about change

histories to improve the accuracy of feature location and does not

require tests of multiple features in order to operate.

Feature Location in Version Histories. In CVSSearch [7], a fea-

ture is speciied as a text query. The technique uses CVS dif to

examine changes between subsequent commits and associates each

line of code changed in a commit with its corresponding commit

message. It then retrieves all lines that match the input query, i.e.,

either the line itself or its associated message containing at least

one word from the query. Unlike CVSSearch, our technique does

not rely on textual similarity but rather extracts executable feature

implementations.

Feature Location for SPLs. Each of the existing feature location

techniques can be used for detecting features in products of a prod-

uct line by treating these products as singular independent entities.

Yet, several techniques that consider commonalities and diferences

in SPL products have recently emerged [2, 3, 21ś23, 37, 39, 42]. Most

such techniques are based on intersecting code of multiple product

variants in order to identify code fragments shared by variants

with a particular feature. For example, Xue et al. [39] use informa-

tion about version diferencing to further improve the accuracy of

information retrieval in multiple products. Linsbauer et al. [22, 23]

present a technique for deriving the traceability between features

and code in product variants by matching code overlaps and feature

overlaps. Moreover, this technique also identiies code that depends

on the combination of features present in a product variant thus

dealingwith feature dependencies and interactions.While the above

interaction-based techniques operate statically and are efective

when a large number of product variants are available, our approach

is dynamic and does not rely on the presence of a large set of

variants to be efective. Moreover, it is also able to distinguish

between features that always appear together in all product variants

ś a clear limitation of the intersection-based techniques.

Extracting Feature Models. Several approaches focus on extract-

ing constraints between features of multiple variants [1, 6, 15, 26, 33,

35] or on building a desirable feature model when such constraints

are given [4, 10, 36]. For example, Assunção et al. [6] extend their

intersection-based feature location technique [22] with an approach

to identify dependencies between features by looking at shared /

exclusive code fragments. The above approaches mostly consider

product and feature combinations, without inspecting semantic

dependencies between code artifacts. Moreover, they rely on the

availability of multiple product variants while FHistorian does not

make such an assumption and is also able to identify dependencies

between features of a single variant.

SPLC ’17, September 25-29, 2017, Sevilla, Spain Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik

Nadi et al. [26] focus on inferring constraints between features

implemented in C by statically identifying potential preprocessor,

parser, linker, and type errors. Instead, our approach is dynamic and

precisely identiies all runtime dependencies between the executed

features.

6 CONCLUSION AND FUTUREWORK

In this paper, we presented a dynamic feature location technique

FHistorian. The technique works by analyzing version histories,

taking into account feature release information and developer-

committed tests demonstrating the new feature, to precisely extract

feature-related changes. It also produces models representing run-

time relationships between features. Our cases studies on multiple

features of ive real-world software projects show that FHistorian

can locate features efectively.

In the future, we aim to combine FHistorian with information

retrieval techniques for extracting expert feature knowledge from

historical artifacts such as developer conversations, log messages,

and documentation. With more complete feature information, our

technique can produce signiicantly better feature models.

REFERENCES
[1] R. Al-msie’deen, M. Huchard, A. D. Seriai, C. Urtado, S. Vauttier, and A. Al-Khlifat.

2014. Concept Lattices: A Representation Space to Structure Software Variability.
In Proc. of Int. Conf. on Information and Communication Systems (ICICS’14). 1ś6.

[2] Ra’Fat Al-Msie’deen, Abdelhak-Djamel Seriai, Marianne Huchard, Christelle
Urtado, and Sylvain Vauttier. 2013. Mining Features from the Object-oriented
Source Code of Software Variants by Combining Lexical and Structural Similarity.
In Proc. of Int. Conf. on Information Reuse & Integration (IRI’13). 586ś593.

[3] Ra’Fat Al-Msie’deen, Abdelhak Seriai, Marianne Huchard, Christelle Urtado,
Sylvain Vauttier, and Hamzeh Eyal Salman. 2013. Feature Location in a Collection
of Software Product Variants Using Formal Concept Analysis. In Proc. of Int. Conf.
on Software Reuse (ICSR’13), Vol. 7925. 302ś307.

[4] Nele Andersen, Krzysztof Czarnecki, Steven She, and Andrzej Wąsowski. 2012.
Eicient Synthesis of Feature Models. In Proc. of Int. Software Product Line Conf.
(SPLC’12). 106ś115.

[5] Michał Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Thomas
Schmorleiz, Ralf Lämmel, Stefan Stănciulescu, Andrzej Wąsowski, and Ina Schae-
fer. 2014. Flexible Product Line Engineering with a Virtual Platform. In Proc. of
Int. Conf. on Software Engineering (ICSE Companion 2014). 532ś535.

[6] Wesley K.G. Assunção, Roberto E. Lopez-Herrejon, Lukas Linsbauer, Silvia R.
Vergilio, and Alexander Egyed. 2015. Extracting Variability-Safe Feature Models
from Source Code Dependencies in System Variants. In Proc. of 2015 Annual Conf.
on Genetic and Evolutionary Computation (GECCO’15). 1303ś1310.

[7] Annie Chen, Eric Chou, Joshua Wong, Andrew Y. Yao, Qing Zhang, Shao Zhang,
and Amir Michail. 2001. CVSSearch: Searching through Source Code using CVS
Comments. In Proc. of Int. Conf. on Software Maintenance (ICSM’01).

[8] Kunrong Chen and Václav Rajlich. 2000. Case Study of Feature Location Us-
ing Dependence Graph. In Proc. of Int. Workshop on Program Comprehension
(IWPC’00). 241ś247.

[9] Commons-CSV 2017. The Apache Commons CSV Library. (2017). https://
commons.apache.org/proper/commons-csv

[10] Krzysztof Czarnecki and Andrzej Wasowski. 2007. Feature Diagrams and Logics:
There and Back Again. In Proc. of Int. Software Product Line Conf. (SPLC’07).
23ś34.

[11] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature Location in Source Code: A Taxonomy and Survey. Journal of Software:
Evolution and Process 25, 1 (2013), 53ś95.

[12] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In Proc. of European Conf. on Software Maintenance and
Reengineering (CSMR’13). 25ś34.

[13] Javed Ferzund, Syed Nadeem Ahsan, and Franz Wotawa. 2009. Empirical Evalua-
tion of Hunk Metrics As Bug Predictors. In Proc. of Int. Conf. on Software Process
and Product Measurement (IWSM ’09 /Mensura ’09). 242ś254.

[14] Git 2017. Git Version Control System. (2017). https://git-scm.com
[15] Evelyn Nicole Haslinger, Roberto E. Lopez-Herrejon, and Alexander Egyed. 2011.

Reverse Engineering Feature Models from Programs’ Feature Sets. In Proc. of
Working Conf. on Reverse Engineering (WCRE’11). 308ś312.

[16] JIRA 2017. JIRA Software. (2017). https://www.atlassian.com/software/jira
[17] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang

Huh. 1998. FORM: A Feature-oriented Reuse Method with Domain-speciic
Reference Architectures. Annals of Software Engineering 5, 1 (1998), 143ś168.

[18] Yi Li, Julia Rubin, and Marsha Chechik. 2015. Semantic Slicing of Software
Version Histories. In Proc. of 30th IEEE/ACM Int. Conf. on Automated Software
Engineering (ASE’15). 686ś696.

[19] Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. 2016. Precise Semantic
History Slicing through Dynamic Delta Reinement. In Proc. of 31st IEEE/ACM
Int. Conf. on Automated Software Engineering (ASE’16). 495ś506.

[20] Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. 2017. Semantic Slicing
of Software Version Histories. IEEE Trans. on Software Engineering (2017).

[21] Lukas Linsbauer, Florian Angerer, Paul Grünbacher, Daniela Lettner, Herbert
Prähofer, Roberto E. Lopez-Herrejon, and Alexander Egyed. 2014. Recovering
Feature-to-Code Mappings in Mixed-Variability Software Systems. In Proc. of Int.
Conf. on Software Maintenance and Evolution (ICSME’14). 426ś430.

[22] Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander Egyed. 2013. Recov-
ering Traceability Between Features and Code in Product Variants. In Proc. of Int.
Software Product Line Conf. (SPLC’13). 131ś140.

[23] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed. 2016.
Variability Extraction and Modeling for Product Variants. Software & Systems
Modeling (2016), 1ś21.

[24] Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, and Vaclav Rajlich. 2007.
Feature Location via Information Retrieval Based Filtering of a Single Scenario
Execution Trace. In Proc. of Int. Conf. on Automated Software Engineering (ASE’07).

[25] Kivanç Muşlu, Luke Swart, Yuriy Brun, and Michael D. Ernst. 2015. Development
History Granularity Transformations. In Proc. of 30th IEEE/ACM Int. Conf. on
Automated Software Engineering (ASE’15). 697ś702.

[26] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. 2014.
Mining Coniguration Constraints: Static Analyses and Empirical Results. In Proc.
of Int. Conf. on Software Engineering (ICSE’14).

[27] Meghan Revelle, Bogdan Dit, and Denys Poshyvanyk. 2010. Using Data Fusion
and Web Mining to Support Feature Location in Software. In Proc. of Int. Conf.
on Program Comprehension (ICPC’10). 14ś23.

[28] Julia Rubin and Marsha Chechik. 2013. A Framework for Managing Cloned
Product Variants. In Proc. of Int. Conf. on Software Engineering (ICSE’13). 1233ś
1236.

[29] Julia Rubin and Marsha Chechik. 2013. A Survey of Feature Location Techniques.
In Domain Engineering: Product Lines, Conceptual Models, and Languages., Iris
Reinhartz-Berger et al. (Ed.). Springer, 29ś58.

[30] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2013. Managing Cloned
Variants: a Framework and Experience. In Proc. of Int. Software Product Line Conf.
(SPLC’13). 101ś110.

[31] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2015. Cloned Product
Variants: From Ad-Hoc to Managed Software Product Lines. Journal on Software
Tools for Technology Transfer 17, 5 (2015), 627ś646.

[32] Julia Rubin, Andrei Kirshin, Goetz Botterweck, andMarsha Chechik. 2012. Manag-
ing Forked Product Variants. In Proc. of Int. Software Product Line Conf. (SPLC’12).
156ś160.

[33] Uwe Ryssel, Joern Ploennigs, and Klaus Kabitzsch. 2011. Extraction of Feature
Models from Formal Contexts. In Proc. of Int. Conf. on Software Product Lines
(SPLC) Workshop, Vol. 2. 4:1ś4:8.

[34] SemanticMerge 2016. The Dif and Merge Tool that Understands Your Code ś
SemanticMerge. (2016). https://www.semanticmerge.com

[35] Anas Shatnawi, Abdelhak Seriai, and Houari Sahraoui. 2014. Recovering Ar-
chitectural Variability of a Family of Product Variants. In Proc. of Int. Conf. on
Software Reuse (ICSR’15). 17ś33.

[36] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wąsowski, and Krzysztof
Czarnecki. 2011. Reverse Engineering Feature Models. In Proc. of Int. Conf. on
Software Engineering (ICSE’11). 461ś470.

[37] Ryosuke Tsuchiya, Tadahisa Kato, Hironori Washizaki, Masumi Kawakami, Yoshi-
aki Fukazawa, and Kentaro Yoshimura. 2013. Recovering Traceability Links
between Requirements and Source Code in the Same Series of Software Products.
In Proc. of Int. Software Product Line Conf. (SPLC’13). 121ś130.

[38] Norman Wilde and Michael C. Scully. 1995. Software Reconnaissance: Mapping
Program Features to Code. J. of Software Maintenance 7 (1995), 49ś62. Issue 1.

[39] Yinxing Xue, Zhenchang Xing, and Stan Jarzabek. 2012. Feature Location in a
Collection of Product Variants. In Proc. of Working Conf. on Reverse Engineering
(WCRE’12). 145ś154.

[40] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
inducing Input. IEEE Transactions on Software Engineering 28, 2 (2002), 183ś200.

[41] Chenguang Zhu, Yi Li, Julia Rubin, and Marsha Chechik. 2017. A Dataset for Dy-
namic Discovery of Semantic Changes in Version Controlled Software Histories.
In Proc. of 14th Int. Conf. on Mining Software Repositories (MSR’17). 523ś526.

[42] Tewik Ziadi, Luz Frias, Marcos Aurélio Almeida da Silva, and Mikal Ziane. 2012.
Feature Identiication from the Source Code of Product Variants. In Proc. of
European Conf. on Software Maintenance and Reengineering (CSMR’12). 417ś422.

https://commons.apache.org/proper/commons-csv
https://commons.apache.org/proper/commons-csv
https://git-scm.com
https://www.atlassian.com/software/jira
https://www.semanticmerge.com

	Abstract
	1 Introduction
	2 Background
	3 Our Approach
	3.1 Flocate: History Slicing with Hunk-Minimization
	3.2 FHGraph: Inferring Feature Relationships

	4 Evaluation
	4.1 Subjects
	4.2 RQ1: Precision of Feature Location
	4.3 RQ2: Accuracy of Feature Relation
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References

