
GALOIS: Boosting Deep Reinforcement Learning via
Generalizable Logic Synthesis

Yushi Cao2,⇤, Zhiming Li2,⇤, Tianpei Yang1,3,†, Hao Zhang1, Yan Zheng1,†
Yi Li2, Jianye Hao1, Yang Liu2

1College of Intelligence and Computing, Tianjin university, Tianjin, China
2Nanyang Technological University, Singapore, 3University of Alberta, Canada

{yushi002,zhiming001}@e.ntu.edu.sg
{tpyang,3018216216,yanzheng,jianye.hao}@tju.edu.cn

{yi_li,yangliu}@ntu.edu.sg

Abstract

Despite achieving superior performance in human-level control problems, unlike
humans, deep reinforcement learning (DRL) lacks high-order intelligence (e.g.,
logic deduction and reuse), thus it behaves ineffectively than humans regarding
learning and generalization in complex problems. Previous works attempt to
directly synthesize a white-box logic program as the DRL policy, manifesting
logic-driven behaviors. However, most synthesis methods are built on imperative
or declarative programming, and each has a distinct limitation, respectively. The
former ignores the cause-effect logic during synthesis, resulting in low generaliz-
ability across tasks. The latter is strictly proof-based, thus failing to synthesize
programs with complex hierarchical logic. In this paper, we combine the above two
paradigms together and propose a novel Generalizable Logic Synthesis (GALOIS)
framework to synthesize hierarchical and strict cause-effect logic programs. GA-
LOIS leverages the program sketch and defines a new sketch-based hybrid program
language for guiding the synthesis. Based on that, GALOIS proposes a sketch-
based program synthesis method to automatically generate white-box programs
with generalizable and interpretable cause-effect logic. Extensive evaluations on
various decision-making tasks with complex logic demonstrate the superiority
of GALOIS over mainstream baselines regarding the asymptotic performance,
generalizability, and great knowledge reusability across different environments.

1 Introduction

Deep reinforcement learning (DRL) has achieved great breakthroughs in various domains like robotics
control [27], video game [24], software testing [48, 51, 5], etc. Despite its sheer success, DRL models
still perform less effective learning and generalization abilities than humans in solving long sequential
decision-making problems, especially those requiring complex logic to solve [16, 40]. For example,
a seemingly simple task for a robot arm to put an object into a drawer is hard to solve due to the
complex intrinsic logic (e.g., open the drawer, pick the object, place the object, close the drawer) [33].
Additionally, DRL policies are also hard to interpret since the result-generating processes of the
neural network remain opaque to humans due to its black-box nature [35, 28].

To mitigate the above challenges, researchers seek the programming language, making the best
of both connectionism [30] and symbolism [43], to generate white-box programs as the policy to

⇤Equal contribution.
†Corresponding authors: Yan Zheng (yanzheng@tju.edu.cn) and Tianpei Yang (tpyang@tju.edu.cn).

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

execute logic-driven and explainable behaviors for task-solving. Logic contains explainable task-
solving knowledge that naturally can generalize across similar tasks. Therefore, attempts have
been made to introduce human-defined prior logic into the DRL models [46]. Human-written
logic programs are found to be an effective way to improve the learning performance and zero-
shot generalization [40]. However, such a manner requires manually written logic programs be-
forehand for each new environment, motivating an urgent need for automatic program synthesis.

Program:
toggle_box();
get_key();
open_door();
reach_goal();

Figure 1: A motivating example.

Existing program synthesis approaches can be categorized into
two major paradigms: imperative and declarative programming
[6, 36, 29], each has its distinct limitation. The imperative pro-
gramming aims to synthesize multiple sub-programs, each has
a different ability to solve the problem, and combine them se-
quentially as a whole program [44, 15, 17]. However, programs
synthesized in such a way has limited generalizability and inter-
pretability since the imperative programming only specify the
post-condition (effect) while ignores the pre-condition (cause) of
each sub-program, which is regarded as a flawed reflection of cau-
sation [8] that is prone to aliasing. In other words, the agent will
arbitrarily follow the synthesized program sequentially without
knowing why (i.e., cause-effect logic). For example, assume a task
in Figure 1 that requires the agent to open the box, get the key,
open the door, then reach the goal. The synthesized imperative pro-
gram would contain sub-programs: toggle_box(); get_key(); open_door(); reach_goal(),
each should be executed sequentially (the blue path). However, when applying such a program to
another similar task with minor logical differences: the key is placed outside the box, meaning the
agent does not need to open the box. The synthesized program becomes sub-optimal as the agent will
always follow the program to open the box first. However, the optimal policy should directly head for
the key and ignores the box (denoted as the orange path).

On the other side, declarative programming aims to synthesize programs with explicit cause-effect
logic [16, 10] in the form of first-order logic (FOL) [26], requiring the programs to be built on the
proof system (i.e., verify the trigger condition given the facts, then decide which rule should be
activated) [4]. However, due to the trait of FOL, programs synthesized in this way lack hierarchical
logic and thus are ineffective in solving complex tasks [1].

To combine the advantages of both paradigms and synthesize program with hierarchical cause-effect
logic, we propose a novel Generalizable Logic Synthesis (GALOIS) framework3 for further boosting
the learning ability, generalizability and interpretability of DRL. First, GALOIS introduces the concept
of the program sketch [38] and defines a new hybrid sketch-based domain-specific language (DSL),
including the syntax and semantic specifications, allowing synthesizing programs with hierarchical
logic and strict cause-effect logic at the same time. Beyond that, GALOIS proposes a sketch-
based program synthesis method extended from the differentiable inductive logic programming [12],
constructing a general way to synthesize hierarchical logic program given the program-sketch. In this
way, GALOIS can not only generate hierarchical programs with multiple sub-program synergistic
cooperation for task-solving but also can achieve strict cause-effect logic with high interpretability
and generalizability across tasks. Furthermore, the synthesized white-box program can be easily
extended with expert knowledge or tuned by humans to efficiently adapt to different downstream
tasks. Our contributions are threefold: (1) a new sketch-based hybrid program language is proposed
for allowing hierarchical logic programs for the first time, (2) a general and automatic way is proposed
to synthesize programs with generalizable cause-effect logic, (3) extensive evaluations on various
complex tasks demonstrate the superiority of GALOIS over mainstream DRL and program synthesis
baselines regarding the learning ability, generalizability, interpretability, and knowledge (logic)
reusability across tasks.

3The implementation is available at: https://sites.google.com/view/galois-drl

2

https://sites.google.com/view/galois-drl

2 Preliminary

2.1 Markov Decision Process

The sequential decision-making problem is commonly modeled as a Markov decision process (MDP),
which is formulated as a 5-tuple (S,A,R, P,�), where S is the state space, A is the action space,
R : S ⇥ A ! R is the reward function, P : S ⇥ A ! S is the transition function, and � is the
discount factor. The agent interacts with the environment following a policy ⇡(at|st) to collect
experiences {(st, at, rt)}Tt=0

, where T is the terminal time step. The goal is to learn the optimal
policy ⇡⇤ that maximizes the expected discounted return: ⇡⇤ = argmax⇡ Ea⇠⇡[

PT
t=0

�
t
rt].

2.2 Inductive Logic Programming

Logic programming is a programming paradigm that requires programs to be written in a definite
clause, which is of the form: H :� A1, ..., An, where H is the head atom and A1, ..., An, n � 0 is
called the body that denotes the conjunction of n atoms, :� denotes logical entailment: H is true
if A1 ^ A2... ^ An is true. An atom is a function (!1, ...,!n), where is a n-ary predicate and
!i, i 2 [1, n] are terms. A predicate defined based on ground atoms without deductions is called an
extensional predicate. Otherwise, it is called an intensional predicate. An atom whose terms are all
instantiated by constants is called a ground atom. The ground atoms whose propositions are known
in prior without entailment are called facts. Note that a set composed of all the concerning ground
atoms is called a Herbrand base.

Inductive Logic Programming (ILP) [19] is a logic program synthesis model which synthesizes a
logic program that satisfies the pre-defined specification. In the supervised learning setting, the
specification is to synthesize a logic program C such that 8⇣,� : F,C |= ⇣, F, C 6|= �, where ⇣,�
denotes positive and negative samples, F is the set of background facts given in prior; and for the
reinforcement learning setting, the specification is to synthesize C such that C = argmaxC R, where
R is the average return of each episode. Specifically, ILP is conducted based on the valuation vector
e 2 {0, 1}|G|, G denotes the Herbrand base of the ground atoms. Each scalar of e represents the true
value of the corresponding ground atom. During each deduction step, e is recursively updated with
the forward chaining mechanism, such that the auxiliary atoms and target atoms would be grounded.

3 Methodology

3.1 Motivation

As aforementioned, solving real decision-making problems, e.g., robot navigation and control [44, 34,
45], commonly requires complicated logic. As humans, we use the “divide-and-conquer” concept to
dismantle problems into sub-problems and solve them separately. It is natural to think of generating
a hierarchical logic program to solve complex problems. This intuition, however, has hardly been
adopted in program synthesis since the strict cause-effect logic program is intrinsically non-trivial to
generate, let alone the one with hierarchical logic [36, 29].

In this work, we propose a generalized logic synthesis (GALOIS) framework for synthesizing a
white-box hierarchical logic program (as the policy) to execute logically interpretable behaviors in
complex problems. Figure 2 shows the overview of GALOIS, comprised of two key components:
1 a sketch-based DSL, and 2 a sketch-based program synthesis method. It is noteworthy that
GALOIS uses a white-box program as the policy to interact with the environment and collect data
for policy optimization. Here, a new DSL is defined for creating hierarchical logic programs; and
the sketch-based program synthesis method based on differentiable ILP is adopted for generating
effective logic for the policy synthesis. In this way, GALOIS can synthesize white-box programs
with generalizable logic more efficiently and automatically.

3.2 Sketch-based Program Language

To synthesize logic programs with both hierarchical logic and explicit cause-effect logic, we design a
novel sketch-based DSL, namely Lhybrid, absorbing both the advantages of imperative and declar-
ative programming. Figure 3 shows the detail syntax and semantic specifications of Lhybrid. It is

3

Program Sketch

Action
Env

Herbrand base

white-box
program (Policy)

State
𝑠𝑠 𝑎𝑎

Interaction Synthesize Logic Program

N
orm

 &
 Sam

ple
…

…

…
…

Verifying

(a) Sketching-based domain specific language (b) sketch-based ILP

ICFG

code block N

…

Exit

Entry

code block 1
𝑎𝑎

syntactic specification

semantic specification

Encoder E

D
ecoder D

𝑓𝑓𝜌𝜌1
1,1

𝑓𝑓𝜌𝜌1
1,𝑚𝑚

𝑓𝑓𝜌𝜌2
1,1

𝑓𝑓𝜌𝜌2
1,2

𝑓𝑓𝜌𝜌2
1,𝑛𝑛

𝑓𝑓𝜌𝜌1
2,1

𝑓𝑓𝜌𝜌1
2,2

𝜃𝜃𝜌𝜌1
2,1

𝜃𝜃𝜌𝜌1
2,2 𝑓𝑓𝜌𝜌1

3,1𝜃𝜃𝜌𝜌1
3,1

𝑓𝑓𝜌𝜌1
3,2

𝑓𝑓𝜌𝜌1
1,2

𝑓𝑓𝜌𝜌1
1,3

𝜃𝜃𝜌𝜌1
3,𝑚𝑚

𝜃𝜃𝜌𝜌2
3,1

𝜃𝜃𝜌𝜌2
3,𝑛𝑛

𝑓𝑓𝜌𝜌2
3,𝑛𝑛

𝑓𝑓𝜌𝜌2
3,1

Figure 2: Overview of GALOIS, where the (a) sketch-based DSL defines what program can be syn-
thesized, and (b) sketch-based ILP synthesizes programs with logic where f

⌧,
⇢ represents predicate

 of hole function ⇢ at inference step ⌧ and ✓⌧, ⇢ is the corresponding weight.

D
ec
la
ra
tiv
e
Im
pe
ra
tiv
e

(a) syntax (b) semantics

Figure 3: The (a) syntactic and (b) semantic specifications of DSL Lhybrid.

noteworthy that Lhybrid ensures the synthesized program follow strict cause-effect logic. Beyond that,
following Lhybrid, we synthesize programs using program sketches, allowing generating hierarchical
logic programs. In the following, we describe the formal syntactic and semantic specifications first
and illustrate how the program sketch derives hierarchical logic programs.

Syntactic Specification: The formal syntactic specifications of Lhybrid are defined using elements
from both the declarative and imperative language (shown in Figure 3(a)). Intuitively, the declarative
language demands the synthesized program follow strict cause-effect logic, while the imperative
language enables programs with hierarchical logic. In specific, imperative language elements are
expression e and command c. Term e can be instantiated as constant n or function call f , and c can
be assignment statement x := e, sequential execution c; c or control flow (while loop). Declarative
language elements are function f and clause R. To expose cause-effect relations, we constrains
functions to be implemented declaratively: f ::= R | f R, where R represents logic clause in the
form of R ::= A“:-”A-list, where A denotes atom and A-list is the clause body.

It is noteworthy that, to implement the program sketch, we introduce a novel language element called
hole function, denoted as ??. This hole function denotes an unimplemented logic sub-program (i.e.,
code block in Figure 2) to be synthesized given the constraints specified by the program sketch and
its corresponding semantic specification.

𝑔𝑡_𝑘𝑒𝑦():−¬ℎ𝑎𝑠_𝑘𝑒𝑦 𝑋 , 𝑖𝑠_𝑎𝑔𝑒𝑛𝑡(𝑋), ℎ𝑎𝑠_𝑘𝑒𝑦(𝑌), 𝑖𝑠_𝑒𝑛𝑣(𝑌)
𝑔𝑡_𝑑𝑜𝑜𝑟():−ℎ𝑎𝑠_𝑘𝑒𝑦 𝑋 , 𝑖𝑠𝑎𝑔𝑒𝑛𝑡 𝑋 ,¬𝑖𝑠_𝑜𝑝𝑒𝑛 𝑌 , 𝑖𝑠_𝑑𝑜𝑜𝑟(𝑌)

Entry

Exit

𝑙 =? ?WHERE (𝑠)

? ?HOW (𝑙)

? ?WHAT (𝑠)

? ?WHERE

? ?HOW

? ?WHAT

…

𝑝𝑖𝑐𝑘():−𝑎𝑡 𝑋 , 𝑖𝑠_𝑘𝑒𝑦 𝑋 ,¬ℎ𝑎𝑠_𝑘𝑒𝑦 𝑌 , 𝑖𝑠_𝑎𝑔𝑒𝑛𝑡(𝑌)
𝑡𝑜𝑔𝑔𝑙𝑒(): at 𝑋 , 𝑖𝑠_𝑏𝑜𝑥 𝑋 ,¬ℎ𝑎𝑠_𝑘𝑒𝑦 𝑌 , 𝑖𝑠_𝑎𝑔𝑒𝑛𝑡(𝑌)…

∀𝑝: 𝑢𝑝(): −∀ 𝑋 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑋, 𝑌 , 𝑛𝑒𝑔(𝑌)
∀𝑝: 𝑙𝑒𝑓𝑡():−∀ 𝑌 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑋, 𝑌 , 𝑝os(𝑋)…

Figure 4: (left) A program sketch represented
as ICFG and (right) the synthesized logic.

Semantic Specification: Having the syntactic spec-
ification, any syntactically valid program sketch can
be derived. However, without semantic guidance
(e.g., lack of task-related semantics), the synthesized
program may lack sufficient hierarchical logic to effi-
ciently solve tasks [52]. Hence, we propose leverag-
ing the program sketch [38] and defining associated
semantic specifications to guide the synthesis to gen-
erate hierarchical logic programs. In the following,
we illustrate the details of the program sketch used
in this work and its formal semantic specifications,

4

based on which sketching-based inductive logic programming is performed. Specifically, as shown
in the inter-procedural control flow graph (ICFG) illustration Figure 4, the program sketch contains
three major basic blocks of hole functions (denoted as ⇢) to be synthesized: ??WHERE, ??HOW and
??WHAT.

During each round of recursion, the program first executes and checks whether termination condition
is satisfied, if not, an assignment statement is executed: l :=??WHERE(s) by calling a hole function:
??WHERE. We define the meaning of hole function following the formalism of standard denotational
semantics [32] in Figure 3(b). Concretely, for ??WHERE, the body of the synthesized clause AWHERE(s)
is constructed from the Herbrand base representation of the current state s, namely objects’ states
and agent’s attributes: GWHERE = { j(obji) : i 2 [1,m], j 2 [1, n]} [{ y(attrx) : x 2 [1, u], y 2
[1, v]}. The clause body entails the head atom g, which denotes an abstract object within the
environment (i.e., a sub-goal that agent shall arrive during this round of recursion, e.g., key, box,
etc.). The semantic function CJ·K evaluates the clause and returns the relative coordinates between
the agent and the subgoal. The return value is passed to the logic sub-program ??HOW (shown
as the red dashed arrow). ??HOW deduces the direction d of next time step the agent shall move
to: pos 7! CJAHOW(@) |= dKs, where pos is the agent’s next-time-step position after execution,
AHOW(@) is constructed from Herbrand base which consists of ground atoms that applies predicates
regarding numerical feature on the relative coordinates: GHOW = { i(x), i(y) : i = [1, n]}. ??HOW
executes recursively until the sub-goal specified by ??WHERE is achieved. Finally, ??WHAT deduces
the action a to take to interact with the object at the sub-goal position: o 7! CJAWHAT(s) |= aKs,
where o denotes the updated state of the interacted object. Note that the program sketch we used is
generalizable and can be applied to environments with different logic (see details in Section 4). For
tasks whose environments are significantly different from the ones evaluated in this work, modifying
or redesigning the sketch is also straightforward [38, 52].

3.3 Sketch-based Program Synthesis

GALOIS interacts with the environment to collect experiences to synthesize white-box programs
with hierarchical and cause-effect logic following Lhybrid. As shown in Figure 2(b), in the following,
we illustrate how the program interacts with the environment, what is the structure of the program
and how it is trained.

Practically, different from the black-box model, GALOIS requires different types of input and
output. Therefore, GALOIS maintains an encoder E(·) and a decoder D(·) to interact with the
environment. E(s) maps the state s to a set of ground atoms (formatted as valuation vector e⇢)
with the verification from Lhybrid, i.e., e⇢ = E(s,Lhybrid)). As shown in Figure 2(b), the leftmost
squares with different color represents the atoms from different hole functions (e.g., blue squares
{fd=1,t

WHERE}mt=1
denotes the atoms for ??WHERE (d denotes d� 1 forward-chaining steps performed)).

Based on e⇢, GALOIS outputs predicate probabilities and the Decoder maps them to the action
probabilities (i.e., a ⇠ D(p(e⇢)), where p(·) denotes the deduction process).

In this way, the program is executable via fuzzy conjunction [11, 12], and the program synthesis can
be performed. Guided by the semantics of the hole functions, GALOIS performs deduction using the
weights ✓ assigned to each candidate clauses of the specific atom (i.e., one weight ✓ in the weights
vector ✓ indicates one candidate clause). This process is shown in Figure 2(b). The rightmost squares
represent the final atom deduced in the corresponding hole function. GALOIS combines all the ground
atoms to perform a complex program. For example, f2,1

WHERE is inferred with conjunction between
f
1,1
WHERE and f

1,2
WHERE. A learnable weight is assigned to each candidate clause (e.g., ✓3,1WHERE associates

with the clause : gt_key():- ¬has_key(X), is_agent(X), has_key(Y), is_env(Y) which
is derived with two steps of deduction, shown in Figure 4).

Now we explain in detail how a certain predicate is deduced. Given initialized valuation vector set
e⇢, the deductions of the predicates are:

p(e⌧⇢ ;✓) = e⌧�1

⇢ � (
X

softmax(✓⌧, ⇢)� h(e⌧�1,
⇢)), 2 h(t)

,

where e⌧⇢ denotes the valuation vector for all the atoms in hole function ⇢ at deduction step ⌧ (initial-
ized to 1), which is essentially a vector that stores the inferred truth values for all the corresponding
atoms. � denotes the probabilistic sum: x� y = x+ y � x · y. Specifically, given the normalized

5

(a) DoorKey (b) BoxKey (c) Unlockpickup (b) Multiroom

Figure 5: Visualization of various tasks in MiniGrid, each requires different logic to accomplish: (a)
the (red triangle) agent aims to pick up the (yellow) key to open the door (yellow box) and move to
the goal (in green); (b) the agent needs to open the (gray) box to get the key first, then open the door
to reach the goal; (c) the agent has to pick up the key to open the door, and then drop the key to pick
up the (green) box; (d) the agent need to open multiple (yellow, blue, and red) doors to reach the goal.

weight vector ✓⌧, ⇢ for the predicate in hole function ⇢ at deduction step ⌧ , to perform a single-step
deduction, we take the Hadamard product � of ✓⌧, ⇢ and the one-step inference results based on the
valuation vector of last forward-chaining step, where h(·) denotes the inference function 4. We then
obtain the deductive result by taking the sum of all the intentional predicates. Finally, the valuation
vector is updated to be e⌧⇢ by taking the probabilistic sum � of the deductive result and the last step
valuation vector. Intuitively, this process is similar to the forward propagation of a neural network,
while GALOIS uses logic deduction to generate results.

The policy is trained in an on-policy manner. For each episode, the RL agent collects experiences
{(st, at, rt)}Tt=0

by interacting with the environment using current policy ⇡✓. With the collected
experiences, GALOIS can thus synthesize the optimal hierarchical logic program to get the maxi-
mum expected cumulative return: ⇡✓⇤ = argmax✓ Ea⇠⇡✓

hPT
t=0

�
t
r(st, at)

i
, where ✓ denotes the

learnable parameters in GALOIS. We train it with the Monte-Carlo policy gradient [42]:

✓
0 = ✓ + ↵r✓ log ⇡✓Q⇡✓ (st, at) + �✏r✓H(⇡✓).

where H(⇡✓) is the entropy regularization to improve exploration [22], the �✏ is the hyperparameter
to control the decrease rate of the entropy with time.

4 Experiments

To evaluate the effectiveness of GALOIS, we study the following research questions (RQs):
RQ1 (Performance): How effective is GALOIS regarding the performance and learning speed?
RQ2 (Generalizability): How is the generalizability of GALOIS across environments?
RQ3 (Reusability): Does GALOIS show great knowledge reusability across different environments?

4.1 Setup

Environments: We adopt the MiniGrid environments [7], which contains various tasks that require
different abilities (i.e., navigation and multistep logical reasoning) to accomplish. We consider four
representative tasks with incremental levels of logical difficulties as shown in Figure 5.
Baselines: Various baseline are used for comparisons, including mainstream DRL approaches, i.e.,
value-based (DQN [23]), policy-based (PPO [31]), actor-critic (SAC [13]), hierarchical (h-DQN [20])
algorithms, and the program synthesis guided methods (MPPS [44]). To avoid unfair comparison, we
use the same training settings for all methods (see Appendix B for more details).

4.2 Performance Analysis (RQ1).

To answer RQ1, we evaluate the performance of GALOIS and other baseline methods in the training
environment. The results in Figure 6 show that GALOIS outperforms all other mainstream baselines
in terms of performance in environments that require complex logic, showing that GALOIS can learn

4Please refer to the Fc function in the original paper [12] for specific details.

6

DoorKey

Pe
rf
or
m
an
ce

#Episode
0.0

0.2

0.4

0.6

1.0

0.8

0 1000 2000 3000 4000 5000

BoxKey

#Episode
0.0

0.2

0.4

0.6

1.0

0.8

0 1000 2000 3000 4000 5000
#Episode

UnlockPickup

0.0

0.2

0.4

0.6

1.0

0.8

0 1000 2000 3000 4000 5000
#Episode

MultiRoom

0.0

0.2

0.4

0.6

1.0

0.8

0 1000 2000 3000 4000 5000

Figure 6: Comparisons of GALOIS and related baselines regarding the asymptotic performance and
learning speed (all the results are averaged over 5 random seeds).

Table 1: Average return on the training environment and corresponding test environments with
different sizes, (v) denotes agent trained with valuation vectors, (tr) denotes the training environment.

Size (n) DQN DQN(v) SAC SAC(v) PPO PPO(v) hDQN hDQN(v) MPPS MPPS(v) Ours(v)

DoorKey

8*8 (tr) 0.473±0.130 0.919±0.071 0.966±0.019 0.938±0.052 0.919±0.017 0.958±0.008 0.979±0.002 0.928±0.114 0.861±0.046 0.949±0.021 0.963 ±0.008
10*10 0.166±0.072 0.794±0.170 0.791±0.133 0.818±0.136 0.717±0.024 0.871±0.028 0.452±0.496 0.834±0.335 0.894±0.022 0.941±0.033 0.963 ±0.007
12*12 0.050±0.035 0.730±0.175 0.527±0.066 0.829±0.184 0.494±0.021 0.800±0.014 0.152±0.263 0.769±0.232 0.906±0.029 0.950±0.040 0.963 ±0.007
14*14 0.028±0.022 0.698±0.109 0.362±0.044 0.787±0.132 0.403±0.056 0.726±0.008 0.000±0.000 0.734±0.251 0.904±0.027 0.952±0.040 0.965 ±0.006
16*16 0.006±0.005 0.877±0.109 0.161±0.081 0.886±0.065 0.269±0.035 0.750±0.008 0.000±0.000 0.755±0.235 0.910±0.047 0.944±0.045 0.963 ±0.007
18*18 0.000±0.000 0.680±0.238 0.149±0.071 0.734±0.173 0.139±0.032 0.543±0.021 0.000±0.000 0.799±0.214 0.911±0.050 0.932±0.033 0.964 ±0.005
20*20 0.000±0.000 0.746±0.184 0.099±0.042 0.690±0.185 0.211±0.062 0.768±0.034 0.000±0.000 0.729±0.256 0.929±0.028 0.963±0.007 0.966 ±0.005

BoxKey

8*8 (tr) 0.241±0.166 0.305±0.112 0.608±0.046 0.711±0.041 0.643±0.029 0.714±0.051 0.488±0.273 0.541±0.056 0.864±0.069 0.949±0.003 0.975 ±0.001
10*10 0.072±0.012 0.262±0.091 0.610±0.098 0.767±0.064 0.564±0.076 0.769±0.015 0.359±0.285 0.478±0.028 0.882±0.065 0.946±0.010 0.981 ±0.001
12*12 0.007±0.012 0.256±0.035 0.411±0.084 0.830±0.014 0.470±0.117 0.844±0.044 0.302±0.227 0.604±0.042 0.881±0.088 0.950±0.000 0.985 ±0.000
14*14 0.000±0.000 0.237±0.035 0.235±0.054 0.844±0.040 0.340±0.074 0.816±0.052 0.231±0.132 0.507±0.084 0.893±0.090 0.952±0.008 0.987 ±0.000
16*16 0.007±0.012 0.290±0.045 0.206±0.062 0.846±0.052 0.254±0.054 0.835±0.027 0.198±0.124 0.607±0.014 0.861±0.155 0.958±0.001 0.988 ±0.000
18*18 0.000±0.000 0.224±0.023 0.131±0.042 0.863±0.005 0.155±0.084 0.846±0.075 0.099±0.105 0.568±0.014 0.879±0.120 0.963±0.002 0.990 ±0.000
20*20 0.000±0.000 0.251±0.046 0.071±0.035 0.844±0.022 0.124±0.038 0.874±0.042 0.093±0.011 0.463±0.127 0.905±0.097 0.957±0.013 0.987 ±0.009

UnlockPickup

6*6 (tr) 0.236±0.240 0.428±0.164 0.222±0.069 0.510±0.145 0.763±0.014 0.826±0.054 0.496±0.346 0.824±0.233 0.645±0.104 0.813±0.039 0.901 ±0.021
8*8 0.008±0.017 0.324±0.159 0.164±0.059 0.457±0.196 0.578±0.094 0.869±0.023 0.187±0.225 0.820±0.257 0.747±0.143 0.872±0.025 0.933 ±0.014

10*10 0.000±0.000 0.307±0.122 0.080±0.020 0.460±0.252 0.364±0.112 0.908±0.010 0.097±0.164 0.843±0.208 0.765±0.115 0.935±0.012 0.953 ±0.007
12*12 0.000±.0.000 0.263±0.216 0.042±0.012 0.488±0.253 0.198±0.045 0.902±0.009 0.051±0.102 0.822±0.271 0.802±0.080 0.936±0.002 0.957 ±0.011
14*14 0.000±0.000 0.277±0.233 0.021±0.019 0.472±0.318 0.176±0.039 0.919±0.014 0.024±0.053 0.869±0.192 0.834±0.075 0.962±0.003 0.969 ±0.004
16*16 0.000±0.000 0.231±0.171 0.018±0.022 0.496±0.305 0.128±0.053 0.876±0.030 0.012±0.026 0.800±0.318 0.841±0.122 0.961±0.010 0.973 ±0.005
18*18 0.000±0.000 0.205±0.146 0.003±0.005 0.470±0.317 0.032±0.032 0.899±0.049 0.000±0.000 0.827±0.273 0.870±0.062 0.963±0.009 0.977 ±0.000

Multiroom

8*8 (tr) 0.000±0.000 0.014±0.008 0.000±0.000 0.007±0.007 0.002±0.003 0.236±0.036 0.000±0.000 0.000±0.000 N/A N/A 0.663 ±0.018
10*10 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.166±0.026 0.000±0.000 0.000±0.000 N/A N/A 0.622 ±0.017
12*12 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.115±0.050 0.000±0.000 0.000±0.000 N/A N/A 0.607 ±0.012
14*14 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.072±0.030 0.000±0.000 0.000±0.000 N/A N/A 0.529 ±0.020
16*16 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.001 0.100±0.009 0.000±0.000 0.000±0.000 N/A N/A 0.596 ±0.015
18*18 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.074±0.028 0.000±0.000 0.000±0.000 N/A N/A 0.529 ±0.029
20*20 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.001±0.003 0.078±0.037 0.000±0.000 0.000±0.000 N/A N/A 0.519 ±0.023

the comprehensive task-solving logic, leading to the highest performance. Note that in the DoorKey
environment, all baseline methods can reach optimal training performance, and DQN converges the
fastest. This is because the DoorKey environment is relatively simpler, whose intrinsic logic is easy
to learn, and hierarchical models have more parameters than the DQN model, leading to a slower
convergence speed. Moreover, we observe that MPPS, hDQN, and GALOIS converge faster than the
methods without hierarchy in environments that require more complex logic (e.g., UnlockPickup,
BoxKey). We can thus conclude that introducing hierarchy contributes to more efficient learning.
Besides, unlike other pure neural network baselines, GALOIS and MPPS present steadier asymptotic
performance during training with also smaller variance. This result demonstrates the effectiveness of
introducing program synthesis for steady policy learning.

Specifically, MPPS theoretically fails on MultiRoom as there exists no deterministic imperative
program description (denoted as N/A in Table 2). The reason is that the sequence of colored doors that
the agent should cross differs for each episode (e.g., ep1: red_door!yellow_door!blue_door,
ep2: blue_door!red_door!yellow_door), thus the program on solving this task is dynamically
changing, which fails the imperative program synthesizer. This further indicates the importance
of synthesizing declarative programs with cause-effect logic instead of merely finding the ordered
sequence of subprograms for solving tasks. More details are discussed in the following sections.

4.3 Generalizability Analysis (RQ2).

To answer RQ2, we evaluate models’ performance on test environments with different sizes and task-
solving logic (i.e., semantic modifications). Concretely, as shown in Table 1, GALOIS outperforms
all the other baseline methods (highest average returns are highlighted in gray) and maintains
near-optimal performance. Furthermore, we also observe that all other baseline methods maintain
acceptable generalizability. This contradicts the conclusion in [16] that neural network-based agents
fail to generalize to environments with size changes. We hypothesize that this attributes to the use

7

UnlockPickUp (train)

UnlockPickUp (sem-mod)

BoxKey (train)

BoxKey (sem-mod)

while ¬ goal do
(1.00) gt_box() :- ¬ has_key(X), is_agent(X), ¬ has_key(Y), is_env(Y)
(1.00) gt_key() :- ¬ has_key(X), is_agent(X), has_key(Y), is_env(Y)
(1.00) gt_door() :- has_key(X), is_agent(X), ¬ is_open(Y), is_door(Y)
(1.00) gt_goal() :- has_key(X), is_agent(X), is_open(Y), is_door(Y)

l:=

(1.00) toggle() :- at(X), is_box(X), ¬ has_key(Y), is_agent(Y)
(0.94) pick() :- at(X), is_key(X), ¬ has_key(Y), is_agent(Y)
(1.00) toggle() :- at(X), is_door(X), has_key(Y), is_agent(Y)

(0.95) right() :- Y current(X,Y), neg(X)
(1.00) left() :- Y current(X,Y), pos(X)
(1.0) up() :- X current(X,Y), neg(Y)
(0.89) down() :- X current(X,Y), pos(Y)

while ¬ subgoal do

Synthesized program

Figure 7: (left) shows the original and semantic-modified environments of UnlockPickup and BoxKey.
The optimal traces are marked in orange; (right) shows the synthesized program for BoxKey.

Table 2: Average return on test environments with semantic modifications.
DQN SAC PPO hDQN MPPS Ours

BoxKey 8*8(tr) 0.241±0.166 0.608±0.046 0.714±0.042 0.541±0.056 0.949±0.003 0.975 ±0.001
sem-mod 0.040±0.040 0.098±0.005 0.126±0.008 0.476±0.091 0.119±0.020 0.976 ±0.001

UnlockPickup 12*6(tr) 0.236±0.240 0.222±0.069 0.826±0.054 0.824±0.233 0.813±0.039 0.901 ±0.021
sem-mod 0.007±0.012 0.040±0.005 0.098±0.004 0.434±0.390 0.000±0.000 0.983 ±0.003

of different types of representations. To evaluate the effectiveness of using the valuation vector
representation, we conduct experiments using the observations directly obtained from environments
(e.g., the status and locations of objects). Surprisingly, though achieving decent performance in
the training environment, all the vanilla neural network-based baselines perform poorly on test
environments of different sizes. Therefore, we conclude that by introducing logic expression as state
representation (in the form of valuation vectors), better generalizability can be obtained. However, as
illustrated by the results, the valuation vector itself is not enough to achieve supreme generalizability,
GALOIS manages to achieve even better generalizability due to explicit use of cause-effect logic
with a hierarchical structure.

We then evaluate models’ generalizability on two test environments with minor semantic modi-
fications, namely BoxKey (sem-mod) and UnlockPickup (sem-mod), as shown in Figure 7 (left).
Specifically, for UnlockPickup (sem-mod), different from the training environment, there is no key in
the environment, and the door is already open. And thus the agent should head for the target location
directly. For BoxKey (sem-mod), the key is placed outside the box. Thus, optimally, the agent should
directly head for the key and ignore the existence of the box. The results in Table 2 indicate that all
the baselines are severely compromised while GALOIS retains near-optimal generalizability. This
attributes to its explicit use of cause-effect logic.

Figure 7 (right) shows an example synthesized program of GALOIS (we include more synthesized
program examples in Appendix A). E.g. The program specifies the cause of gt_box() (marked in
bold) as the agent has no key and there exists no visible key in the environment. Thus when placed
under BoxKey(sem-mod), GALOIS agent would skip gt_box() and head directly for the key since
gt_box() is grounded as false by the logic clause body. The result indicates that the explicit use of
effect-effect logic is not only verifiable for humans but allows GALOIS model to perform robustly
in environments with different task-solving logic. For MPPS, since it only learns a fixed sequence
of sub-programs it fails to generalize. E.g. the synthesized program of MPSS trained on BoxKey
is: toggle_box();get_key();open_door();reach_goal(), thus when the key is placed under
BoxKey(sem-mod), the agent would follow the learned program and redundantly toggle the box first.

4.4 Knowledge Reusability Analysis (RQ3)

To answer RQ3, we initialize a GALOIS model’s weights with the knowledge base learned from
other tasks (e.g., DoorKey!BoxKey) and fine-tune the entire model continuously. Figure 8 shows
the detailed results of knowledge reusability among three different environments. Apparently, the
learning efficiency can be significantly increased by warm-starting the weights of the GALOIS model
with knowledge learned from different tasks with overlapped logic compared with the one that is

8

DoorKey BoxKey

0 400 800 14001200200 600 1000

UnlockPickupBoxKey

0.2

0.4

0.6

0.8

1.0

0.0

UnlockPickupDoorKey

0.2

0.4

0.6

0.8

1.0

0.0
0 400 800 14001200200 600 1000 0 400 800 14001200200 600 1000

Pe
rf

or
m

an
ce

0.2

0.4

0.6

0.8

1.0

0.0

#Episodes#Episodes #Episodes
Figure 8: Knowledge reusability across different environments. full denotes warm-starting policy
with the full program, {where, how, what} denotes warm-starting with only the sub-program from
the corresponding hole function (e.g., ??WHERE), none means learning from scratch.

learned from scratch. Furthermore, we demonstrate the reusability of knowledge from each sub-
program, respectively. The results show that a considerable boost in learning efficiency can already be
obtained by reusing knowledge from each sub-program respectively (e.g., BoxKey(DoorKey-where)
agent is only warm-started with the sub-program of ??WHERE), which is an advantage brought by
GALOIS’s hierarchical and cause-effect logic. Figure 9 shows an example of knowledge reusing
from DoorKey to BoxKey environments (BoxKey(DoorKey-full)). By reusing the logic learned from
the DoorKey environment (the orange path in Figure 9), agent only needs to learn the cause-effect
logic of toggle_box() from scratch, which greatly boosts the learning efficiency.

5 Related Work

(a) DoorKey (b) BoxKey

Figure 9: The illustration of knowledge reused from DoorKey
to BoxKey. The orange path represents the reusable knowl-
edge (learned from DoorKey and directly reused in BoxKey).

Neural Program Synthesis: Given a
set of program specifications (e.g., I/O
examples, natural language instruc-
tions, etc.), program synthesis aims
to induce an explicit program that sat-
isfies the given specification. Recent
works illustrate that neural networks
are effective in boosting both the syn-
thesis accuracy and efficiency [9, 6,
3, 12, 18]. Devlin et al. [9] propose
using a recurrent neural network to
synthesize programs for string trans-
formation. Chen et al. [6] further proposes incorporating intermediate execution results to augment
the model’s input state, which significantly improves performance for imperative program synthesis.
@ILP [12] proposes modeling the forward chaining mechanism with a statistical model to achieve
synthesis for Datalog programs.

Program Synthesis by Sketching: Many real-world synthesis problems are intractable, posing a
great challenge for the synthesis model. Sketching [38, 52, 37] is a novel program synthesis paradigm
that proposes establishing the synergy between the human expert and the synthesizer by embedding
domain expert knowledge as general program sketches (i.e., a program with unspecified fragments
to be synthesized), based on which the synthesis is conducted. Singh et al. [37] propose a feedback
generation system that automatically synthesizes program correction based on a general program
sketch. Nye et al. [25] propose a two-stage neural program synthesis framework that first generates
a coarse program sketch using a neural model, then leverages symbolic search for second-stage
fine-tuning based on the generated sketch.

Program Synthesis for Reinforcement Learning: Leveraging program synthesis for the good of
reinforcement learning has been increasingly popular as it is demonstrated to improve performance
and interpretability significantly. Jiang et al. [16] introduce using @ILP model for agent’s policy,
which improves downstream generalization by expressing policy as explicit functional programs.
Imperative programs are used as a novel implementation of hierarchical reinforcement learning in
which the agent’s policy is guided by high-level programs [40, 44, 15]. In addition, program synthesis
has also been used as a post hoc interpretation method for neural policies [41, 2].

9

6 Conclusion

In this work, we propose a novel generalizable logic synthesis framework GALOIS that can synthesize
programs with hierarchical and cause-effect logic. A novel sketch-based DSL is introduced to allow
hierarchical logic programs. Based on that, a hybrid synthesis method is proposed to synthesize
programs with generalizable cause-effect logic. Experimental results demonstrate that GALOIS can
significantly outperform DRL and previous program-synthesis-based methods in terms of learning
ability, generalizability, and interpretability. Regarding limitation, as it is general for all program
synthesis-based methods, the input images need to be pre-processed into Herbrand base for the
synthesis model, which is required to be done once for each domain. Therefore, automatic Herbrand
base learning would be an important future direction. Another promising direction is applying
GALOIS in more challenge competitive multi-agent scenarios [50, 14, 47] or cooperative multi-agent
scenarios [21, 39, 49]. We state that our work would not produce any potential negative societal
impacts.

Acknowledgments and Disclosure of Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 62106172,
U1836214), New Generation of Artificial Intelligence Science and Technology Major Project of Tian-
jin (Grant No.: 19ZXZNGX00010), Science and Technology on Information Systems Engineering
Laboratory (Grant No. WDZC20205250407), National Research Foundation, Prime Ministers Office,
Singapore under its National Cybersecurity R&D Program (Award No. NRF2018NCR-NCR005-
0001), NRF Investigatorship NRF-NRFI06-2020-0001, the Ministry of Education, Singapore under
its Academic Research Fund Tier 1 (21-SIS-SMU-033), Tier 2 (MOE2019-T2-1-040), and Tier 3
(MOET32020-0004). Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not reflect the views of the Ministry of Education,
Singapore.

References
[1] Chitta Baral and Michael Gelfond. Logic programming and knowledge representation. The Journal of

Logic Programming, 19:73–148, 1994.

[2] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy
extraction. Advances in neural information processing systems, 31, 2018.

[3] Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging
grammar and reinforcement learning for neural program synthesis. arXiv preprint arXiv:1805.04276, 2018.

[4] Samuel R Buss. An introduction to proof theory. Handbook of proof theory, 137:1–78, 1998.

[5] Yushi Cao, Yan Zheng, Shang-Wei Lin, Yang Liu, Yon Shin Teo, Yuxuan Toh, and Vinay Vishnumurthy
Adiga. Automatic hmi structure exploration via curiosity-based reinforcement learning. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 1151–1155. IEEE,
2021.

[6] Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In International
Conference on Learning Representations, 2018.

[7] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment for
openai gym. https://github.com/maximecb/gym-minigrid, 2018.

[8] Francis Macdonald Cornford et al. The republic of Plato. CUP Archive, 1976.

[9] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet
Kohli. Robustfill: Neural program learning under noisy i/o. In International conference on machine
learning, pages 990–998. PMLR, 2017.

[10] Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic machines.
In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019.

[11] Francesc Esteva and Lluıs Godo. Monoidal t-norm based logic: towards a logic for left-continuous t-norms.
Fuzzy sets and systems, 124(3):271–288, 2001.

10

https://github.com/maximecb/gym-minigrid

[12] Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. Journal of Artificial
Intelligence Research, 61:1–64, 2018.

[13] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[14] Xiaotian Hao, Weixun Wang, Hangyu Mao, Yaodong Yang, Dong Li, Yan Zheng, Zhen Wang, and Jianye
Hao. Api: Boosting multi-agent reinforcement learning via agent-permutation-invariant networks. arXiv
preprint arXiv:2203.05285, 2022.

[15] Mohammadhosein Hasanbeig, Natasha Yogananda Jeppu, Alessandro Abate, Tom Melham, and Daniel
Kroening. Deepsynth: Automata synthesis for automatic task segmentation in deep reinforcement learning.
In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innova-
tive Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances
in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 7647–7656. AAAI Press,
2021.

[16] Zhengyao Jiang and Shan Luo. Neural logic reinforcement learning. In International Conference on
Machine Learning, pages 3110–3119. PMLR, 2019.

[17] Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. A composable specification language for reinforce-
ment learning tasks. Advances in Neural Information Processing Systems, 32, 2019.

[18] Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets.
Advances in neural information processing systems, 28, 2015.

[19] Daphne Koller, Nir Friedman, Sašo Džeroski, Charles Sutton, Andrew McCallum, Avi Pfeffer, Pieter
Abbeel, Ming-Fai Wong, Chris Meek, Jennifer Neville, et al. Introduction to statistical relational learning.
MIT press, 2007.

[20] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep reinforce-
ment learning: Integrating temporal abstraction and intrinsic motivation. Advances in neural information
processing systems, 29, 2016.

[21] Pengyi Li, Hongyao Tang, Tianpei Yang, Xiaotian Hao, Tong Sang, Yan Zheng, Jianye Hao, Matthew E
Taylor, and Zhen Wang. PMIC: Improving multi-agent reinforcement learning with progressive mutual
information collaboration. In International Conference on Machine Learning (ICML), 2022.

[22] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
International conference on machine learning, pages 1928–1937. PMLR, 2016.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533, 2015.

[25] Maxwell Nye, Luke Hewitt, Joshua Tenenbaum, and Armando Solar-Lezama. Learning to infer program
sketches. In International Conference on Machine Learning, pages 4861–4870. PMLR, 2019.

[26] Judea Pearl et al. Models, reasoning and inference. Cambridge, UK: CambridgeUniversityPress, 19, 2000.

[27] Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based reinforcement learning: Applica-
tions on robotics. Journal of Intelligent & Robotic Systems, 86(2):153–173, 2017.

[28] Erika Puiutta and Eric Veith. Explainable reinforcement learning: A survey. In International cross-domain
conference for machine learning and knowledge extraction, pages 77–95. Springer, 2020.

[29] Mukund Raghothaman, Jonathan Mendelson, David Zhao, Mayur Naik, and Bernhard Scholz. Provenance-
guided synthesis of datalog programs. Proc. ACM Program. Lang., 4(POPL):62–1, 2020.

[30] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the
brain. Psychological review, 65(6):386, 1958.

11

[31] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[32] Dana S Scott and Christopher Strachey. Toward a mathematical semantics for computer languages,
volume 1. Oxford University Computing Laboratory, Programming Research Group Oxford, 1971.

[33] Dhruv Shah, Alexander T Toshev, Sergey Levine, and brian ichter. Value function spaces: Skill-centric
state abstractions for long-horizon reasoning. In International Conference on Learning Representations,
2022.

[34] Dhruv Shah, Peng Xu, Yao Lu, Ted Xiao, Alexander T Toshev, Sergey Levine, et al. Value function spaces:
Skill-centric state abstractions for long-horizon reasoning. In Deep RL Workshop NeurIPS 2021, 2021.

[35] Ruimin Shen, Yan Zheng, Jianye Hao, Zhaopeng Meng, Yingfeng Chen, Changjie Fan, and Yang Liu.
Generating behavior-diverse game ais with evolutionary multi-objective deep reinforcement learning. In
IJCAI, pages 3371–3377, 2020.

[36] Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paraschos Koutris, and Mayur Naik. Syntax-
guided synthesis of datalog programs. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages
515–527, 2018.

[37] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feedback generation for introduc-
tory programming assignments. In Proceedings of the 34th ACM SIGPLAN conference on Programming
language design and implementation, pages 15–26, 2013.

[38] Armando Solar-Lezama. Program synthesis by sketching. University of California, Berkeley, 2008.

[39] Jianwen Sun, Yan Zheng, Jianye Hao, Zhaopeng Meng, and Yang Liu. Continuous multiagent control
using collective behavior entropy for large-scale home energy management. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 922–929, 2020.

[40] Shao-Hua Sun, Te-Lin Wu, and Joseph J Lim. Program guided agent. In International Conference on
Learning Representations, 2019.

[41] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri. Pro-
grammatically interpretable reinforcement learning. In International Conference on Machine Learning,
pages 5045–5054. PMLR, 2018.

[42] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

[43] Patrick Henry Winston. Artificial intelligence. Addison-Wesley Longman Publishing Co., Inc., 1992.

[44] Yichen Yang, Jeevana Priya Inala, Osbert Bastani, Yewen Pu, Armando Solar-Lezama, and Martin Rinard.
Program synthesis guided reinforcement learning for partially observed environments. Advances in Neural
Information Processing Systems, 34, 2021.

[45] Philipp Zech, Simon Haller, Safoura Rezapour Lakani, Barry Ridge, Emre Ugur, and Justus Piater.
Computational models of affordance in robotics: a taxonomy and systematic classification. Adaptive
Behavior, 25(5):235–271, 2017.

[46] Peng Zhang, Jianye Hao, Weixun Wang, Hongyao Tang, Yi Ma, Yihai Duan, and Yan Zheng. KoGuN:
Accelerating deep reinforcement learning via integrating human suboptimal knowledge. In Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI), pages 2291–2297, 7
2020.

[47] Yan Zheng, Jianye Hao, Zongzhang Zhang, Zhaopeng Meng, Tianpei Yang, Yanran Li, and Changjie Fan.
Efficient policy detecting and reusing for non-stationarity in markov games. Autonomous Agents and
Multi-Agent Systems, 35(1):1–29, 2021.

[48] Yan Zheng, Yi Liu, Xiaofei Xie, Yepang Liu, Lei Ma, Jianye Hao, and Yang Liu. Automatic web testing
using curiosity-driven reinforcement learning. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pages 423–435. IEEE, 2021.

[49] Yan Zheng, Zhaopeng Meng, Jianye Hao, and Zongzhang Zhang. Weighted double deep multiagent
reinforcement learning in stochastic cooperative environments. In Pacific Rim international conference on
artificial intelligence, pages 421–429. Springer, 2018.

12

[50] Yan Zheng, Zhaopeng Meng, Jianye Hao, Zongzhang Zhang, Tianpei Yang, and Changjie Fan. A deep
bayesian policy reuse approach against non-stationary agents (neurips). In Advances in Neural Information
Processing Systems, volume 31, 2018.

[51] Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang Liu, Ruimin Shen,
Yingfeng Chen, and Changjie Fan. Wuji: Automatic online combat game testing using evolutionary
deep reinforcement learning. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 772–784. IEEE, 2019.

[52] He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan. An inductive synthesis framework for
verifiable reinforcement learning. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 686–701, 2019.

13

	Introduction
	Preliminary
	Markov Decision Process
	Inductive Logic Programming

	Methodology
	Motivation
	Sketch-based Program Language
	Sketch-based Program Synthesis

	Experiments
	Setup
	Performance Analysis (RQ1).
	Generalizability Analysis (RQ2).
	Knowledge Reusability Analysis (RQ3)

	Related Work
	Conclusion

