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ABSTRACT

Unlike those on public permissionless blockchains, smart contracts
on enterprise permissioned blockchains are not limited by resource
constraints, and therefore often larger and more complex. Current
testing and analysis tools lack support for such contracts, which
demonstrate stateful behaviors and require special treatment in
quality assurance. In this paper, we present a model-based testing
platform, called ModCon, relying on user-specified models to de-
fine test oracles, guide test generation, and measure test adequacy.
ModCon is Web-based and supports both permissionless and per-
missioned blockchain platforms. We demonstrate the usage and key
features of ModCon on real enterprise smart contract applications.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.
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1 INTRODUCTION

Smart contracts are computer programs that execute on top of
blockchains (e.g., Ethereum [26]) to manage large sums of money,
carry out transactions of assets, and govern the transfer of digital
rights between different parties. Transactions conducted through
smart contracts are recorded on blockchains, thus decentralized and
immutable, without requiring validation from a central authority.
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Due to these unique advantages, smart contracts have gained much
popularity in recent years.Many believe that this technology has the
potential to reshape a number of industries, e.g., banking, insurance,
supply chains, and financial services [12].

The existing blockchain networks can be broadly categorized
into the permissionless and permissioned blockchains, where the
former is open to the public (e.g., Bitcoin [19] and Ethereum [26])
and the latter is only accessible to trusted private groups or indi-
viduals (e.g., Hyperledger Fabric [7]). The consortium/federated
blockchains (e.g., FISCO BCOS [5] and Azure Blockchain Work-
bench [3]) sit somewhere in the middle: they are suitable for use
between multiple businesses or organizations for performing trans-
actions and exchanging information. One major difference between
smart contracts on the permissioned and permissionless blockchains
is that the contract execution on permissionless chains is bounded
by resource constraints. For example, on Ethereum, one has to pay
miners a certain amount of “gas” (cryptocurrency on Ethereum)
as the transaction fee to deploy or call contract, which is largely
decided by the complexity of the contract (e.g., up to $15 in fees [4]).
Therefore, to reduce the gas consumption, smart contracts on per-
missionless chains are often kept simple, making it unsuitable for
implementing enterprise applications with complex business logic.

At the same time, smart contracts have been used to implement
many industrial applications of high complexity and production
quality on permissioned and consortium blockchains. Unlike the
permissionless blockchains, such as Bitcoin and Ethereum mainly
used for cryptocurrency exchange (e.g., ERC Token and DeFi appli-
cations), the permissioned blockchains aim to create real value. For
instance, FISCO BCOS has been successfully adopted in areas such
as government and judicial services, supply chain, finance, health
care, copyright management, education, transportation, and agricul-
ture [5]. The smart contracts powering these applications are more
sophisticated and often demonstrate strong stateful behaviors.
Example. Figure 1 illustrates some usage scenarios of a Credit
Management Application (CMA) atWeBank [9], implemented using
smart contracts, running on FISCO BCOS consortium blockchain.
CMA is used to handle inventory and asset management in supply
chain through a blockchain-based credit system,which can facilitate
credit transfer among different business owners and help small
businesses receive instant financial support securely.

The user first deploys an AccountController contract, whose
address is then used to instantiate the CreditController contract.
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Figure 1: Illustration of a CMA smart contract at WeBank.

AccountController is in charge of the account creation and man-
agement. An account may own Credit(s), which are transferable
and divisible tokens with stipulated values. The state of a Credit
is captured by the tuple, (STATUS, 𝑎𝑚𝑜𝑢𝑛𝑡, 𝑜𝑤𝑛𝑒𝑟 ), whose fields
represent the status, value captured, and its ownership, respec-
tively. A Credit instance supports credit operations including cre-
ation, transfer, discount, expiration, clearance, and closure. Through
CreditController, one can first create a credit, namely, a○, under
the specified Account. In this case, a transfer operation is exe-
cuted on a○, thus dividing a○ into two new credits, namely, b○ and
c○. By design, the total value of b○ and c○ equals to that of a○. Then
a discount operation is applied on b○, resulting in a newly created
credit e○ and a discounted credit f○. By design, the total value of
e○ and f○ equals to that of b○, but the status of f○ becomes “DIS-
COUNTED”. To complete the life cycle of a credit, one may apply
either the close, clear, or expire operation, bringing the credit
into the “CLOSED” (e.g., d○), “CLEARED” (e.g., g○), or “EXPIRED”
(e.g., h○) state, respectively. Once a credit is in “CLOSED/CLEARED
/EXPIRED”, it should no longer accept further operation.

Existing testing and analysis tools target Ethereum smart con-
tracts and mainly focus on their security issues. Such tools do not
work well on this example for the following reasons. (1) Lack un-

derstanding of system behaviors. The different states of a credit
instance is implemented with special encoding. For example, the
STATUS field is encoded as bit-vectors for performance consider-
ations. It is unclear how to interpret system states and behaviors
at these states without this knowledge. (2) Absence of oracle.
Existing tools may rely on implicit security properties (e.g., under-
flow/overflow and exceptions) as oracle, which is absent when the
functional correctness is concerned. The expected system behavior
(e.g., “EXPIRED” is terminal) is not known prior and should be
provided by the contract designer. (3) Missing measurement of

test adequacy. The traditional coverage criteria used by existing
tools, such as branch and path coverage, are not good measurement
of test adequacy for this example. Covering every single path of the
contract program does not equal exercising all system states and
state transitions. It is challenging to navigate through all system
behaviors without proper adequacy measurements.
ModCon. To address these challenges, we propose ModCon, a
model-based testing platform for smart contracts. ModCon targets
enterprise smart contract applications written in Solidity [21] from
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Figure 2: Architecture of ModCon.

permissioned/consortium blockchains such as FISCO BCOS, but is
also compatible with Ethereum.

ModCon allows users to specify system models and define test
oracles, which are then used to guide the test generation and exe-
cution. The key features of ModCon include the following.
• Test-Model Specification. ModCon allows users to provide
a test model for the target smart contract. The model is used
to specify the state definitions, expected transition relations,
pre/post conditions to be satisfied for each transition, invariants,
and the mapping from the model to the contract code.

• Customized Test Generation. With the test model given, users
can further customize the testing process by choosing from differ-
ent coverage strategies and test prioritization options. ModCon
then generates tests with the goal of exercising as many system
behaviors as possible while prioritizing on cases of particular
interests. Any violation of the specified oracle is recorded and
reported to users.

• Web-Based Interface. ModCon has aWeb-based interface, pro-
viding easy access to all the testing capabilities and customiza-
tion options. Source code and a video demonstrating the usage of
ModCon are available at https://sites.google.com/view/modcon.

2 MODCON OVERVIEW

In this section, we describe the architecture of ModCon and demon-
strate its user interface. As shown in Fig. 2, ModCon consists of a
web-based front end (implemented as a Vue.js [8] application) and a
server-side back end (implemented on top of the Node.js JavaScript
runtime [6]). The front-end accepts two inputs from users: the tar-
get smart contracts and the test-model specifications to drive the
model-based testing process. The front-end allows users to specify
coverage strategies and configure test generation priority, and the
test execution progress can be monitored on-the-fly. The back-end
communicates with the front-end through the WebSocket. On the
back-end, the model-based testing engine is in charge of smart con-
tract compilation/deployment, model specification analysis, and
the customized model-based testing tasks as per users’ requests.

2.1 User Interface

The user interface of ModCon mainly supports three tasks, namely,
contract setup, model specification, and testing controls.
Contract Setup. First, users are to upload all relevant smart con-
tract source files, which are then automatically compiled and de-
ployed onto the blockchain network. Once the contracts are suc-
cessfully deployed, users can directly interact with them by sending
transactions, and the transaction receipts are displayed on the result
pane below. For example, as shown in Fig. 3, seven contracts re-
lated to the CMA application (i.e., Account, AccountController,
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Figure 3: Smart contract deployment and setup.
0 {

1 "id": "CMA#1",

2 "main": "CreditController",

3 "contracts": {

4 "CreditController": {"address": "0x00", "name": "CreditController"}

5 },

6 "actions": {

7 "create": {"CreditController": ["createCredit"]},

8 "discount": {"CreditController": ["discountCredit"]},

9 "transfer": {"CreditController": ["transferCredit"]},

10 "expire": {"CreditController": ["expireCredit"]},

11 "clear": {"CreditController": ["clearCredit"]},

12 "close": {"CreditController": ["closeCredit"]}

13 },

14 "states": [

15 { "name": "CREATED", "type": "regular", "Predicate": "status[0] == CREATED" },

...↪→
16 ],

17 "transitions": [

18 { "from": "INITIAL", "to": "CREATED", "action": "create" },...

19 ]

20 }
Figure 4: User-configured model specification.

Credit, CreditController, ...) had been uploaded to ModCon.
AccountedController and CreditController were deployed at
addresses, “0x325...913” and “0x42f...6a0”, respectively. One
transaction, calling the registerAccount function, was sent to
AccountController to create an account which would be used to
hold credit instances. The target contracts’ information, including
the ABIs and deployment details, are cached and will be used for
test case generation in a later stage.
Model Specification. Figure 4 shows an abridged test-model spec-
ification for the CMA application, which user can customize for
his/her applications. The “id” and “main” fields indicate the model
identifier and the entry contract, respectively. The “contracts”
field lists all relevant contract dependencies required in the test
model. The “states” and “transitions” fields jointly define a
state machine model for the target application. The “actions” field
establish a mapping between functions from the contract implemen-
tation and the actions that can be taken to perform state transitions.
TestGen Configuration. The test-model specification (i.e., Fig. 4)
provided by users is visualized as a state machine diagram shown in
Fig. 5. Users may further customize the test generation process by
choosing from the three coverage strategies: (1) cover states, aiming
to cover every states, (2) cover transitions, aiming to cover every
transitions, and (3) cover transitions (loop), aiming to cover every
transitions including loops. Based on experiments, covering loop
transitions may increase testing costs without covering new states,
but it can help discover corner cases and verify the integrity of the
test-model. In addition, users may prioritize the test generation
leaning towards specific states or transitions. As shows in Fig. 5,

Figure 5: Test generation control panel.

the “cover states” strategy is selected and the states CREATED and
DISCOUNTED are covered by 10 and 13 test cases, respectively.

2.2 Back-End Implementation

The model-based testing engine consists of three parts: i.e., model
analyzer, test generation engine, and blockchain driver.
Model Analyzer. The model analyzer reads the model specifica-
tion from the front-end and automatically translates it into a test
driver written in JavaScript. The test driver stipulates how tests
should be generated and executed, which is then displayed in the
front-end client for users’ confirmation and customization. For
instance, users may insert additional test oracles in the form of
pre/post conditions and assertions.
TestGen Engine. The test generation (TestGen) engine receives
testing requests and collects the test-model related information
from the front-end, which includes the confirmed test driver, the
coverage strategies, and the test generation priorities. The engine
first computes all logical transition paths following the specific
coverage strategies and goals using graph searching algorithms.
For example, to reach the CLEARED state of CMA shown in Fig. 5,
the logical transition paths for different strategies are listed below.
• Cover states: INITIAL → CREATED → CLEARED.
• Cover transitions: INITIAL → CREATED → CLEARED; INITIAL →
CREATED → DISCOUNTED → CLEARED.

• Cover transitions (loop): INITIAL→CREATED→CREATED→CLEARED;
INITIAL → CREATED→ CREATED → DISCOUNTED → CLEARED.
The TestGen engine ranks these logical transition paths based

on the order defined by the test case priorities, and then generates
concrete test cases (with concrete input values and environment
settings) corresponding to each logical transition path. The gen-
eration of concrete input values adopts standard techniques, such
as the mutation-based method in ContraMaster [24, 25], with seed
pools for different input types. Built upon the blockchain driver,
the TestGen engine sends these concrete test cases to blockchain
platforms for execution and monitors the execution status at the
same time. The engine keeps generating test cases for execution
until the maximum time budget or failure limit is reached. During
test execution, the engine reports the testing results back to the
front-end client, which displays the current progress in real-time.
Blockchain Driver. The blockchain driver directly interacts with
the blockchain networks for contract deployment and establishes



ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Ye Liu, Yi Li, Shang-Wei Lin, and Qiang Yan

0 1000 2000 3000 4000 5000
number of test cases

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

st
at

e 
co

ve
ra

ge Cover State
Cover transition
Cover transition (loop)
Random

(a) CMA: state cov.
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(b) CMA: transition cov.
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(c) BlindAuction: state cov.
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(d) BlindAuction: transition cov.

Figure 6: State and transition coverage achieved per test for

CMA and BlindAuction.

a transaction interface with the networks. Currently, ModCon
supports two blockchain platforms, namely, Ethereum and FISCO
BCOS. It can easily be extended to other blockchain platforms.

3 EVALUATION

In this section, we evaluate ModCon on the CMA smart contract
application from WeBank and the BlindAuction contract used by
FSolidM [17], a state machine based smart contract code generator.

We manually constructed their model specifications with the
help from the contract developers and the related documentation.
The experiments were conducted on a desktop computer with
Ubuntu 18.10 OS, an Intel Core i5 2.50 GHz processor and 8GB
RAM. All cases were evaluated on the FISCO BCOS blockchain.

Figure 6 shows the evaluation results. The vertical and horizontal
axes represent the state/transition coverage and the number of test
cases, respectively. We examined aforementioned three coverage
strategies and compared the results of ModCon with random test-
ing. Among these strategies, the results show that the cover state
strategy first reaches all states of both CMA and BlindAuction,
while the strategy to cover transition including loops has the po-
tential to reach all states and explore more transitions at the cost of
more test cases. All of the three proposed strategies achieve much
higher state and transition coverage than random testing, which
shows that random testing is not suitable to deal with enterprise
smart contract applications. Random testing achieves lower state
and transition coverage in CMA than those in BlindAuction, be-
cause the former is of higher complexity in its business logic and
state encoding than the latter. For example, CMA uses a bit-vector
of more than 11 bits as its function input or to encode the STATUS,
and blindly enumerating bit-vector values is extremely inefficient.

In our experiments, ModCon was able to reach all states and
transitions for each case within about 500 test cases. This is mainly
because of the guidance from the test-model, whichmakesModCon
effective on enterprise smart contract applications such as CMA.
Additionally, with the test-model specification, ModCon allows

users to define test oracles in the generated test driver. For example,
the specification of CMA requires CLOSED, CLEARED, and EXPIRED
to be final states, which means no transition shall be made once the
system falls into one of the three states. We insert this specification
as a test oracle into the test driver and discovered violations against
it in the original implementation of CMA. The transitions between
EXPIRED, CLOSED, and CLEARED were possible due to an implemen-
tation error. We reported this error to the CMA developer team
from WeBank, and they confirmed it to be a real bug. The demon-
stration video of ModCon, along with more cases and experiment
results, can be accessed at: https://sites.google.com/view/modcon.

4 RELATEDWORK

Most of the existing testing and analysis tools focus on the secu-
rity issues of Ethereum smart contracts. Oyente [2, 16] is one of
the first static analyzer detecting security vulnerabilities in smart
contracts based on symbolic execution. It searches for violations
of predefined security properties without actually executing the
contract program. Other notable static security analysis tools in-
clude Zeus [14], Mythril [1], sCompile [11], and Securify [22]. In
contrast, the dynamic tools instrument either the contract code or
the Ethereum Virtual Machine (EVM) and observe anomalies dur-
ing runtime execution. ContractFuzzer [13] is the earliest dynamic
fuzz testing tool aiming a number of common vulnerability types,
including the reentrancy, exception disorder, block dependency,
etc. Other fuzzing tools follow similar principles: e.g., Reguard [15],
ContraMaster [24, 25], and sFuzz [20]. These tools are not designed
for testing functional correctness, and as mentioned in Sec. 1, they
are not suitable for enterprise smart contract applications either.

There are several recent works on the functional correctness of
Ethereum smart contracts. VeriSol [10] relies on formal verification
to check the semantic conformance between a contract implemen-
tation and its workflow policy. The policy is provided by users,
describing the high-level workflow of the application in a style
similar to our model specifications. FSolidM [17] and VeriSolid [18]
both aim to facilitate the creation of correct-by-design contracts,
with emphases on the security and functional aspects, respectively,
where a finite state machine is used as the contract specification to
capture the expected system behaviors. ModCon is based on the
idea of model-based testing [23], which uses an explicit abstract
model of the target contract to automatically derive tests. It serves
as a complement to other static validation/construction techniques
in providing more flexible and accurate quality assurance solutions.

5 CONCLUSION

In this paper, we described the architecture of ModCon, its user
interface, and prominent features. We also demonstrated the ef-
fectiveness of it on real smart contract applications from WeBank.
The model-based testing capability of ModCon enables it to gen-
erate higher-quality test cases for enterprise smart contracts from
permissioned and consortium blockchains.
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A MODCON WALK-THROUGH

In this section, we demonstrate the usage of ModCon with a step-by-step walk-through on the aforementioned CMA application. The basic
workflow of ModCon consists of three steps: namely, contract setup, test-model specification, and test generation.
Step 1.1: contract setup — home page. Figure 7 shows the user interface of ModCon. ModCon has two work tabs, namely, the “HOME”
tab for contract setup and the “TEST” tab for customizing specification and testing. User first sees the “HOME” tab containing a contract
setup configuration panel. The panel has a files uploading dialog and presents possible error messages in the “Results” section.

Figure 7: Home page of ModCon.

Step 1.2: contract setup — uploading files. User then uploads smart contract source files through the file uploading dialog. User uploads
seven files of the CMA application to the ModCon server, as shown in Fig. 8; Uploading contract files typically spends less than ten seconds.
Once done, user can proceed to compile and deploy the contracts.

Figure 8: Upload CMA to ModCon server.

Step 1.3: contract setup — compilation. User clicks on the “Compile” button to compile the CMA application as shown in Fig. 9. The
compilation takes around one minute. If there is any compilation error, user is alerted in the “Result“ form and needs to resolve the issues
based on the error messages. Once the compilation succeeds, user can proceed to deploy the application.
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Figure 9: Compilation of CMA.

Step 1.4: contract setup — deployment. User can select which contracts to deploy and specify the constructor arguments in the “inputs”
field shown in Fig. 10. User first deploys an AccountController instance and uses the instance’s address as the constructor argument to
deploy the CreditController, which is the main target contract. User clicks on the “Deploy” button to initiate the deployment of the
CreditController. All the deployment results can be observed in the “Result“ form, too.

Figure 10: Deployment of CMA.

Step 1.5: contract setup — sending a transaction. User can also send transactions to the deployed smart contract instance through
the “SendTx” interface. For example, user may create an account in CMA by calling the registerAccount function. User specifies four
parameters, including the account details and the instance address 0x1c9...300, as shown in the “Result“ form of Fig. 11. User then clicks
on the “SendTx” button to send a transaction to the blockchain network and a valid account will be created.
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Figure 11: Register an account in CMA.

Step 2: test model specification. User clicks on the “TEST” tab to open the test view. At the second step, user selects the CMA test-model
specification from the drop-down menu, which include a number of predefined examples. As shows in Fig. 12, the specification content lies
on the left side and the middle pane is the control panel for configuring test generation and progress monitoring. The right side shows the
model driver generated from the specification automatically. User may customize the model driver accordingly.

Figure 12: Test view of CMA test-model specification.
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Step 3: test generation and progress monitoring. At the last step, user specifies test coverage strategies and priority options. User starts
the testing job and monitors the testing process as shown in Fig. 13. User is also able to export the test results into a CSV file. User examines
the coverage of testing goals in real-time: the states and transitions activated are highlighted in the state machine diagram. The testing
job can be terminated at any point by clicking on the “stop” button. Once the testing goals are reached, the testing process is stopped
automatically.

Figure 13: Configure test generation and monitor results.

Summary. We have demonstrated the usage and key features of ModCon on the CMA application. Source code of ModCon and additional
results are available at https://sites.google.com/view/modcon.
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