Characterizing and Detecting Python Version
Incompatibilities Caused by Inconsistent Version
Specifications

Shuo Li*", Haocheng Gao®", Wei Chen®** Yi Li®*, Haoxiang Tian®",
Chengwei Liu®, Dan Ye®

@Institute of software, University of Chinese Academy of Sciences, Beijing, China
b University of Chinese Academy of Sciences, Beijing, China
¢Nanyang Technological University, Singapore
iKey Laboratory of System Software (Chinese Academy of Sciences) and State Key
Laboratory of Computer Science, Institute of Software, Chinese Academy of
Sciences, Beijing, China
¢Nanjing Institute of Software Technology, Nanging, China

Abstract

Python interpreter serves as the foundation for developing Python projects.
Configuring compatible Python version is essential for packaging and reusing
third-party libraries (TPLs) in the Python ecosystem. When the Python
distribution version range constraint of a third-party library is incorrectly
declared, it may lead to installation failures or runtime errors when the library
is used by a client project. We call such errors Python Distribution Version
Specification Error (PDSpecErr). PDSpecErrs are not studied adequately
and there still lacks a method to guarantee the correctness of Python version
specifications. To combat PDSpecErrs and mitigate their adverse impacts
on downstream applications, we conducted the first exploratory study on
3,000 real-world TPLs to investigate PDSpecErrs about their prevalence,
symptom categories, and diagnostic patterns. Based on the comprehensive
study, we designed and implemented PyChecker, a tool to automatically

*Corresponding author
Email addresses: 1ishuo19@otcaix.iscas.ac.cn (Shuo Li),
gaohaocheng21@otcaix.iscas.ac.cn (Haocheng Gao), chenwei@otcaix.iscas.ac.cn
(Wei Chen), yi_li@ntu.edu.sg (Yi Li), tianhaoxiang20@otcaix.iscas.ac.cn
(Haoxiang Tian), chengwei.liu@ntu.edu.sg (Chengwei Liu),
yedan@otcaix.iscas.ac.cn (Dan Ye)

Preprint submitted to The Journal of Systems and Software January 24, 2025

detect PDSpecErrs in TPLs, locate root causes, and generate fixing solutions.
We evaluated PyChecker on 3,000 TPL releases and PyChecker detected 842
PDSpecErrs, reporting their root causes and recommending fixing solutions.
We have reported 52 PDSpecErrs to the concerned developers. So far, 32
issues have been confirmed and fixed according to our suggestions.

Keywords: Python library, Python version incompatibility, Exploratory
study

1. Introduction

The Python community is flourishing with millions of Third-Party Libraries
(TPL) indexed in the online central repository PyPI [1]. Contributors pub-
lish their projects to the repository, from which downstream users can down-
load and reuse the TPLs. With the online repository and client-side tools,
such as pip [2], the installation of TPLs can be fully automated. Notably,
each Python third-party library (TPL) includes a set of configuration entries
typically found in configuration files such as setup.py, pyproject.toml, or re-
quirements.txt. These entries contain essential metadata about the project,
including its description, dependencies, and environmental restrictions. For
instance, in the setup.py file, a configuration entry python_requires might
look like this: “python_requires=’>=3.6, <4.0’". These metadata help
downstream users understand how to use the TPL and facilitate many client-
side tasks and tools.

TPL developers may set the configuration entries incorrectly, which can
potentially result in version incompatibility between the configuration op-
tions. This, in turn, can lead to errors either during installation or run-time
for downstream users. Taking Figure 1 as an example, the TPL goatools
1.2.3 [3] forgets to declare that the compatible Python versions should be
3.0 or above (by setting “python requires” entry). This incorrectly implies
that the library is without any Python version restriction. As a result, an “in-
stallation failure” occurs when a downstream user tries to install the library
with Python 2.7. This is due to the TPL using a Python 2-incompatible
syntax Ezception Chaining (PEP 3134 [4]) in setup_helper.py. The ver-
sion incompatibility is caused by the inconsistent version specifications be-
tween “python requires” and configuration options in setup_helper.py.
Of course, users may avoid this problem by changing the local Python en-
vironment or downloading other alternative libraries. However, the same

goatools-1.2.3 A7

Developer (tar.gz) rd
Dependency
l fmpl. - xlrd=—12.0
pandas
[fl publish
Python version

goatools not declared

§§ PKG-INFO ‘pip install goatools == 1.2.3

tup.cf
setup.cfg 0

e &

setup.py

dep (5 1.2.0)
1

,
Zoad 1
,

< dep
==l pandas

SyntaxError: invalid syntax

Local environment
Figure 1: A configuration error example.

specification error may still cause other incompatibilities when the prob-
lematic library is used by other client projects. We call such incorrectly
declared Python version ranges in a third-party library Python Distribution
Version Specification Errors (PDSpecErrs), which often result in installa-
tion failures or runtime errors of client projects. We found that even widely
used frameworks like TensorFlow with stars over 184K contains PDSpecFErr.
The PDSpecErr persists over two years and still confuse downstream users
[5]. Unfortunately, it is difficult for downstream users to prevent and detect
PDSpecErrs due to the complexity of the configurations and the target TPL
source code.

However, few studies have focused on the problem. Existing works mainly
focus on dependency conflicts [6, 7, 8] and dependency errors [9, 10, 11,
12]. These works address dependency-related issues from the perspective of
downstream users based on the assumption that TPL configuration entries
are correct. In contrast, we find the configuration entries in Python TPLs are
not always reliable. Combined with an overreliance on human practices and
a lack of collective awareness, these factors together result in the oversight of
PDSpecErrs and the absence of a reliable approach to ensure the correctness
of Python version specifications. To fill this gap, our work revolves around
identifying TPLs” Python version incompatibilities caused by inconsistent
version specifications in configuration entries.

To combat PDSpecErrs and mitigate their adverse impacts on down-

stream applications, we begin by tracking and summarizing the underlying
automated procedure from publishing to installing a TPL. This helps us
understand why Python version constraints in TPL configurations are error-
prone. We then conduct an exploratory study on PDSpecErrs among the top
3,000 real-world TPLs in the Python community to investigate its prevalence,
characters, manifestation patterns, and diagnostic patterns. Our exploration
finds that, 17.8% (534 out of 3,000) of the collected TPLs experience installa-
tion failures or run-time errors, among which 84.46% (299/534) are relevant
to PDSpecErrs. We retrieve from Libraries.io that these failed cases have
the potential to cause disruptions on a vast scale on downstream projects
with over 45K libraries and 182K repositories. Some characteristics of TPLs,
e.g., the total number of version releases and average update time interval,
exhibit significant differences between TPLs with and without PDSpecErrs.
These characters can help provide useful insights for fostering a more reliable
development ecosystem. Furthermore, these PDSpecErrs can occur in TPL
installation and run-time with several distinct error manifestation patterns.
Motivated by the manifestations, we analyze the common diagnostic pat-
terns of PDSpecErrs relating to the “python_requires” configuration entry.
Specifically, we identify three diagnostic patterns of PDSpecErrs, i.e., setup
script issue, incompatible feature, and Python version conflict.

Based on our findings, we propose PyChecker, a tool to automatically
detect PDSpecErrs. PyChecker thoroughly inspects a TPL’s configuration
file and source code to detect PDSpecErrs under three diagnostic patterns.
We evaluate PyChecker on the top 3,000 TPLs and find 842 TPLs with
PDSpecErrs. During our investigation, we find that a single TPL may be
associated with multiple diagnostic patterns simultaneously, and PyChecker
is able to detect them at the same time. Additionally, PyChecker also re-
veals obscured PDSpecErrs that hide behind other errors, which can only
be detected under specific conditions. With limited time and manpower, we
have reported 52 detected PDSpecErrs to the relevant developers. So far, 32
PDSpecErrs (61.54%) have been confirmed and fixed following our sugges-
tions. Many developers conveyed their gratitude to us for reporting errors in
their project configurations.

In summary, this work makes the following contributions.

e Originality: To the best of our knowledge, we conduct the first explo-
ration study of TPL PDSpecErrs within the Python community. Our
study can help better understand the characteristics of PDSpecErrs

; METADATA
qB .

developer

grequires-python%%
irequires-dist i

classifiers

&)

wheel

—

source code [publiTh

| request for a TPP p (pip) | —
T

choose and download a
distribution pg;¢ (pij

are all its

— P P I dependencies
J = J | o
other resources * build i{ldtp aTkage @ @ @ ["install [Y .
(setuptools) | RESTAPI | downstream
pypi.org/project/<pkgname>/<version> is Pais a wheel? v users
N requires dist :
requires_python : N

python_require:
install_requires
classifiers

classifiers

build distribution with all
dependencies (setuptools)

requir:

classifiers

move all built
distributions (pip)

Figure 2: The procedure from packaging to installing a TPL.

and offers valuable insights for future studies in this domain.

e Technique: We categorize three common symptoms of PDSpecErrs
and identify corresponding diagnostic patterns. Based on our findings,
we designed PyChecker to detect PDSpecErrs automatically. Our eval-
uation reveals that PyChecker can effectively identify PDSpecErrs, in-
cluding obscured ones. Additionally, developers’ responses validate the
usefulness of PyChecker in aiding developers in detecting PDSpecErrs.

e Dataset: PyChecker and the experiment dataset are publicly available
at http://github.com/PyVCEchecker/PyChecker, which can facili-
tate future research.

2. Problem Analysis

This section first summarizes the underlying procedure of packaging, pub-
lishing, and installing a TPL and highlights the usage and transformation of
typical configuration entries during the procedure. Then, we analyze why
PDSpecErrs occur and which tasks in the procedure are error-prone.

2.1. Procedure Summarization

Figure 2 summarizes the procedure from TPL development to installa-
tion, including three stages: packaging, publishing, and installing.

http://github.com/PyVCEchecker/PyChecker

Stage 1: Packaging a TPL. To package a project into a TPL, a devel-
oper should create a configuration file in addition to the source code and
other necessary resources (e.g., data, tests, and documents). A configura-
tion file usually contains descriptive and directive entries. Descriptive en-
tries provide project meta-information, such as the release name and ver-
sion. Directive entries specify the required dependency resources and their
versions and dictate the build tool, usually setuptools [13], to automate
the project’s build and packaging task. Note that three kinds of configura-
tion files, i.e.,setup.py, setup.cfg, pyproject.toml, are commonly used,
and the entries of the same semantics within them can be named differ-
ently, such as “python requires” in setup.cfg and setup.py [14] and
“requires-python” in pyproject.toml [15]. These configurations files are
typically located at the root of the TPL directory and may be present to-
gether or as standalone files within the project.

TPL packaging can generate two types of releases, including binary re-
leases (also known as Wheel binary or built) and source code releases. The
build tool creates metadata files by extracting information from the config-
uration file. Specifically, besides the compiled extensions, a wheel removes
the original configuration file and generates a metadata file, METADATA. In
contrast, a source release retains the original configuration file and creates
some metadata files, e.g., PKG-INFO and requirements.txt, each containing
a part of the original information and configuration options. Notably, some
entries in the generated metadata files are renamed. In particular, the two re-
strictive entries are renamed to “requires-python” and “requires-dist”,
respectively.

Stage 2: Publishing a TPL. For an uploaded TPL, PyPI extracts infor-
mation from metadata file(s) and presents it through the web page and
REST APIs. This allows downstream users to quickly grasp essential de-
tails such as release version, type, and description. Users can also draw pre-
liminary conclusions by examining more detailed entries like semantic tags
(“classifiers”), required Python versions (“requires-python”), and de-
pendencies (“requires-dist”). For instance, the entry “requires-python”
helps users assess compatibility with their local environment.

Stage 3: Installing a TPL. Installing a TPL requires to recursively download
and build the target TPL and its dependencies. Overall, this stage contains
several steps. (1) pip, the most common client-side tool collaborating with

PyPI [16], requests a target TPL p from PyPI and receives an available re-
lease list of p. (2) pip selects and downloads the latest compatible release pg;s
from the list, prioritizing wheel releases for faster installation. If a specific
TPL version is provided, pip will download the corresponding version in-
stead. For example, if the user wants to install version 1.2.3 of the requests
library, they can specify the version in the pip command as “pip install
requests==1.2.3". This command instructs pip to download and install
version 1.2.3 of the requests library, bypassing any newer versions. (3) pip
then gets all required dependencies and their restricted versions from the
entry “requires-dist” in pg;s’s metadata file METADATA and checks whether
all dependencies are installed. For source releases, pip generates METADATA
using setup.py. (4) Specific to source releases, pip builds pgs with a build
tool after ensuring all dependencies are installed. (5) pip copies built files to
a specific directory, such as site-package, and creates an entry point.

2.2. Misconfigured Version Specifications

Overall, the TPL configuration is error-prone due to its heavy reliance
on the manual work of developers and the lack of effective inspection mech-
anisms.

For developers, diverse entries in TPL configuration are often renamed
and reused across files and stages, which may lead to developers’” misunder-
standing, neglect, or arbitrary settings. Additionally, setting entries requires
a comprehensive project understanding, yet developers may lack awareness,
resulting in overlooked dependencies or relaxed restrictions.

For downstream users, installing a TPL is also prone to encountering
misconfigured version specifications. The entry "requires-dist” may miss
some dependencies. Further, incorrect "requires-python” may lead down-
stream users to configure their environments with inappropriate Python in-
terpreters, causing compatibility problems.

Notably, to gain a comprehensive study and help Python developers and
users combat these errors, we focus on errors related to the configuration
entries “python requires” and “install requires” for their widespread
usage and closely associated with PDSpecErrs. Specifically, we explored var-
ious errors and, based on development practices and the guidance provided
by accepted Python Enhancement Proposals (PEPs) [17, 18], we found that
most other errors were related to user-defined entries, which are less com-
mon. Other entries, such as “programming languages”, may be missing in
TPLs. In comparison, the errors caused by the two standard entries were

7

much more prevalent. Additionally, the analysis in procedure summarization
also highlights the importance of these two entries and their attributions to
PDSpecErrs. Therefore, we decided to focus on these two most common
entries. Other configuration errors are left for future work.

3. Exploratory Study

We conducted an exploratory study to characterize the prevalence of
PDSpecErrs, explore the potential influences of the specific inherent char-
acteristics of TPLs on their occurrences, and identify error manifestation
patterns. Subsequently, we identified and summarized three diagnostic pat-
terns for detecting PDSpecErrs.

3.1. Data Collection

To the best of our knowledge, there does not exist any public dataset of
TPL releases with PDSpecErrs. Additionally, as of December 2023, approx-
imately 499,871 libraries, encompassing over 5,158 546 releases, have been
published on the PyPI ecosystem [1]. Analyzing all libraries and their releases
becomes a prohibitive task. Therefore, following previous studies [10, 19], we
focused on the top 3,000 TPLs ranked in PyPI according to the SourceR-
ank provided by Libraries.io [20]. Focusing on the top 3,000 libraries is
due to that top libraries are widely adopted and significantly impact the
ecosystem, making them highly representative of broader trends and prac-
tices. The threshold of 3,000 is derived from existing research; for instance,
Huang et al., [21] investigated 3,000 real-world applications, while Watch-
man [6] examined the top 1,000 popular Python projects on PyPI. Thus,
selecting 3,000 libraries allows for a comprehensive analysis that aligns with
established studies.

To identify and collect TPLs that exhibit PDSpecErrs, we simulated the
behavior of downstream users by installing and running each TPL with its
latest version in multiple simulated local environments. During this pro-
cess, we checked the compatibility of each TPL with its declared compatible
Python versions, automated by scripts. For any error that occurred dur-
ing the installation or run-time, we collected it and manually performed a
thorough analysis of the error messages to verify whether it was caused by a
PDSpecErr. The detailed steps of our data collection are as follows.

Step 1: Constructing local environments for TPLs. For each collected TPL,
we created multiple container-based local environments with different Python
versions according to its declared compatible Python versions in metadata.
Notably, for the declared Python distributions, we selected version 2.7 and
versions 3.5 to 3.10, as they are mature and widely used by Python devel-
opers and the community. Each local environment was constructed with the
official Docker image containing the corresponding Python interpreter and
the Debian 10 operating system.

For example, docker-compose 1.29.2 [22] specifies the Python version
requirement > 3.4. Thus, its local environments are constructed by six con-
tainers, and each container is configured with a different Python version
among 3.5 to 3.10. The TPLs that do not declare their Python version con-
straints are supposed to be compatible with all Python versions, and thus,
their local environments were installed with all six Python versions.

Step 2: Installing and importing TPLs. We ran the command “pip install
<lib-name>==<version>” to install a release lib in each constructed Docker
container. [ib possibly contains a PDSpecErr when the installation fails in
one or more local environments. For example, docker-compose 1.29.2 is
successfully installed in all its local environments except the one with Python
3.5. To mitigate the influences brought by network disruptions, we retried
each failed installation three times, and considered it a failure only if none of
the retries succeeded. The stimulation process run for 7 days and 16 hours
running on Ubuntu 18.04 LTS with 8-core 3.50 GHz CPU and 32 GB RAM.

Considering that PDSpecErrs may also occur at run-time besides in-
stallation, for the TPLs that can be successfully installed in all local en-
vironments, we further extracted their top-level modules from the meta-
data file top-level.txt and ran the command python -c ‘¢ ‘importing
<module>’’ to simulate importing a module in /b at the run time. Note
that due to the diverse and complex nature of run-time errors, they may
arise under specific triggering conditions. Therefore, for the sake of time and
labor costs, we focused solely on errors related to importing modules in this
context.

Step 3: Identifying TPLs with PDSpecErrs. After Step 2, among the tested
libraries, 371 and 163 TPLs experienced installation failures and run-time
errors, respectively. Notably, run-time errors are not limited to errors that
occurred during importing the top-level modules of TPLs. As we have men-
tioned above in Step 2, due to our time and labor constraints, only top-level

9

import errors(as we mentioned before, it refers to the errors caused by import-
ing a module at the highest level within the TPL hierarchy, such as “import
scipy”, instead of “import scipy.linalg”) were considered in the context
of run-time errors in the automated detection process.

According to the error messages and the stages where the identified errors
occur, three co-authors manually checked if the errors are PDSpecErrs. Three
authors all have at least eight years of programming experience in Python.
It took about two weeks to label and analyze the 534 failed TPLs.

Specifically, we maintained a shared table with six columns, including
library, version, error message, failed Python versions, error stage (install or
import), and PDSpecErr (True or False). At each round, each author was
randomly assigned 100 failed TPLs with the corresponding error messages.
After about five rounds of crossed-validations, all three co-authors indepen-
dently checked all the error messages of each failed TPL. The Cohen’s kappa
rate reaches 99.19%. Each inconsistency was discussed among the authors
until they reached a consensus.

Finally, we obtained 299 TPLs containing PDSpecErrs, out of which 170
experienced installation failures and 129 experienced run-time errors. There
were 135 removed releases, which failed for several other reasons, such as
TPLs being removed or unavailable, C language-related errors, and so on.
Note that pip, as the Python community’s de facto TPL manager, executes
commands sequentially and only reports the first encountered failure, and
thus, the other following errors would not be exhibited. Therefore, we can
only categorize a TPL error into one type of PDSpecErrs, which may miss
cases in which a TPL has multiple PDSpecErrs.

3.2. Observation 1 (Prevalence)

For investigating the prevalence of PDSpecErrs, we conducted the statis-
tics of TPLs containing PDSpecErrs in terms of: (1) the number of errors
associated with each Python version, (2) the number of errors occurring in
each stage, and (3) the number of Python versions with which each TPL
fails. The results are shown in Figure 3.

Figure 3 (a) shows that most TPLs failed in Python 2.7, 3.5, and 3.10.
This is understandable since Python 2.7 and 3.5 have reached their end-of-
life (EOL), and many newly published TPLs tend to stop supporting them.
Other failures mostly happen on TPLs that release updates less frequently,
failing to keep up with the pace of Python version upgrades.

10

250) 140 250

193
50
100 83
50
5 5 2 6 0
0 e —
1 2 3 4 5 6

7

-
=)
3

13 121
00 =)
N 84
50 132 K 30
100 60 49 45
40
50 42
16 14 14 14 I 20
0 - - - -

27 35 36 37 38 39 310

Python version Occurring time

Number of failed TPLs
Number of failed T
Number of failed TPLs

install runtime

Number of Python versions

(a) The number of failed TPLs with each Python version (b) Statistics of failed TPLs in terms (c) The statistics of TPLs in terms of how many
of package type and occurring time Python versions they simultaneously failed with

Figure 3: Statistics of TPLs containing PDSpecErrs.

Figure 3 (b) shows that the majority of PDSpecErrs occurred during the
installation stage. We also count the library types (binary and source-code
releases) that failed in each stage. In both installation and run-time stages,
the majority of the TPLs are released as source-code releases. In contrast,
the binary releases are less error-prone as they do not need to be built locally.

Figure 3 (c) shows that most problematic TPLs (refer to the TPL with
PDSpecErrs) failed with one or two Python versions, and only a few releases
failed in more than three.

We also identified libraries and repositories that might be affected by
these 299 TPLs on Libraries.io [23]. Our findings reveal that these failed
TPLs may cause significant disruptions across more than 45k libraries and
182k repositories. Notably, 266 out of the 299 erroneous TPLs do not specify
Python requirements with “python_requires”, even if some of them are
incompatible with certain Python distributions.

Finding 1: PDSpecErrs appear often (299/3000) among popular Python
libraries. They may cause installation failures and run-time errors,
mostly manifest with one or two Python versions.

Notably, our primary aim is to investigate the prevalence of PDSpecErrs,
even if some PDSpecErrs could not be discovered during the exploration
due to some reasons. Despite its incompleteness, we've already observed a
significant prevalence of the issue. We believe that with further in-depth
research, more related issues will be discovered.

3.3. Observation 2 (Characteristics)

To further characterize the problematic TPLs (299 TPLs), we analyzed
problematic TPLs and the normal TPLs (it refers to the TPLs without

11

PDSpecErrs, 2701 TPLs) and compared them in multiple aspects, aiming
to identify some distinct characteristics of the problematic TPLs to provide
insights for fostering a more reliable development ecosystem. While these
characteristics may not directly help to detect PDSpecErrs, they offer useful
insights in deriving practical suggestions and guidelines for developers.

For each subject TPL, we retrieved its license (stored in the core meta-
data specifications), number of version releases, and the release time of the
earliest and the latest versions from Libraries.io [23], and retrieved the other
metadata information and the topic information from the project web page
in PyPI [1]. Many characteristics were investigated, but only those showing
significant differences are discussed. Among these, the number of forks and
contributor statistics are used to evaluate how maturity affects PDSpecErr
occurrences. The rationale is that a mature library tends to attract more at-
tention, leading to more stars, forks, and contributors. Version release statis-
tics and average update frequency reflect the activity level of the project,
while the count of Python files offers insights into its structure. Addition-
ally, license type and project topic are considered as metrics that influence
how a TPL is used.

(1) Version Releases Statistics. As figure 4 (1) shows, the interquartile ranges
(IQR) for both groups demonstrate that, on average, the version releases of
the problematic TPLs are more than that of the normal TPLs.

17,00 51.00 16,04 120.17 40. 336.50 14.00 72.00 6.0 39.00

= i I |

PDSpecErrs 6w b 114.00 31.00 16.00

2000 57.50 2209 113.37 63 373.00 19/00 73.00 10,00 49.00

e — Bl ——H L —|H

38.00; 46.15 182.00 38.00 23.00

0 20 40 60 80 100 0 50 100 150 200 250 0 200 400 600 800 0 20 40 60 80 100120140160 0 20 40 60 80 100
(1) Version Releases Statistics (2) Average Update Frequency (days) (3) Forks. (4) Contributors Statistics (5) Python File Count Statistics

Figure 4: Comparing statistics of TPLs with and without PDSpecErrs.

(2) Average Update Frequency. This character of a TPL is defined as the total
time elapsed between its earliest and latest releases, divided by its number of
releases. As figure 4 (2) shows, the problematic TPLs exhibit slightly lower
quartile values (Q3: 113.37, and median: 46.15), implying that problematic
TPLs update more frequently than normal ones. We suspect that these
problematic TPLs evolve more rapidly and are not always thoroughly tested,
especially on the compatibility of Python versions.

12

The characteristics observed above suggest that the problematic TPLs
tend to evolve faster with continuous updates, which may have contributed
to their instability in terms of Python compatibility. It is noteworthy that the
problematic TPLs are among the top 3,000 ranked libraries on Libraries.io,
indicating a high degree of popularity and maturity. Yet, despite their ma-
ture status, our observation further accentuates the subtlety of PDSpecErrs,
highlighting the need for designing detection tools to help identify them.

(8) Number of Forks. As figure 4 (3) shows, problematic TPLs tend to be
forked more frequently, indicating that more TPL developers are interested
in modifying and contributing to them.

(4) Number of Contributors. As figure 4 (4) shows, the first quartile and
median (Q1: 19.00, median: 38.00) of problematic TPLs are higher than
that of normal ones (Q1: 14.00, median: 31.00), suggesting a potentially
larger and more active contributor community.

(5) Number of Python Files. The number of Python Files is calculated by the
total count of Python files present within a given TPL. As figure 4 (5) shows,
problematic TPLs tend to have a larger number of Python files, indicating
potentially more complex project structures. We suspect that more complex
project structures may increase the possibility of using incompatible Python
version features.

The data suggests a counter-intuitive fact that accepting contributions
from larger developer community may not help in identifying and fixing
PDSpecErrs in TPLs. In fact, this may further contribute to their insta-
bility, which is amplified by the project complexity.

Finding 2: PDSpecErr issues may persist in highly popular, actively
updated, and widely contributed TPLs. Frequent upgrades and complex
project structures could potentially contribute to the instability in Python
version compatibility. This finding highlights the challenge and impor-
tance of detecting PDSpecErrs in TPLs.

To understand if there is any obvious pattern for problematic TPLs, we
calculated the error ratios across project domains and license types.

13

0225
0.6 0.200
o5 0175

0150
=1 2 0125
%03 & 0.100
B £ 0075
- H 0.050
0.025
0.000

o oM e st
e et o V\\\\(:\«,\\C\\c

6 . ons® & e e

AT AN (e (qeenST et
L R Sy
N A S 1 2o

(2) Err types

Figure 5: Error Ratio of TPLs for various Project Topics and Licenses.

(6) Error Ratio of TPLs in various Project Domains. “Topic” is used to
provide additional information about the subject matter or domain of the
TPL. This error ratio is calculated by dividing the total number of prob-
lematic TPLs appearing under a topic by the total number of TPLs of the
same topic. As shown in figure 5 (1), the ratio of TPLs with PDSpecErrs
on hardware related topics is high, accounting for 36% (hardware) and 63%
(embedded system), while the ratios on other topics are much lower. We fur-
ther calculated the average number of repositories that depend on the TPLs
of each topic (also retrieved via [23]).

Conversely, topics with lower error ratios have a higher number of depen-
dent repositories, with a minimum of 791. This seems to suggest that TPLs
that are referenced by more repositories are less prone to PDSpecErrs, and
hardware-related TPLs do not belong to this category. Another plausible
explanation is that TPLs associated with topics that do not prioritize cod-
ing standards and focus solely on practicality, may neglect Python version
compatibility issues. This oversight increases the likelihood of encountering
PDSpecErrs in the TPLs.

(7) Error Ratio of TPLs for various Licenses. The license information is
crucial for users and developers to understand the permissions and restric-
tions associated with using and distributing a particular software package,
which may influence the stability and error rates of TPLs. For instance, more
permissive licenses might attract a broader pool of contributors, potentially
leading to more frequent updates but also a higher chance of introducing
PDSpecErrs. This error ratio is calculated by dividing the total number
of problematic TPLs appearing under a type of license by the overall fre-
quency of occurrences of the same license type. As shown in figure 5 (2), the
GPL family appears to have a higher error ratio (AGPL:21.4%, GPL:17.6%,
LGPL:12.9%) than the rest. We speculate this phenomenon arises due to the
fact that the GPL license family restricts commercial redistribution, which

14

may limit participation of large software companies. On the other hand,
Apache and similar licenses are widely adopted by commercial entities, po-
tentially resulting in higher quality standards for TPLs and, consequently, a
reduced likelihood of encountering PDSpecErrs.

Finding 3: PDSpecErrs is more prevalent in hardware-related areas and
in TPLs with GPL family licenses.

3.4. Observation 8 (Manifestation Patterns)

Besides the inherent characteristics of TPLs with PDSpecErrs, we also
analyzed PDSpecErrs’ manifestation patterns based on their error messages.
According to the stages where PDSpecErrs occur, we grouped PDSpecErrs
into two types: installation failures and run-time errors. Specifically, we
employed a heuristic algorithm to iteratively classify error messages of TPLs.
Initially, we randomly selected a set of error messages and categorized them
by referring to [24] where two authors independently reviewed and identified
the issues, and any discrepancies between their assessments were resolved
with the involvement of a third author. After each iteration, the remaining
unclassified error messages are further categorized. We added a new category
if the error message cannot be classified into the previous categories. Two
authors primarily carried out the categorization. In cases of disagreement,
a third author joined the discussion until a consensus was reached. Finally,
we concluded four distinct manifestation patterns of installation failures and
one of run-time errors.

(1) Installation failures. Based on the manually categorized statistical re-
sults, 170 TPLs encountered installation failures, 105 of which exhibited
dependency-choosing failures, and 65 encountered build failures. Dependency-
choosing failures refer to that pip fails to find any suitable TPL version
for installation to proceed, which occurs at the initial stage of download-
ing libraries. They typically prompt an error message such as “No matching
release found for <lib-name>” when attempting to choose and download
a suitable release using pip. Among 105 failing TPLs, 56 are source-code
releases, and the remaining 49 are binary releases. Such failures are relevant
to both “python_requires” and “install_requires” because pip cannot
find any TPL release specified in “install requires” that is also compat-
ible with the local Python interpreter as specified by “python_requires”.

15

In such a case, at least one of the two entries may be misconfigured. For
example, installing flower 1.0.0 [25] with Python 3.5 would fail as one of
its required dependencies celery (>=5.0.5) restricts Python version >=3.6.

The remaining 65 failures are referred to as build failures. These failures
happen between library downloading and importing. Specifically, misconfig-
uring the entry, “python_requires”, can lead downstream users to employ
an unsuitable Python interpreter, resulting in build failures when pip has
downloaded the TPL and executes the setup script (i.e., setup.py) to build
a source-code release. The error log usually starts with “Command errored
out with exit status 1.” Although they constitute a small amount, we
find that their symptoms are more diverse and appear in run-time errors as
well. We further classify them into three types:

o Missing required modules. The following error messages usually contain
“ModuleNotFoundError: No module named <mod> ...”, or
ImportError: cannot import name <sub_mod> from <mod> ...”,
denoting the setup script fails to find a (sub)module within the local
Python environment. There are 34 TPL releases prompting such an
additional build error message. Notably, 7 of the 34 releases fail due to
missing necessary dependency TPLs, which are used in the setup scripts
but not declared in the metadata entry “requires-dist” derived from
the configuration entry “install requires”. The remaining 27 re-

leases failed due to missing Python standard modules.

e [nvalid syntax features. The following error message usually contains
“SyntaxError: invalid syntax...”, denoting setup.py uses a syn-
tax feature not supported by the local Python environment. There are
19 TPL releases prompting such error messages.

e Specific error messages. Some additional error messages are more spe-
cific, with customized error messages in setup.py, providing detailed
information, such as “ERROR: You need Python 3.6 or greater to
install <dis>”. There are 12 TPL releases prompting such a build
error message.

(2) Run-time errors. There are 129 TPLs with PDSpecErrs which were suc-
cessfully installed but experienced errors at run-time. The scope of the analy-
sis on the 129 TPLs mainly focuses on the run-time errors caused by top-level

16

import errors. “python_requires” with incorrect values can result in miss-
ing required modules and invalid syntax features. However, the error messages
are prompted when importing TPLs instead of building TPLs.

We think that the severity of errors may indeed vary depending on the
stage of the pipeline. Among the 299 PDSpecErrs, TPP runtime errors may
have the most severe consequences for they potentially lead to downstream
application failures, financial loss, or other negative impacts. These errors are
implicit, and downstream users may not notice them until the corresponding
runtime exceptions happen. In comparison, installation failures have less
influence for they occur in the early stage.

Finding 4: PDSpecErrs that occur in the installation stage can be sum-
marized into four patterns. The run-time failures caused by PDSpecFErrs
are more subtle and cannot be easily captured by specific patterns. Most
PDSpecErrs in both stages are attributed to the incorrect configurations
of “python_requires”.

3.5. Error Diagnostic Pattern Analysis

Based on Observation 3, we analyzed the manifestation patterns of the
PDSpecErrs related to misconfigured entries and summarized three diagnos-
tic patterns: setup script issues, using incompatible features, and Python
version conflicts. The details are as follows.

Diagnostic pattern 1. Setup script issues. This diagnostic pattern manifest
as inconsistencies in Python version specifications between the developers
hardcoded checks and configuration entries in setup script, e.g., setup.py.
The specific details of a library are defined as keyword arguments of a global
function setup(), including the entry “python_requires”. However, this
entry is optional, and TPL developers can either make mistakes or not follow
the common practice of specifying restricted Python distributions. In this
case, a PDSpecErr is raised by a script issue, which can prevent a build tool
from generating appropriate metadata “requires-python” [14].

Some developers purposely hard-code Python version checking instead
of configuring the entry “python requires”. Their intentions cannot be
reflected in this way. For example, the code snippet below, defined in
setup.py of typed.ast 1.4.1 [26], is responsible for checking whether the
local Python version is below 3.3. Due to the absence of “python _requires”,

17

the build tool cannot generate the appropriate metadata entry that reflects
the true Python version restriction. In consequence, pip cannot make a cor-
rect filtering on the TPLs and may choose a release incompatible with a user’s
local environment. Finally, the user would assume that the TPL is with-
out Python version restriction until he gets an installation failure message
prompted by the customized version checking code. Our study uncovered 12
TPL releases that failed due to PDSpecErrs of this pattern.

1 if sys.version_info[0]<3 or sys.version_info[1]<3:
2 sys.exit(‘Error: typed_ast only runs on Python 3.3 and
above. ’)

Diagnostic pattern 2. Using incompatible features. The diagnostic pattern
manifest as developers might misconfigure the “python_requires” entry un-
intentionally by using syntax or importing standard modules specific to cer-
tain Python distributions, leading to version constraints they are not aware
of. These unsupported features, termed as “incompatible features’, can be
presented in the setup script or the source code, causing build failures or
run-time errors. Our study found 175 releases with such PDSpecErrs, con-
sisting of 91 source and 84 binary releases. Examples are as follows:

(1) Incompatible features in the setup script can lead to TPL build fail-
ures. For example, the code snippet below belongs to setup.py of discord
1.7.3 [27], where the keyword argument “encoding” in the function open ()
has been introduced since Python 3. As a result, the TPL would encounter an
installation failure with an error message like “TypeError: ‘encoding’ is
an invalid keyword argument for this function” with Python 2, but
the entry “python_requires” does not specify the Python version restric-
tion. Finally, the client-side tool pip cannot choose a proper release when
the local environment is Python 2.

1 with open(path.join(this_directory, ’README.md’),
encoding="utf-8’) as f:
2 long_description = f.read()

(2) Incompatible features in a TPL’s source code usually lead to TPL
run-time errors, manifesting either import or syntax errors. PDSpecErrs
under this pattern can lie in both binary and source releases. Take the
code snippet below as an example, in __init__.py, pyxel 1.4.3 [28] imports
the class collections.MutableSequence. However, from Python 3.10, the
class collections.MutableSequence is removed. As a result, pyxel 1.4.3

18

can be successfully installed with Python 3.10, but an error “ImportError:
cannot import name ‘MutableSequence’ from ‘collections’” will be
thrown when importing the package.

1 import sys

2 import traceback

3 from collections import MutableSequence

Diagnostic pattern 3. Python version conflicts. This pattern is derived from
the dependency conflict (DC) [6] between a TPL p and one of its depen-
dencies. The dependency is incompatible with at least one Python version
declared in p’s configuration entry. Pip can sometimes resolve failures of
unavailable dependencies by backtracking and finding a compatible earlier
version, but certain situations remain unresolved, leading to dependency-
choosing failures in some TPLs. 105 TPLs with PDSpecErrs are of this pat-
tern. For example, sklearn-pandas 2.2.0 does not set the configuration en-
try and thus is assumed compatible with all Python distributions. However,
its dependency pandas>=1.1.4 requires Python >=3.6.1. Therefore, pip
fails to find a compatible version of pandas when installing sklearn-pandas
2.2.0 with any Python <3.6.1.

3.6. Implications

PDSpecErrs are relatively common even in top-ranked TPLs and can
result in downstream application failures and degrading user experiences.
Thus, resolving PDSpecErrs is of great significance for the reliability of TPLs.
Based on our observations, there are some effective steps that different TPL
stakeholders can take to avoid PDSpecErrs.

TPL developers. Developers should try to avoid complex Python project
structures, including having too many Python files in a TPL, as this could ele-
vate the risk of PDSpecErrs. When collaborating with external contributors,
coding standards and contribution guidelines should be in place to ensure
compatibility with different Python versions (Finding 2). Developers should
follow the common practice of explicitly configuring Python version speci-
fications in the setup scripts. Developers should thoroughly examine setup
scripts to avert human errors and closely monitor specifications to ensure
consistency. To avoid incorrect configurations, developers should be aware
of the version-specific Python features used and which Python distributions
support them. TPL developers should keep Python version specifications
up-to-date for its dependencies in order to prevent PDSpecErrs.

19

Downstream users. Downstream users should prioritize stable and more re-
cent Python distributions, especially when working with TPLs that impose
no restrictions. High popularity and frequent releases do not guarantee the
stability of a TPL (Finding 2). Blindly trusting developers’ specifications
may lead to errors, as the information could become outdated. Users need to
pay attention to configurations, and to be proactive in preventing problems.
When PDSpecErrs occur, downstream users can assess error symptoms and
inspect the corresponding configuration entry (Finding 4) to identify and
address potential configuration errors. By adopting appropriate strategies
based on these symptoms, users can mitigate subsequent issues.

Python community. The relevant entries for Python version specifications
are only configured based on developers’ best effort. The Python library
managers should move towards a better enforcement for these important
entries and provide a mechanism to verify their correctness and consistency.

PDSpecErrs detection. Existing TPL error detection approaches [6, 8, 29, 19]
mainly focus on detecting dependency errors and conflicts. They assume that
the configuration entries of TPLs are correct. However, our study shows
that a large portion of TPLs do not set their configuration entries correctly,
resulting in PDSpecErrs (Finding 1). Existing approaches cannot handle
these PDSpecErrs properly. Our study investigates the diagnostic patterns
of PDSpecErrs, which can guide us in detecting them effectively.

4. Detecting PDSpecErrs

Based on our study, we propose PyChecker, a lightweight tool to de-
tect PDSpecErrs and assist developers in improving configuration quality
before releasing a TPL. For a given TPL, PyChecker detects whether any
PDSpecErrs are present. If identified, PyChecker generates a detailed bug
report providing essential information about the PDSpecErrs. The details of
PyChecker are as follows.

4.1. Detecting Setup Script Issues

Based on diagnostic pattern 1, PyChecker detects setup script issues by
checking the consistency between the Python version specifications in com-
monly used configuration entries and the hard-coded Python version specifi-
cations. We have identified two root causes of the setup script for detecting
PDSpecErrs: (1) the variable “sys.version_info” is (in)directly used in a

20

conditional statement, and (2) the configuration entry “python requires”
is missing in any configuration files. If this pattern matches, a potential
PDSpecErr is detected.

4.2. Detecting Incompatible Features

To detect incompatible features (diagnostic pattern 2), we extract compre-
hensive knowledge of Python versions. Based on that, PyChecker analyzes
the TPL source code to infer its compatible Python version range. If the
declared Python versions in the TPL are not align with the inferred range,
a PDSpecErr is found.

The knowledge of Python interpreter syntax features is extracted follow-
ing the prior work [30, 19]. PyChecker derives the mapping relationships
between Python versions and syntax features, as well as standard modules,
expressed as PY (v) = S, M, where PY (v) is a Python interpreter at version
v, and S and M, denote its supported syntax features represented as regular
expressions and standard modules, respectively. Then PyChecker analyzes
TPL’s source code by employing the generated abstract syntax tree (AST)
to extract imported standard modules My;, and identify syntax features Sy;.
Using this information, PyChecker infers a set of Python distributions PY};,
which support the syntax features in Sj;, and contain the standard modules in
M. Similarly to 4.1, PyChecker derives the declared Python versions PY,.
from the TPL’s configuration entries. If PYy.. — PYj;, # 0, a PDSpecErr is
detected.

4.8. Detecting Version Conflicts

PyChecker detects version conflicts (diagnostic pattern 3) by checking
the inconsistent Python version specifications between a TPL and its depen-
dencies. For a given TPL, the straightforward way to do this is traversing
all restrictive versions of its dependencies (including both the direct and
transitive dependencies). To reduce the time cost, PyChecker employs an
optimized detection method. The method is feasible based on two prerequi-
sites.

(1) Newer versions of a TPL tend to support newer Python distribution
interpreters. For example, numpy 1.20.1 and 1.22.2 are compatible with
Python 3.7-3.10 and 3.8-3.10, respectively. The oldest compatible Python
version (3.8) of numpy 1.22.2 is newer than that (Python 3.7) of numpy
1.20.1.

21

dep

O Con:[p,mim p'max]

: 1
= I :
S 1 |
e} 1 Il
'E g VYomin 1
2 . :
< o !
. o ! 1
lib at ver ey E O con=[p" mins P max] |
1
! 1
1

______________________ 1

con= [pmin’ pmax]

1con—[p "min » P"'max]

A 4

| conflict exist (pmin< p ' min OF pmax> p”max)

Figure 6: Inspecting Python version conflict.

(2) The compatible Python versions for a set of successive TPL versions
are also successive. For example, tensorflow 1.0.0 is compatible with
Python 3.5, and tensorflow 2.8.0 is compatible with Python 3.9. It can
be inferred that the versions of tensorflow between 1.0.0 and 2.8.0 are
compatible with one or more Python interpreters between 3.5 and 3.9, e.g.,
tensorflow 2.1.3 and 2.2.3 are compatible with Python 3.6 and 3.8, re-
spectively.

The rationale behind the optimized method is depicted in Figure 6. To
compare the supported Python distributions between the target TPL’s lub
(version ver) and each dependency library dep, it first identifies the earliest
and latest versions of dep, i.e., Vpin and v,,4.. Then, it extracts the compat-
ible Python version range of both, i.e., [p! .., p....] and [p. p! 1. Next,
it constructs a compatible Python version range for dep with p/ .. and p! .
as its lower- and upper-bound. Subsequently, PyChecker considers dep and
lib at ver are conflicting in their declared compatible Python distributions if
DPmin < p'/nu'n Or Pmaz > p'/r/naaf‘

We also preliminarily investigated the applicability of the optimized method.
We randomly sampled 500 TPLs in the top 3,000 and investigated how many
TPLs satisfy the two prerequisites. The investigation reveals that 99.4%
(497/500) and 99.8% (499/500) TPLs satisfy the first and the second pre-
requisites, respectively, indicating that the optimized method is applicable
in most cases.

4.4. Bug Report
For a TPL release, PyChecker sequentially detects setup script issues,
incompatible features, and version conflicts. After finishing the detection, if

22

one or more PDSpecErrs are found, PyChecker will generate a bug report
for them. The report contains the key information of found PDSpecErrs, in-
cluding the diagnostic pattern and the recommended version range of Python
distributions. Below shows an example:

1 -- root cause 2: using incompatible feature--
2 cause : using incompatible feature
3 current python requires : >=3.6

4

5 error file : ./src/astral/location.py

6 specific cause : module: <dataclasses> do not support python
[’3.67]

.

5. Evaluation

To evaluate the effectiveness and usefulness of PyChecker, we utilize Py-
Checker to detect PDSpecErrs in TPLs and answer the following research
questions.

e RQ1 (Effectiveness): How effective is PyChecker in detecting PDSpecErrs?

e RQ2 (Usefulness): Can PyChecker help library developers locate the
root causes of PDSpecErrs?

e RQ3 (Overhead): What is the computational overhead of PyChecker?

To answer RQ1, we used the 3,000 TPL releases collected in Section 3.1
as our evaluation dataset and applied PyChecker to detect PDSpecErrs. The
dataset is divided into two parts. (1) TPLs with Confirmed PDSpecErrs
(TCon). These instances account for 299 TPL releases with PDSpecErrs
identified by our exploratory study. (2) TPLs with Potential PDSpecErrs
(TPoten). No PDSpecErrs were identified for these 2,701 TPLs in our ex-
ploratory study. However, as described in Section 3.1, our exploratory study
only focuses on the PDSpecErrs that occurred during the installation and
importing stages. Considering that some more subtle PDSpecErrs may also
occur at run-time, additional PDSpecErrs can still possibly be revealed with
a deeper analysis. Notably, PyEGo [19] is a state-of-the-art related work ad-
dressing constraints regarding compatible Python versions of dependencies.

23

However, PyEGo assumes TPL configuration entries are accurate. Addi-
tionally, PyEGo can only generate a single Python version and cannot help
pinpoint the root cause of an incompatible Python version because it relies
on solving constraints. So, we can not use it for comparison.

To answer RQ2, we randomly selected 10% (80) of the 842 TPLs detected
by PyChecker and manually verified them. Subsequently, we submitted bug
reports to the corresponding TPL developers and maintainers. These reports
explained how the detected PDSpecErrs may arise and the recommended
suitable Python versions. The responses from developers and maintainers
can serve as evidences for the practical usefulness of PyChecker.

To answer RQ3, we applied PyChecker to detect the 3,000 TPL releases
collected in 3.1 to collect its time overhead.

We carry out the experiment on a computer running Ubuntu 18.04 LTS
with 8-core 3.50 GHz CPU and 32 GB RAM.

5.1. Effectiveness

PyChecker successfully detected PDSpecErrs in 212 TPLs within TCon
and 630 within TPoten, respectively. The results analysis are as follows.

TCon Detection Analysis. PyChecker detected PDSpecErrs of 212 TPL re-
leases within TCon. Among them, 80 TPL releases encompass two diag-
nostic patterns, and four TPL releases encompass three diagnostic patterns.
For example, zappa 0.54.0 [31] exhibited a PDSpecErr involving diagnos-
tic patterns 1 and 3. The experimental results prove that PyChecker can
diagnose multiple PDSpecErrs stemming from different diagnostic patterns
within a single TPL release. Furthermore, we investigated the remaining 87
TPL releases not detected by PyChecker and summarized two reasons.

(1) Incomplete domain knowledge. PyChecker, like other state-of-the-art
tools [19, 30], struggles to fully model diverse and flexible syntax in Python.
Certain features, such as contextual dependencies or runtime-evaluated con-
structs, remain unmodelled. For instance, the Postponed Evaluation of An-
notations introduced in Python 3.7 cannot be statically modeled. As a result,
PyChecker is unable to detect all PDSpecErrs under diagnostic pattern 2.
47 false positive are due to this reason.

(2) Influence of pip’s backtracking mechanism. Pip for Python 3 has the
backtracking mechanism since 20. 3 [32], which improves the TPL installation
success rate. This strategy referrs that pip makes initial assumptions about
package versions and, if a conflict arises, backtracking to test alternative

24

versions until compatibility is ensured. However, pip for Python 2 does not
support this mechanism. Some TPL releases experience dependency-choosing
failures (diagnostic pattern 3) when a suitable dependency cannot be resolved
with older pip. But PyChecker misses such PDSpecErrs since it assumes a
newer pip. There are 40 false positives due to this reason. For example, pip
failed to install djangocms-text-ckeditor 4.0.0 [33] on Python 2.7 since
a transitive dependency Django cannot be resolved. However, PyChecker
finds a solution using newer pip, which comes with the direct dependency
“django-cms==3.6" and the transitive dependency “Django<2.2, >=1.11".

TPoten Detection Analysis. PyChecker found PDSpecErrs in 630 TPL re-
leases within TPoten. With limited time and human efforts, we randomly
sampled 10% (63) of them for further analysis. We found that the preliminary
method used in our exploration study in Section 3 missed some PDSpecErrs
hidden deeply, and there are 53 TPLs that have been manually verified to
contain PDSpecErrs, with the detailed reasons outlined below.

(1) PDSpecErrs suppressed by other errors. In our exploratory study
(Section 3.1), some TPL installations failed and the error messages show
non-PDSpec errors. Therefore, we missed some PDSpecErrs in our man-
ual inspection because they are suppressed by other errors occurring before
them. There are 37 TPLs of such cases. For example, installing responder
2.0.5 [34] within Python 3.10 exhibits a C language-related error. However,
PyChecker can detect a suppressed PDSpecErr associated with diagnostic
pattern 3 as a transitive dependency graphene [35] requires Python <3.5.

(2) PDSpecErrs caused by incompatible submodules. The TPLs contain-
ing such PDSpecErrs do not encounter any error during their download,
installation, and top-level module importing. The PDSpecErrs only occur
when using the TPLs’ specific submodules since the submodules use fea-
tures incompatible with some specific Python versions. There are 16 TPLs
of such cases. For example, during the installation and import of apkid
on V2.1.1, everything proceeds smoothly. However, a SyntaxError occurs
when we execute “import apkid.rules” on Python 2.7. PyChecker re-
ported the detailed information “specific cause: module: <typing>
do not support python [‘2.7°]".

The above analysis demonstrates that PyChecker can effectively detect
deeper PDSpecErrs, which cannot be easily discovered through simple man-
ual inspections.

Additionally, we reviewed the false positives by our tool (accounts for

25

about 15.8% in our sampled TPLs) and we summarize their causes below.

(1) Imprecise matching rules. TPL developers often define a considerable
number of variable names that might unintentionally clash with Python’s
built-in keywords. This may confuse the matching rules used by PyChecker
for inferring Python versions of a Python file. There are 6 of such cases.
For instance, PyChecker reported a PDSpecErr because Python 2.7 does not
support the “nonlocal” keyword, which appears in the unparser. py file of the
astunparse 1.6.3 library. However, “nonlocal” is only used as a part of a
function name, “def _Nonlocal(self, t): self.fill(‘‘nonlocal’’)”,
which is accidentally matched by the PyChecker’s rules.

(2) Overlooked conditional dependencies. Conditional dependencies refer
to declaring and using different modules in a program regarding the Python
version being used [19]. TPL developers may declare conditional dependen-
cies for better backward compatibility. However, PyChecker currently does
not recognize conditional dependencies precisely enough and may report spu-
rious PDSpecErrs of diagnostic patterns 1 and 2. There are 4 of such cases.
For example, in the case of astral 2.2, it declares a Python version con-
straint “python_requires=‘>=3.6’" and depends on “dataclasses” when
using Python==3.6. PyChecker failed to recognize the conditional depen-
dency on dataclasses and reported that “module: <dataclasses> do
not support in python [‘3.6°]”, because the module dataclasses only
becomes a built-in module in Python 3.7 and above.

5.2. Usefulness

We randomly sampled about 10% (80) reported PDSpecErrs for further
analysis. We manually examined these issues; if they were not genuine
PDSpecErrs, we excluded them and randomly sampled new ones. During
this process, we excluded five issues for they are false positives after investi-
gation. Among them, 28 PDSpecErrs are fixed at their follow-up versions be-
fore our commit. Therefore, we reported the remaining 52 PDSpecErrs to the
concerned developers on GitHub with bug reports generated by PyChecker.
Each TPL received a consolidated bug report containing all PDSpecErrs cat-
egorized based on their corresponding root causes. For example, if one TPL
contains two PDSpecErrs under two different causes, we will send one bug
report, containing the two errors, to its corresponding GitHub repository.
We categorize the developers’ responses into four groups. “Fixed” refers
to the issues that have been acknowledged and resolved by the developers.
“Ignored” indicates that the developers have responded to the problems,

26

stating that they do not require fixing and providing a reason. “Pending”
means that the developers have not responded or reacted to the reported
issues until now. “Unmaintained” means the absence of any feedback or
activity from the associated projects (such as commits, issue responses, or
releases) since we submitted our issues, with inactivity persisting over a year,
referring to previous work [36, 37].

As of April 1, 2024, the developers have replied to 35 of the issue reports,
fixed 32 PDSpecErrs under our reports, and three were ignored. The first
issue was submitted on October 28, 2022. For the ignored issue [38] associ-
ated with diagnosing pattern 1, the developer explained that breathe is an
extension of sphinx, whose customized setup script intended to check the
compatibility between sphinx and the local Python interpreter. However,
the contributor also said that “I guess this proposal wouldn’t hurt anything
if implemented.” For the other ignored issue [39], we suggested setting the
metadata entry with “>= 3.6" for the dependent library wcmatch at 8.1.2 or
above requires Python >=3.6. However, developers wanted to find a version
of wematch that supported lower Python distributions or a replacement for
wcmatch, which indirectly suggests a PDSpecErr in this project.

Nine issues were pending by developers, and eight repositories were no
longer updated after we submitted the issues. Among the nine pending issues,
we found that one developer did not want their projects to be compatible with
Py 2.7. He claimed that [40] “Python 2.7 has reached its EOL for all security
releases and, therefore, is not supported by this package.” The developer
hoped we would not use his library on Python 2.7 instead of constraining the
Python version in the setup file. Nevertheless, the Python community still
prefers to declare the Python version specifications clearly and precisely.

Thirty-two PDSpecErrs have been fixed, and their developers replied to us
that they referenced our bug reports and successfully fixed the PDSpecErrs.
For example, LightGBM 3.3.2 is a popular and well-maintained TPL with
15.3k stars in GitHub. However, PyChecker still attracts the developers’
attention. The developer approved and fixed it, and replied “Thanks very
much for the report, ..., I'd support a pull request that adds ‘python_requires=
>=3.5 7. The above results and feedbacks from developers indicate that
PyChecker can find PDSpecErrs and the detailed bug report is useful for
TPL developers to locate and fix PDSpecErrs in practice.

27

5.53. Overhead

PyChecker detects all the TPL releases on averagely 7.32 seconds, with
maximum 282.28 seconds, minimum 2.169 seconds. To the best of our knowl-
edge, no tools or methods available for runtime checking of PDSpecErrs. The
closest approach is simulating downstream user behavior by installing and
running the TPL in multiple simulated local environments. Since this would
require several Docker environments, the time overhead would be at least in
the range of minutes.

In terms of resource consumption, PyChecker involves parsing and check-
ing the code, requiring relatively low computational resources. Runtime
checking involves actually running each TPL repeatedly in multiple simu-
lated environments which not only has significant time overhead but also
consumes substantial computational resources, such as memory, CPU, and
storage as the Docker containers are involved. Thus, the difference in re-
source consumption could also be a reason why no comparison was made, as
runtime checking demands far more resources than static analysis.

6. Discussion

Internal threats to validity. The first threat comes from potential inaccuracies
in our manual collection and analysis of PDSpecErrs. To mitigate this, we
first find the installation and run-time failures in an automated way. Then
three co-authors independently investigated the collected Python libraries
and their errors, and finally reached a consensus through cross-validations
and discussions.

The second threat is that the rapid evolution of the Python library man-
agement tool-chains may affect our study results. We used the latest pip,
equipped with a backtracking strategy, to reduce its influence on dependency
choosing. In addition, we focused on the recent versions of each TPL when
launching our work, and we tracked the TPL’s newly released version during
this work to inspect whether the detected PDSpecErr has been fixed.

External threats to validity. The third validity concerns generality. We con-
ducted our work with hundreds of TPLs at the top rank, which are popular
and representative by following work [19, 10], ensuring that our study has a
substantial influence on the Python community.

The fourth threat comes from the data collection process. Considering
that some PDSpecErrs may also occur at run-time, our study cannot reveal

28

all potential PDSpecErrs without exercising any functionality. Thus, some
PDSpecErrs can still be found among these TPLs. To mitigate the impact
of this issue, we analyzed the remaining 2,701 TPLs using PyChecker in the
experimental process, and sampled 10% of the analysis results to confirm the
detection outcomes.

Limitations. First, our detection tool, PyChecker, mainly focuses on detect-
ing PDSpecErrs caused by the two most commonly used configuration entries.
Furthermore, although PyChecker provides the root causes of PDSpecErrs
in TPLs and the recommended Python versions, it cannot fix the detected
PDSpecErrs automatically. We plan to improve the ability of PyChecker to
detect and fix more PDSpecErrs in TPLs.

Second, during the exploratory study, some PDSpecErrs are missed, but
we believe they did not affect the results of the observations. Generally, the
TPLs ranked lower are less mature than the top ones, and with an increase
size in TPLs with PDSpecErrs, they should further support our observations.
This underscores the prevalence and subtlety of the PDSpecErrs.

Third, we only submitted a subset of the detected PDSpecErrs due to
resource limits. We will continue our efforts on this line to help improve the
Python version compatibility of the ecosystem.

7. Related Work

Compatibility Analysis. Compatibility issues have garnered significant atten-
tion across various programming language ecosystems, including Python [6,
7], Java [8, 29], and JavaScript [41]. These concerns primarily center on in-
compatible dependencies among libraries, commonly referred as dependency
conflict issues.

Several techniques [10, 11, 12, 19, 30] aim to infer compatible depen-
dencies for code snippets or Python programs. PyDFix [9] specializes in
detecting and resolving build unreproducibility in Python builds caused by
third-party library version errors.

Some studies focus on identifying and rectifying backward compatibil-
ity issues arising from library upgrades [42, 43, 44, 45, 46, 47, 48, 49]. In
particular, the Android community exhibits more intricate and diverse be-
haviors with compatibility, consequently heightening concerns regarding API
compatibilities [50, 51, 52, 53, 54].

Unlike them, we concentrate on the Python version incompatibilities
caused by inconsistent version specifications. Additionally, these works ad-

29

dress dependency errors from the perspective of downstream users based
on the assumption that TPL configuration entries are correct. In contrast,
PyChecker stands in the perspective of TPL developers, and it can detect
PDSpecErrs and warn developers to correct TPL configurations.

Misconfigurations. A closely related topic is the detection of software miscon-
figurations [55, 56, 57, 58]. These misconfigurations are primarily attributed
to the evolution of systems [59, 60, 61], where existing test cases may play a
crucial role in identifying the issues. In the absence of test cases, Huang et
al. [62] proposed to encode common issue patterns to automatically extract
detection rules for configuration compatibility issues in Android apps. A few
other works [63, 64, 65, 66, 67, 68] automatically diagnose misconfigurations
by injecting configuration errors into the systems and evaluating them. For
example, ConfVD [66] generates configuration errors by violating the options’
specifications.

These research works focus on the misconfiguration issues on the client
side. Their application scenario differs from that of PyChecker, which detects
PDSpecErrs from the perspective of TPL developers to identify incompati-
bilities caused by inconsistent version specifications.

Studies on open-source package-management systems. Current empirical stud-
ies mainly focus on dependency errors and security issues in open-source li-
brary management systems. Abdalkareem et al. [69] studied the impact of
using trivial libraries with two large platforms npm and PyPI. [70] focuses on
third-party libraries’ usages, updates, and risks in open-source Java projects.
Zimmermann et al. [71] studied the security risks of npm by analyzing de-
pendencies between libraries, the maintainers, and security issues. [72] found
that PyPI is an attractive target for attackers to trick developers into using
malicious libraries. Some exploratory studies focus on the structure and
characteristics of deep learning supply chains [73] and dependency bugs in
deep learning technology stack [74].

To our knowledge, this is the first work regarding Python version incom-
patibilities in the Python open-source ecosystem.

8. Conclusion

PDSpecErrs are common and can cause TPL installation failures and run-
time errors, but they have received little attention. This work conducted the

30

first exploratory study on PDSpecErrs regarding their prevalence, charac-
teristics, manifestation patterns, and diagnostic patterns. Motivated by our
exploratory study, we designed PyChecker, which can automatically detect
PDSpecErrs associated with the three diagnostic patterns. Evaluation results
show that PyChecker can effectively detect PDSpecErrs, and the generated
bug report can help TPL developers fix PDSpecErrs. In the future, we plan
to test PyChecker against a different dataset and enhance the detection ca-
pability of PyChecker and extend our technique for implementation on PyPI
servers or a dedicated web service. This would allow for simpler checks and
reporting of any such problems.

Acknowledgments

This research was partially funded by the Major Project of Institute of
software, University of Chinese Academy of Science under Grant No. ISCAS-
ZD-202302.

References

[1] Pypi, https://pypi.org/ (2024).

[2] pip documentation v22.3, https://pip.pypa.io/en/stable/ (2019).
[3] goatools 1.2.3, https://pypi.org/project/goatools/ (2022).

[4] K.-P. Yee, Exception chaining and embedded tracebacks (2005).
URL https://www.python.org/dev/peps/pep-3134/#abstract

[5] Tensorflow issues, "https://github.com/tensorflow/tensorflow/i
ssues/62189" (2023).

6] Y. Wang, M. Wen, Y. Liu, Y. Wang, Z. Li, C. Wang, H. Yu, S.-C.
Cheung, C. Xu, Z. Zhu, Watchman: monitoring dependency conflicts for
python library ecosystem, in: Proceedings of International Conference
on Software Engineering (ICSE), 2020, pp. 125-135.

[7] Y. Wang, M. Wen, Z. Liu, R. Wu, R. Wang, B. Yang, H. Yu, Z. Zhu,
S.-C. Cheung, Do the dependency conflicts in my project matter?, in:
Proceedings of Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering

(ESEC/FSE), 2018, pp. 319-330.

31

https://pypi.org/
https://pip.pypa.io/en/stable/
https://pypi.org/project/goatools/
https://www.python.org/dev/peps/pep-3134/#abstract
https://www.python.org/dev/peps/pep-3134/#abstract

8]

[15]

[16]

[17]

[18]

Y. Wang, M. Wen, R. Wu, Z. Liu, S. H. Tan, Z. Zhu, H. Yu, S.-C.
Cheung, Could i have a stack trace to examine the dependency conflict
issue?, in: Proceedings of International Conference on Software Engi-
neering (ICSE), 2019, pp. 572-583.

S. Mukherjee, A. Almanza, C. Rubio-Gonzalez, Fixing dependency er-
rors for python build reproducibility, in: Proceedings of SIGSOFT Inter-
national Symposium on Software Testing and Analysis (ISSTA), 2021,
pp. 439-451.

E. Horton, C. Parnin, Dockerizeme: Automatic inference of environment
dependencies for python code snippets, in: Proceedings of International
Conference on Software Engineering (ICSE), 2019, pp. 328-338.

E. Horton, C. Parnin, V2: fast detection of configuration drift in python,
in: Proceedings of International Conference on Automated Software En-
gineering (ASE), 2019, pp. 477-488.

J. Wang, L. Li, A. Zeller, Restoring execution environments of jupyter
notebooks, in: Proceedings of International Conference on Software En-
gineering (ICSE), 2021, pp. 1622-1633.

setuptools, "https://pypi.org/project/setuptools/" (2022).

Packaging and distributing projects, "https://packaging.python.o
rg/en/latest/guides/distributing-packages-using-setuptools/
" (2022).

Configuring setuptools using pyproject.toml files, "https://setuptoo
1s.pypa.io/en/latest/userguide/pyproject_config.html" (2022).

Python packaging authority, "https://www.pypa.io/en/latest/"
(2021).

Python specifications core-metadata, "https://packaging.python.o
rg/en/latest/specifications/core-metadata/" (2023).

Pep 301, "https://peps.python.org/pep-0301" (2002).

32

[19]

[20]
[21]

[22]

23]
[24]

H. Ye, W. Chen, W. Dou, G. Wu, J. Wei, Knowledge-based environment
dependency inference for python programs, in: Proceedings of Interna-
tional Conference on Software Engineering (ICSE), 2022.

URL https://github.com/PyEGo/PyEGo

Libraries.io, https://libraries.io/ (2024).

J. Huang, N. Borges, S. Bugiel, M. Backes, Up-to-crash: Evaluating
third-party library updatability on android, in: 2019 IEEE European
Symposium on Security and Privacy (EuroS&P), IEEE, 2019, pp. 15—
30.

docker-compose 1.29.2, "https://pypi.org/project/docker-compo
se/" (2021).

goatools 1.2.3, https://libraries.io/api (2023).

J. Wang, G. Xiao, S. Zhang, H. Lei, Y. Liu, Y. Sui, Compatibility issues
in deep learning systems: Problems and opportunities, in: Proceedings
of the 31st ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, 2023, pp. 476
488.

flower 1.0.0, https://pypi.org/project/flower/1.0.0/ (2021).

typed-ast 1.4.1, "https://pypi.org/project/typed-ast/1.4.1/"
(2020).

discord 1.7.3 (2022).
URL https://pypi.org/project/discord/

pyxel 1.4.3 (2020).
URL https://pypi.org/project/pyxel/1.4.3/

K. Huang, B. Chen, B. Shi, Y. Wang, C. Xu, X. Peng, Interactive, effort-
aware library version harmonization, in: Proceedings of Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2020, pp. 518-529.

W. Cheng, X. Zhu, W. Hu, Conflict-aware inference of python compat-
ible runtime environments with domain knowledge graph, in: Proceed-
ings of the 44th International Conference on Software Engineering, ICSE

33

https://github.com/PyEGo/PyEGo
https://github.com/PyEGo/PyEGo
https://github.com/PyEGo/PyEGo
https://libraries.io/
https://libraries.io/api
https://pypi.org/project/flower/1.0.0/
https://pypi.org/project/discord/
https://pypi.org/project/discord/
https://pypi.org/project/pyxel/1.4.3/
https://pypi.org/project/pyxel/1.4.3/
https://doi.org/10.1145/3510003.3510078
https://doi.org/10.1145/3510003.3510078

[38]

[39]

[40]

[41]

[42]

22, Association for Computing Machinery, New York, NY, USA, 2022,
p- 451-461. doi:10.1145/3510003.3510078.
URL https://doi.org/10.1145/3510003.3510078

zappa 0.54.0, https://pypi.org/project/zappa/0.54.0/ (2021).

Changes to the pip dependency resolver in 20.3 (2020), https://pip.
pypa.io/en/stable/user_guide/#resolver-changes-2020 (2020).

djangocms-text-ckeditor 4.0.0, "https://pypi.org/project/djang
ocms-text-ckeditor/4.0.0/" (2020).

responder 2.0.5, https://pypi.org/project/responder/2.0.5/
(2019).

httptools 3.1.1, https://pypi.org/project/graphene/ (2022).

J. Coelho, M. T. Valente, Why modern open source projects fail, in:
Proceedings of the 2017 11th Joint meeting on foundations of software
engineering, 2017, pp. 186-196.

J. Coelho, M. T. Valente, L. L. Silva, E. Shihab, Identifying unmain-
tained projects in github, in: Proceedings of the 12th ACM /IEEE Inter-

national Symposium on Empirical Software Engineering and Measure-
ment, 2018, pp. 1-10.

Issue 810. breathe, "https://github.com/breathe-doc/breathe/i
ssues/810" (2022).

Issue 246. pycasbin, "https://github.com/casbin/pycasbin/issue
s/246" (2022).

Issue 281. django-stdimage, "https://github.com/codingjoe/djang
o-stdimage/issues/281" (2022).

J. Patra, P. N. Dixit, M. Pradel, Conflictjs: finding and understanding
conflicts between javascript libraries, in: Proceedings of International
Conference on Software Engineering (ICSE), 2018, pp. 741-751.

S. Mostafa, R. Rodriguez, X. Wang, A study on behavioral backward
incompatibility bugs in java software libraries, in: 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-
C), 2017, pp. 127-129. doi:10.1109/ICSE-C.2017.101.

34

https://doi.org/10.1145/3510003.3510078
https://doi.org/10.1145/3510003.3510078
https://pypi.org/project/zappa/0.54.0/
https://pip.pypa.io/en/stable/user_guide/#resolver-changes-2020
https://pip.pypa.io/en/stable/user_guide/#resolver-changes-2020
https://pypi.org/project/responder/2.0.5/
https://pypi.org/project/graphene/
https://doi.org/10.1109/ICSE-C.2017.101

[43]

[44]

[45]

[46]

[47]

D. Foo, H. Chua, J. Yeo, M. Y. Ang, A. Sharma, Efficient static checking
of library updates, in: Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2018, Association for
Computing Machinery, New York, NY, USA, 2018, p. 791-796. doi:
10.1145/3236024.3275535.

URL https://doi.org/10.1145/3236024.3275535

G. Mezzetti, A. Moller, M. T. Torp, Type Regression Testing to Detect
Breaking Changes in Node.js Libraries (Artifact), Dagstuhl Artifacts
Series 4 (3) (2018) 8:1-8:2. doi:10.4230/DARTS.4.3.8.

URL http://drops.dagstuhl.de/opus/volltexte/2018/9239

M. A. Saied, H. Sahraoui, E. Batot, M. Famelis, P.-O. Talbot, To-
wards the automated recovery of complex temporal api-usage patterns,
GECCO 18, Association for Computing Machinery, New York, NY,
USA, 2018, p. 1435-1442. doi:10.1145/3205455.3205622.

URL https://doi.org/10.1145/3205455.3205622

A. Mgller, M. T. Torp, Model-based testing of breaking changes in
node.js libraries, in: Proceedings of the 2019 27th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2019, Association
for Computing Machinery, New York, NY, USA, 2019, p. 409-419.
doi:10.1145/3338906.3338940.

URL https://doi.org/10.1145/3338906.3338940

Z. Zhang, H. Zhu, M. Wen, Y. Tao, Y. Liu, Y. Xiong, How do python
framework apis evolve? an exploratory study, in: 2020 IEEE 27th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER), 2020, pp. 81-92. doi:10.1109/SANER48275.2020.9054800.

L. Chen, F. Hassan, X. Wang, L. Zhang, Taming behavioral backward
incompatibilities via cross-project testing and analysis, ICSE ’20, As-
sociation for Computing Machinery, New York, NY, USA, 2020, p.
112-124. doi:10.1145/3377811.3380436.

URL https://doi.org/10.1145/3377811.3380436

C. Zhu, M. Zhang, X. Wu, X. Xu, Y. Li, Client-specific upgrade com-
patibility checking via knowledge-guided discovery, ACM Trans. Softw.

35

https://doi.org/10.1145/3236024.3275535
https://doi.org/10.1145/3236024.3275535
https://doi.org/10.1145/3236024.3275535
https://doi.org/10.1145/3236024.3275535
https://doi.org/10.1145/3236024.3275535
http://drops.dagstuhl.de/opus/volltexte/2018/9239
http://drops.dagstuhl.de/opus/volltexte/2018/9239
https://doi.org/10.4230/DARTS.4.3.8
http://drops.dagstuhl.de/opus/volltexte/2018/9239
https://doi.org/10.1145/3205455.3205622
https://doi.org/10.1145/3205455.3205622
https://doi.org/10.1145/3205455.3205622
https://doi.org/10.1145/3205455.3205622
https://doi.org/10.1145/3338906.3338940
https://doi.org/10.1145/3338906.3338940
https://doi.org/10.1145/3338906.3338940
https://doi.org/10.1145/3338906.3338940
https://doi.org/10.1145/3338906.3338940
https://doi.org/10.1109/SANER48275.2020.9054800
https://doi.org/10.1145/3377811.3380436
https://doi.org/10.1145/3377811.3380436
https://doi.org/10.1145/3377811.3380436
https://doi.org/10.1145/3377811.3380436
https://doi.org/10.1145/3582569
https://doi.org/10.1145/3582569

[50]

[52]

[54]

[55]

Eng. Methodol. 32 (4) (may 2023). doi:10.1145/3582569.
URL https://doi.org/10.1145/3582569

H. Huang, L. Wei, Y. Liu, S.-C. Cheung, Understanding and detecting
callback compatibility issues for android applications, in: Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE ’18, Association for Computing Machinery, New York,
NY, USA, 2018, p. 532-542. doi:10.1145/3238147.3238181.

URL https://doi.org/10.1145/3238147.3238181

L. Li, T. F. Bissyandé, H. Wang, J. Klein, Cid: Automating the de-
tection of api-related compatibility issues in android apps, in: Proceed-
ings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2018, Association for Computing Machin-
ery, New York, NY, USA, 2018, p. 153-163. doi:10.1145/3213846.
3213857.

URL https://doi.org/10.1145/3213846.3213857

L. Wei, Y. Liu, S. C. Cheung, Pivot: Learning api-device correlations to
facilitate android compatibility issue detection, 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE) (2019) 878
888.

P. Liu, L. Li, Y. Yan, M. Fazzini, J. Grundy, Identifying and character-
izing silently-evolved methods in the android api, in: 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software Engi-
neering in Practice (ICSE-SEIP), 2021, pp. 308-317. doi:10.1109/IC
SE-SEIP52600.2021.00040.

Y. Zhao, L. Li, K. Liu, J. Grundy, Towards automatically repairing
compatibility issues in published android apps, in: Proceedings of the
44th International Conference on Software Engineering, ICSE ’22, As-
sociation for Computing Machinery, New York, NY, USA, 2022, p.
2142-2153. do0i:10.1145/3510003.3510128.

URL https://doi.org/10.1145/3510003.3510128

A. Rabkin, R. Katz, Static extraction of program configuration options,
in: Proceedings of the 33rd International Conference on Software Engi-
neering, 2011, pp. 131-140.

36

https://doi.org/10.1145/3582569
https://doi.org/10.1145/3582569
https://doi.org/10.1145/3238147.3238181
https://doi.org/10.1145/3238147.3238181
https://doi.org/10.1145/3238147.3238181
https://doi.org/10.1145/3238147.3238181
https://doi.org/10.1145/3213846.3213857
https://doi.org/10.1145/3213846.3213857
https://doi.org/10.1145/3213846.3213857
https://doi.org/10.1145/3213846.3213857
https://doi.org/10.1145/3213846.3213857
https://doi.org/10.1109/ICSE-SEIP52600.2021.00040
https://doi.org/10.1109/ICSE-SEIP52600.2021.00040
https://doi.org/10.1145/3510003.3510128
https://doi.org/10.1145/3510003.3510128
https://doi.org/10.1145/3510003.3510128
https://doi.org/10.1145/3510003.3510128

[56]

[57]

[60]

[61]

[62]

[64]

T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, S. Pasupathy, Early
detection of configuration errors to reduce failure damage, in: 12th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 16), 2016, pp. 619-634.

Q. Chen, T. Wang, O. Legunsen, S. Li, T. Xu, Understanding and
discovering software configuration dependencies in cloud and datacenter
systems, in: Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 362-374.

J. Toman, D. Grossman, Staccato: A bug finder for dynamic configura-
tion updates (artifact)., Dagstuhl Artifacts Ser. 2 (1) (2016) 14-1.

F. Behrang, M. B. Cohen, A. Orso, Users beware: Preference incon-
sistencies ahead, in: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, 2015, pp. 295-306.

S. Zhang, M. D. Ernst, Which configuration option should i change?, in:
Proceedings of the 36th international conference on software engineering,
2014, pp. 152-163.

Y. Zhang, H. He, O. Legunsen, S. Li, W. Dong, T. Xu, An evolutionary
study of configuration design and implementation in cloud systems, in:
2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing (ICSE), IEEE, 2021, pp. 188-200.

H. Huang, M. Wen, L. Wei, Y. Liu, S.-C. Cheung, Characterizing and
detecting configuration compatibility issues in android apps, in: 2021
36th IEEE/ACM International Conference on Automated Software En-
gineering (ASE), IEEE, 2021, pp. 517-528.

M. Attariyan, M. Chow, J. Flinn, X-ray: automating {Root-Cause}
diagnosis of performance anomalies in production software, in: 10th
USENIX Symposium on Operating Systems Design and Implementation

(OSDI 12), 2012, pp. 307-320.

S. Zhang, M. D. Ernst, Proactive detection of inadequate diagnostic
messages for software configuration errors, in: Proceedings of the 2015
International Symposium on Software Testing and Analysis, 2015, pp.
12-23.

37

[65]

[71]

[72]

W. Li, Z. Jia, S. Li, Y. Zhang, T. Wang, E. Xu, J. Wang, X. Liao, Chal-
lenges and opportunities: an in-depth empirical study on configuration
error injection testing, in: Proceedings of the 30th ACM SIGSOFT

International Symposium on Software Testing and Analysis, 2021, pp.
478-490.

S. Li, W. Li, X. Liao, S. Peng, S. Zhou, Z. Jia, T. Wang, Confvd:
System reactions analysis and evaluation through misconfiguration in-
jection, IEEE Transactions on Reliability 67 (4) (2018) 1393-1405.

W. Li, S. Li, X. Liao, X. Xu, S. Zhou, Z. Jia, Conftest: Generating
comprehensive misconfiguration for system reaction ability evaluation,
in: Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering, 2017, pp. 88-97.

F. A. Arshad, R. J. Krause, S. Bagchi, Characterizing configuration
problems in java ee application servers: An empirical study with glassfish
and jboss, in: 2013 IEEE 24th international symposium on software
reliability engineering (ISSRE), IEEE, 2013, pp. 198-207.

R. Abdalkareem, V. Oda, S. Mujahid, E. Shihab, On the impact of using
trivial packages: An empirical case study on npm and pypi, Empirical
Software Engineering 25 (2) (2020) 1168-1204.

Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Wu, Y. Liu,
An empirical study of usages, updates and risks of third-party libraries
in java projects, in: Proceedings of International Conference on Software
Maintenance and Evolution (ICSME), 2020, pp. 35-45.

M. Zimmermann, C.-A. Staicu, C. Tenny, M. Pradel, Small world with
high risks: A study of security threats in the npm ecosystem, in:
Proceedings of {USENIX} Security Symposium ({USENIX} Security),
2019, pp. 995-1010.

D.-L. Vu, I. Pashchenko, F. Massacci, H. Plate, A. Sabetta, Typosquat-
ting and combosquatting attacks on the python ecosystem, in: Pro-

ceedings of European Symposium on Security and Privacy Workshops
(EuroS&PW), 2020, pp. 509-514.

38

[73] X. Tan, K. Gao, M. Zhou, L. Zhang, An exploratory study of deep learn-
ing supply chain, in: Proceedings of the 44th International Conference
on Software Engineering, 2022, pp. 86-98.

[74] K. Huang, B. Chen, S. Wu, J. Cao, L. Ma, X. Peng, Demystifying de-

pendency bugs in deep learning stack, arXiv preprint arXiv:2207.10347
(2022).

39

	Introduction
	Problem Analysis
	Procedure Summarization
	Misconfigured Version Specifications

	Exploratory Study
	Data Collection
	Observation 1 (Prevalence)
	Observation 2 (Characteristics)
	Observation 3 (Manifestation Patterns)
	Error Diagnostic Pattern Analysis
	Implications

	Detecting PDSpecErrs
	Detecting Setup Script Issues
	Detecting Incompatible Features
	Detecting Version Conflicts
	Bug Report

	Evaluation
	Effectiveness
	Usefulness
	Overhead

	Discussion
	Related Work
	Conclusion

