
1

Automated Invariant Generation for Solidity Smart
Contracts

Ye Liu, Chengxuan Zhang, Yi Li
{ye.liu, chengxua001, yi_li}@ntu.edu.sg

Nanyang Technological University, Singapore

Abstract—Smart contracts are computer programs running on
blockchains to automate the transaction execution between users.
The absence of contract specifications poses a real challenge to the
correctness verification of smart contracts. Program invariants
are properties that are always preserved throughout the execution,
which characterize an important aspect of the program behaviors.
In this paper, we propose a novel invariant generation framework,
INVCON+, for Solidity smart contracts. INVCON+ extends the
existing invariant detector, InvCon, to automatically produce
verified contract invariants based on both dynamic inference and
static verification. Unlike INVCON+, InvCon only produces likely
invariants, which have a high probability to hold, yet are still
not verified against the contract code. Particularly, INVCON+
is able to infer more expressive invariants that capture richer
semantic relations of contract code. We evaluate INVCON+ on
361 ERC20 and 10 ERC721 real-world contracts, as well as
common ERC20 vulnerability benchmarks. The experimental
results indicate that INVCON+ efficiently produces high-quality
invariant specifications, achieving a recall of 80%, which can
be used to secure smart contracts from 17 types of common
vulnerabilities.

Index Terms—Smart contract, invariant detection.

I. INTRODUCTION

Smart contracts are computer programs that operate on
blockchain networks. They are used to facilitate the manage-
ment of substantial financial assets and the automated execution
of agreements among multiple parties who lack inherent
trust. Notably, blockchain networks such as Ethereum [1] and
BSC [2] are widely recognized as leading platforms supporting
smart contracts, with applications spanning diverse domains
such as supply-chain management, finance, energy, games, and
digital artworks. However, the immutable and autonomous
nature of smart contracts makes them particularly vulnerable to
programming errors and malicious exploitation. Once deployed,
a smart contract cannot be modified, and therefore the costs
for mitigation are much higher. While smart contracts hold
promise for facilitating value transfer among users, those
that deviate from their specifications may harbor bugs or
vulnerabilities. Numerous implementations of ERC20 contracts
diverge from common expectations, as exemplified by standard
non-compliance of ERC20 [3], particularly concerning event
emission, balance updates, and transaction fee mechanisms.
Numerous real-world security incidents highlight these risks.
The BatchOverflow [4] vulnerability allowed attackers to create
an arbitrarily large number of tokens due to an unchecked
arithmetic overflow, prompting major exchanges to halt ERC-
20 transactions. In other cases, such as the Bancor [5], failure

to return expected values in the transfer or approve functions
caused compatibility issues with third-party applications, re-
sulting in stuck funds.

Even well-established standard ERC20 implementations
exhibit inconsistencies [6]. The root cause lies in the limited
semantic specifications outlined in the ERC20 standard proposal
document [7]. Take the transfer function as an illustration—
it is designed to move a specified amount of tokens from the
sender to the recipient while triggering the Transfer event
and should throw an error if the sender lacks adequate tokens
for the transfer. Nevertheless, the ERC20 proposal provides only
simple textual descriptions of the function, leading to semantic
disparities across various ERC implementations and even
different versions of the same implementation. For instance,
the widely used ERC20 implementation from OpenZeppelin
initially did not permit a return value for the transfer
function until a later commit,1 causing incompatibility issues
with renowned tokens like BNB, as reported by the reputable
security company SECBIT [6]. In cases where a contract
necessitates checking the return value of an external call
to a transfer function of ERC20 contracts, even if the
transfer is successful, it may revert due to the absence of a
return value, resulting in compatibility problems [8]. However,
removing the return value check exposes contracts to a potential
vulnerability known as the fake deposit attack [9].

Ensuring the correctness of smart contracts poses a sig-
nificant challenge, especially in the absence of contract
specifications. On the one hand, the documentation for most
smart contracts is scant, with even widely recognized smart
contract libraries like OpenZeppelin [10], [11] found to have
errors and deficiencies in their documentation [12]. On the
other hand, the absence of contract specifications hampers
the widespread adoption of formal verification tools in the
realm of smart contracts. To address this issue, the commercial
formal verification company Certora2 has adopted a crowd
sourcing approach—they hosted numerous competitions on
well-known bug bounty platforms, such as Code4Rena,3 to en-
gage third-party security experts in the formulation of contract
specifications. Yet, manual creation of formal specifications
for smart contracts remains costly and error-prone.

Many automated techniques [13], [14] have been proposed
to generate formal specifications in various forms to support

1https://github.com/OpenZeppelin/openzeppelin-solidity/commit/
6331dd125d8e8429480b2630f49781f3e1ed49cd

2https://www.certora.com/
3https://code4rena.com/

https://github.com/OpenZeppelin/openzeppelin-solidity/commit/6331dd125d8e8429480b2630f49781f3e1ed49cd
https://github.com/OpenZeppelin/openzeppelin-solidity/commit/6331dd125d8e8429480b2630f49781f3e1ed49cd
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the testing, verification, and validation of software programs.
Among them, program invariants, which are enduring prop-
erties maintained throughout program execution, inherently
serve as excellent candidates for enhancing and reinforcing
program specifications. Program invariants have been used
for vulnerability detection [15], conformance checking [3],
runtime protection [16], type checking [17], and formal
verification [18], [19] for smart contracts. Established tools,
such as Daikon [13], can identify likely program invariants for
Java programs through the execution of their test cases. The
process involves statistically inferring the invariants that hold
based on predefined templates, while discarding those refuted
by the data trace records. The complete historical transaction
data of smart contracts is consistently stored on blockchains,
encapsulating all execution data since contract deployment,
serving as a valuable data source for mining invariants.

In our prior work, INVCON [20] utilized Daikon to identify
likely invariants for smart contracts, all of which are primitive
predicates hold throughout the existing transaction histories.
Moreover, Liu et al. [21] employed reinforcement learning to
learn contract invariants critical to safely performing arithmetic
operations, with a focus on preventing integer overflow and
underflow. Despite their usefulness, the correctness of such
inferred invariants remains unverified. In particular, an invariant
which holds in past transactions may not always hold in the
future—this may be due to the limited contract interactions
observed in the transaction histories so far.

In this paper, we expand upon INVCON to generate verified
contract invariants utilizing both dynamic inference and static
verification. We introduce a specialized invariant specification
language tailored for Solidity smart contracts and propose a
novel approach for inferring high-quality verified invariants.
Specifically, we design a Houdini-like [14] algorithm to
generate verified invariants for smart contracts. To address the
explosion problem in searching for richer invariant candidates,
such as implications that prevail in ERC20 and ERC721 [22],
[23], [24] specifications, we introduce an iterative and incre-
mental process for exploring these candidates on demand. We
also apply control- and data-flow analyses to eliminate mean-
ingless candidates and further improve the invariant generation
efficiency. Our approach is implemented as an automated
tool called INVCON+. Through evaluation on 361 ERC20
contracts and 10 ERC721 real-world Solidity contracts, we
demonstrate that INVCON+ produces comprehensive contract
invariant specifications with no false positives. Furthermore, our
analysis of real-world vulnerable ERC20 contracts underscores
the potential of INVCON+ in safeguarding these contracts
through the application of mined invariant specifications.

In summary, we make the following contributions:
• We introduce a comprehensive invariant specification

language designed for expressing operational semantics
in Solidity smart contracts. This language enables logical
operations on variables of primitive types and commonly
used data structures like structs, arrays, and mappings in
Solidity.

• We present a unified framework for generating verified
invariants in Solidity smart contracts, combining dynamic
invariant detection and static invariant verification. Specif-

ically, we develop a custom algorithm inspired by the
Houdini algorithm to verify invariants for smart contracts
and introduce an iterative process to derive a richer class
of invariants.

• Our proposed approach is implemented in INVCON+, and
its effectiveness is evaluated on 361 ERC20 contracts
and 10 ERC721 contracts, along with vulnerable ERC20
contracts involving 24 types of vulnerabilities. The results
demonstrate that INVCON+ can generate high-quality and
comprehensive invariant specifications for smart contracts,
achieving a recall of 0.80, which is able to prevent 17
types of common vulnerabilities. The dataset, raw results,
and the prototype used in our experiments are available
online at: https://sites.google.com/view/invconplus/.

Organization. The rest of the paper is organized as follows.
Section II provides the background about smart contracts and
invariant inference. Section III defines the invariant specification
language. Then, Sect. IV introduces our invariant generation
approach. Section V describes our implementation framework,
INVCON+, and Sect. VI demonstrates our evaluation results.
The related work is discussed in Sect. VII and we conclude
the paper in Sect. VIII.

II. BACKGROUND

A. Solidity Smart Contracts

Figure 1 presents the foundational grammar of the Solid-
ity language, with certain features, such as event emission,
intentionally excluded for the sake of clarity. Solidity encom-
passes various primitive data types, including integer, string,
and boolean. Distinguishing itself from other programming
languages like Java, Solidity does not permit floating-point
numbers and incorporates a distinctive address type. This design
choice is rooted in the interaction pattern between contracts and
blockchain users, each possessing a unique address. Moreover,
the majority of contracts are developed with the primary goal
of tokenizing digital assets.

a, v ∈ V ariable ::= address | uint | int | string | bytes |
byte | bool | array | mapping | struct{v⃗}

f ∈ Function ::= func(⃗a) {s⃗}
s ∈ Statement ::= v | v := e | if (e) {s⃗} else {s⃗}|

call(e⃗) | return e |
require(e) | assert(e) | revert

e ∈ Expr ::= v | const | e[e] | e.v | e ▷◁ e

Fig. 1: The core grammar of the Solidity language.

A Solidity smart contract comprises a collection of state
variables and a set of functions. Statements within each
function can take the form of variable assignments, conditional
statements, internal or external function calls, requirement
or assertion statements, and reversion or return statements.
Notably, the require and assert statements can be employed
to enforce program invariants at runtime. In the realm
of expressions, ▷◁ denotes a binary operator encompassing
{+,−, ∗, /,>,<,≥,≤,=, ̸=,∧,∨}.

https://sites.google.com/view/invconplus/
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Smart Contract Execution. The execution of a smart contract
function can be triggered by sending a blockchain transaction
to the contract address. Typically, each transaction incorporates
one or more contract calls, potentially leading to alterations
in contract state variables unless the transaction undergoes a
reversion. To ease the discussion in this paper, we model a
smart contract SC as a tuple (v⃗, f⃗), where v⃗ is a vector of
state variables and f⃗ is a list of public functions.

Definition II.1 (Contract Execution). Let Dom(v) be the
domain of a variable v and Dom(v⃗) =

∏
v∈v⃗

Dom(v). Then,

δ, δ′ ∈ Dom(v⃗) represent two reachable contract states. For a
function invocation f (⃗a), calling function f with parameters
values a⃗, we define its high-level execution semantics as a state
transition δ

f(a⃗)−−−→ δ′.

Note that since a contract execution is triggered by a
transaction recorded into a specific block of the blockchain,
the parameter values a⃗ also includes implicit transaction and
block parameters, e.g., msg.sender and block.number.

Transaction Histories. The execution of a smart contract is
intricately linked to its transaction histories on the blockchain.
The transaction histories record every contract execution,
capturing function calls, state transitions, and modification
to state variables from the contract deployment onward. It
encapsulates the evolution of the contract state, reflecting the
cumulative effect of all transactions. This historical traceability
is fundamental for auditing, debugging, and understanding the
operational dynamics of smart contracts on the blockchain.

B. Invariant Inference

In this paper, we aim to mine contract-level and function-
level invariant specifications.

Definition II.2 (Function Pre/Post-conditions). Let f be a
contract function, and predicates p and q be the pre/post-
conditions of f , respectively, which can be represented as
a Hoare triple {p}f{q}. Then the following condition should
be satisfied.

∀δ, ∀a⃗ · δ |= p ∧ δ
f(a⃗)−−−→ δ′ =⇒ δ′ |= q (1)

Definition II.3 (Contract Invariant). Given a smart contract
SC, its contract invariant I is a predicate that must hold for
any contract function execution. More formally, we have ∀f ∈
SC · {I}f{I}.

Invariant inference techniques can be broadly categorized
as static and dynamic. Static invariant inference (e.g., Hou-
dini [14]) identifies function pre/post-conditions and contract
invariants that hold for any program execution. On the other
hand, dynamic invariant inference (e.g., Daikon [13]) identifies
likely invariants that hold for specific contract executions (e.g.,
executions of a test case).

Let ∆ denotes a set of program executions {(δ, f (⃗a), δ′)},
which bring the contract state from δ to δ′. The likely
function pre/post-conditions of f , i.e., {p̂}f{q̂}, hold for ∆ if

∀(δ, f (⃗a), δ′) ∈ ∆, δ |= p̂∧ δ
f(a⃗)−−−→ δ′ =⇒ δ′ |= q̂. The likely

Algorithm 1: The basic HOUDINI algorithm
Inputs :P , program under the analysis;

:Candidates, invariant annotation candidates.
Outputs :A, a set of verified invariant annotations.

1 A := Candidates
2 while true do
3 rft := Verify(P, A) ; //a set of refuted

candidates failing the verification.
4 if rft = ∅ then
5 break
6 A ← A \ rft
7 end while
8 return A

contract invariants of a smart contract is defined in a similar
way, which is omitted here for brevity.

C. Modular Verification

Modular verification [25] is a verification technique that
analyzes each function or module of a program in isolation, us-
ing assume-guarantee reasoning. Instead of verifying the entire
program as a whole, it checks whether each function satisfies its
specification (e.g., preconditions and postconditions), assuming
that other functions it calls also meet theirs. This decomposition
improves scalability and enables reusability of verification
results across different contexts, which is particularly valuable
for large and complex programs. To improve the scalability
of smart contract invariant analysis, our approach employs
modular verification, a technique that analyzes individual smart
contract functions in isolation, rather than directly verifying
the entire smart contract.

D. Houdini Algorithm

Houdini algorithm [14] is a powerful technique in computer
science used for program annotation. Algorithm 1 illustrates
its basic workflow. The algorithm accepts invariant annota-
tion candidates guessed by either static analysis that mines
candidates from source code based on heuristics, or template-
based dynamic analysis such as the well-known Daikon
approach [13]. These annotations can be in the form of loop
invariants and function pre/post-conditions, assisting in program
comprehension, debugging, and correctness analysis. In essence,
Houdini algorithm works by iteratively refining and filtering
the annotations until there are no refuted candidates (Lines 2-7),
yielded by a modular verification tool such as ESC/Java [26]
and Boogie [27]. Houdini algorithm has found applications
in various areas, including static checking [28], providing an
efficient and scalable approach to enhance program under-
standing and reliability. Recently, Houdini algorithm has also
been applied to facilitate the formal verification [29] of smart
contracts.

III. INVARIANT SPECIFICATION LANGUAGE

Figure 2 introduces our invariant specification language
designed for Solidity smart contracts. The language accom-
modates variables of four types: integer, Boolean, address,
and string, encompassing all primitive Solidity types illustrated
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const ∈ Int,Bool,Addr, Str x ∈ FreeVar v ∈ Var
e ∈ Expr ::= const | v | old(v) | len(v) | SumMap(v) |

e.x | e[x] | e ▷◁ e

p ∈ Predicate ::= ⊥ | e | e =⇒ e

Statement ::= Requires p | Ensures p | ContractInv p

Fig. 2: The invariant specification language.

1 contract ERC20 {
2 // state variables
3 uint totalSupply;
4 mapping(address=>uint) balances;
5 mapping(address=>mapping(address=>uint)) allows;
6 ...
7 function transferFrom(address from, address to,

uint tokens) public returns (bool) {↪→

8 if (to == address(0)){
9 return false;

10 }
11 allows[from][msg.sender] =

allows[from][msg.sender].sub(tokens);↪→

12 balances[from] = balances[from].sub(tokens);
13 balances[to] = balances[to].add(tokens);
14 return true;
15 }
16 }

Fig. 3: A simple ERC20 contract.

in Fig. 1. We facilitate two types of variables. The first, denoted
as v, pertains to function input parameters or contract state
variables maintained in the persistent storage of the blockchain.
The second, denoted as x, is reserved for free variables
exclusively utilized to index structure members or items within
arrays and mappings. Each invariant predicate is expressed as
either a primitive logical expression or an implication expres-
sion. Furthermore, valid specification statements encompass
function-level precondition invariant predicates (Requires) and
postcondition invariant predicates (Ensures), and contract-level
invariant predicates (ContractInv).

The expressions within the language may take the form of
constants, variables, structure members, array items, and binary
expressions. The old(·) notation is employed to differentiate
between the value of a variable before entering the function
and its value upon exiting the function, while len(·) refers to
the array length or mapping size. Additionally, the language in-
corporates the widely used SumMap(·) operator for computing
the arithmetic sum over mapping items. The notation “e ▷◁ e”
represents arithmetic or logical binary operations, where the
operator “▷◁” corresponds to the set defined in Solidity as
shown in Fig. 1.

Utilizing this invariant language, we can articulate a di-
verse range of function and contract invariants. To exemplify
its application, we present a simple illustration. In Fig. 3,
a basic ERC20 contract is depicted, featuring three state
variables—totalSupply, balances, allows (standing
for allowances)—and a function, transferFrom. The pur-
pose of the transferFrom function is to transfer a specified
amount of tokens from the account addressed at from
to another account at to. An extensively studied ERC20
contract invariant of this example can be succinctly expressed
as: “SumMap(balances) = totalSupply”. This assertion

signifies that the total sum of items within the mapping variable
balances must be equal to the value of totalSupply.
Additionally, the function pre/post-conditions can be articulated
as follows.

Requires ⊥
1⃝ Ensures to ̸= 0 =⇒ allows[from][msg.sender] =

old(allows[from][msg.sender])− tokens

2⃝ Ensures to ̸= 0 ∧ from ̸= to =⇒ balance[from] = old(balance[

from])− tokens ∧ balance[to] = old(balance[to]) + tokens

3⃝ Ensures to ̸= 0 ∧ from = to =⇒ balance[from] =

old(balance[from]) ∧ balance[to] = old(balance[to])

In this instance, it is straightforward to ascertain that there are
no preconditions for the transferFrom function, assuming
that all function preconditions are primitive predicates. The
function is characterized by three postconditions. The first
postcondition 1⃝ specifies that allows will undergo an update
(Line 11) when to is a non-zero address. Additionally, in cases
where from and to represent distinct addresses, the second
postcondition 2⃝ dictates that the balances should be adjusted
accordingly (Lines 12–13). Conversely, when from and to
are identical, the last postcondition 3⃝ emphasizes that the
net effect on balance changes should be nullified. A detailed
exploration of how these invariants are mined will be provided
in Sect. IV-E.

IV. INVARIANT GENERATION APPROACH

In this section, we present our algorithm for generating
verified invariants in smart contracts and elaborate on the tech-
niques employed to infer implication invariants. For simplicity
in presentation, we use the term “invariants” to collectively
denote both function pre/post-conditions and contract invariants
when explicit characterization is unnecessary.

A. Algorithm

Algorithm 2 outlines our approach to invariant generation.
The algorithm takes a smart contract SC , a sequence of contract
transactions T , and a set of invariant templates Q as input. The
output, denoted as Invs , comprises a set of verified invariants,
encompassing both primitive and implication invariants.

In this algorithm, Invs is initialized as an empty set (Alg. 2).
Subsequently, we initialize a set C that encompasses all poten-
tial invariant candidates under the given input (Line 2), similar
to Daikon’s initialization process [13], which instantiates all the
parameterized invariant templates with concrete contract state
variables and function input variables. For example, “X = Y ”
is a binary equation template where X and Y are placeholders
that can be filled by two concrete variables: vx and vy whenever
Dom(vx) ≡ Dom(vy). It is important to note that here C
excludes implication invariant candidates due to the exponential
complexity of traversing all implication candidates. Instead,
implication invariants will be generated on demand. Moreover,
the execution trace set ∆ is initialized as an empty set (Alg. 2).

The algorithm processes the transaction histories to extract
corresponding execution traces. For each transaction ti, the
algorithm parses it to extract the invoked function f and
parameters values a⃗ (Line 5). Additionally, the old and present
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Algorithm 2: Contract invariant inference

Inputs :SC = {v⃗, f⃗}, where each element vi ∈ v⃗ is a
contract state variable and each element fi ∈ f⃗ is a
public contract function;

: T = {ti|1 ≤ i ≤ n}, where each element ti is a
contract transaction;

:Q, a set of invariant templates.
Outputs : Invs , a set of verified invariants.

1 Invs := ∅;
2 C := INITIALIZECANDIDATES(v⃗, f⃗ , Q) ; //primitive

candidates
3 ∆ := ∅ ; //execution trace set
4 foreach ti ∈ T do
5 (δ, f (⃗a), δ′)← PARSE(ti) ;
6 ∆← ∆ ∪ (δ, f(−→a ), δ′);
7 end foreach
8 Clikely , Cpartial ←INVDETECT (∆, C);
9 Invs ← STATICINFER(Clikely) ;

10 Cimp ← FINDIMPLICATIONS(Clikely \ Invs, Cpartial) ;
//implication candidates

11 while Cimp ̸= ∅ do
12 Invs ← Invs ∪ STATICINFER(Cimp) ;
13 Cimp ← WEAKENIMPLICATIONS(Cimp \ Invs);
14 end while
15 return Invs

contract states (i.e., values of the contract state variables),
denoted as δ and δ′, respectively, are recorded. The tuple (δ,
f (⃗a), δ′) is added to the execution trace set ∆ (Alg. 2).

Next, the algorithm executes the dynamic invariant detection
procedure INVDETECT (Alg. 2) to obtain two classes of
invariant candidates:

• Clikely , likely invariant candidates that hold for the entire
transaction histories.

• Cpartial, partially supported invariant candidates that hold
for a subset of transaction histories.

Subsequently, a primitive invariant inference technique, detailed
in Sect. IV-B, is applied to infer the standing invariants out
of Clikely , and all the verified invariants are included in Invs
(Alg. 2). The unverified likely invariant candidates, Clikely \
Invs , and Cpartial are used to derive implication candidates
assigned to Cimp (Alg. 2) via FINDIMPLICATIONS, which will
be detailed in Sect. IV-C. Additionally, it is important to note
that the found implications may not always hold. An iterative
process is in place to validate these implications (Line 12)
or weaken these implications via WEAKENIMPLICATIONS
(Line 13) to identify new ones. This iterative process continues
until all valid candidates are examined (Line 11). Finally, the
algorithm returns Invs , which includes all the correctly mined
invariants from transaction histories (Alg. 2).

B. Primitive Invariant Inference

Algorithm 3 illustrates our Houdini-like algorithm to infer
verified primitive invariants from the candidates mined from
contract transaction histories. First, we enable all the candidates
in SC via contract instrumentation (Line 1); each candidate is
explicitly labeled by the added keywords, e.g., ContractInv
for contract invariant, Requires for function precondition,
and Ensures for function postcondition. Next, we invoke a
modular verifier to statically verify these enabled candidates

Algorithm 3: STATICINFER(Candidates)
1 Instrument SC to enable each candidate from Candidates;
2 while true do
3 result = MODULARVERIFY(SC) ;
4 if result = CORRECT then
5 return enabled candidates ; //verified

invariants
6 else if result = INCORRECT due to failed candidate c

then
7 disable c in SC;
8 else
9 raise Error ; //INCORRECT due to failed

assertion in SC
10 end if
11 end while

⊥
Init

Cimp := {(η =⇒ τ) |η, τ ∈ Clikely \ Invs ∪ Cpartial, η ̸= τ}

(η =⇒ τ) ∈ Cimp
∀a ∈ vars(η),∀b ∈ vars(τ).

¬ dep(a, b)
Delete

Cimp ← Cimp \ (η =⇒ τ)

Fig. 4: FINDIMPLICATIONS.

⊥
Init

ˆCimp := ∅

(η1 =⇒ τ), (η2 =⇒ τ) ∈ Cimp \ Invs η1 ∧ η2 ̸≡ false
Append-1

ˆCimp ← ˆCimp ∪ (η1 ∧ η2 =⇒ τ)

(η =⇒ τ1), (η =⇒ τ2) ∈ Cimp \ Invs τ1 ∨ τ2 ̸≡ true
Append-2

ˆCimp ← ˆCimp ∪ (η =⇒ τ1 ∨ τ2)

Fig. 5: WEAKENIMPLICATIONS.

(Line 3), i.e., verifying each function in isolation where all the
corresponding candidates are examined against the function
implementation. When there is a failed invariant candidate
c violating the verification condition, c will be disabled in
SC (Line 7). This process will continue until all the enabled
candidates are verified successfully (Line 4) and then returned
(Line 5). Particularly, whenever there is a failed assertion in
SC, i.e., a violated condition e in the assert(e) statement, the
algorithm terminates with an error raised (Line 9). This happens
in Solidity contracts, because assert(e) is often misused to
replace require(e) that enforces program requirements due
to their similar effects on transaction reversion. For smart
contracts without failed assertions, the verified invariants is
a maximal subset of the candidates whose conjunction is an
inductive invariant.

C. Implication Invariant Inference

Figures 4 and 5 illustrate the two procedures for identifying
implication candidates in the form e =⇒ e, respectively.
The high-level idea is that useful implication invariants can
be identified from the cascading combinations of historical
invariants that satisfy data/control flow of smart contracts.

In Fig. 4, FINDIMPLICATIONS employs two straightforward
inference rules. The first rule enumerates all the combinations
of historical invariants while the second rule filters those
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meaningless combination candidates. Init explores all the
potential implication candidates from the unverified likely in-
variants Clikely \ Invs and partial invariant candidates Cpartial,
including them in Cimp. An implication invariant takes the
form of η =⇒ τ , where η and τ comes from the existing
the unverified and partial invariant candidates. However, not
all of the implication candidates constructed this way are
relevant in terms of the contract semantics. An implication
is potentially useful (i.e., relevant) if its precondition and
postcondition align with the data/control-flow of the contracts,
and irrelevant/meaningless implications should be discarded.
The notation vars(p) represents variables appearing in an
invariant predicate p; for instance, vars(p) = {from, to}
when p is “from ̸= to”. Additionally, dep(a, b) denotes
whether variable a depends on variable b in terms of control-
flow or data-flow in smart contract functions. To determine the
valid implications, we leverage the well-known static analysis
tool Slither [30] to trace data-flow and control-flow in smart
contract functions. Therefore, in Fig. 4, a Delete rule is applied
to eliminate implications that do not adhere to the data-flow
and control-flow relationship. This rule is iteratively applied
until no further implications can be eliminated.

Some implication candidates may be too strong and cannot
be proved. Figure 5 illustrates how we derive a weaker
set of implication candidates ˆCimp from those unverified
implication candidates denoted as Cimp \ Invs. In Fig. 5,
WEAKENIMPLICATIONS comprises three inference rules. It
initially sets ˆCimp to an empty set. The basic idea behind the
remaining two rules is that implication can be weakened by
strengthening its precondition or weakening its post-condition.
The rules Append-1 and Append-2 generate weaker implications
by combing two unverified implication candidates. In essence,
η1 ∧ η2 =⇒ τ is weaker than either η1 =⇒ τ or η2 =⇒ τ .
Similarly, η =⇒ τ1 ∨ τ2 is weaker than both η =⇒ τ1
and η =⇒ τ2. To eliminate useless implications that are
tautologies, we impose restrictions on the original implications,
such as η1∧η2 ̸≡ false and τ1∨τ2 ̸≡ true. It is evident that the
weaker implications are also meaningful as they still satisfy the
same control/data-flow dependencies as the original ones. Then,
these weakened implication invariants will be formally verified.
Consequently, the proved weakened invariants are included in
the set of verified invariants.

D. Termination

The termination of Alg. 2 can be ensured by the fact that
INVCON+ can only produce a finite set of primitive invariant
predicates. The conclusion regarding the termination of Alg. 2
hinges on whether the loop (Lines 11-14) comes to an end. In
each iteration of the loop, we possess at least one implication
candidate, constructed by WEAKENIMPLICATIONS (refer to
Sect. IV-C). Regarding WEAKENIMPLICATIONS, it consistently
generates weaker implication candidates than the previous
ones, utilizing conjunctions over premises or disjunctions
over consequences. Assuming INVDETECT yields n primi-
tive invariant predicates Clikely ∪ Cpartial = {p1, . . . , pn},
then the weakest implication will be at least as strong as
p1 ∧ · · · ∧ pn =⇒ p1 ∨ · · · ∨ pn. Consequently, the loop

will finish in no more than 2× n iterations, establishing the
termination of this algorithm.

E. Running Example

We illustrate our algorithm using the example presented
in Fig. 3. The details regarding our transaction parsing and
invariant detection will be elaborated in Sect. V. For the sake
of simplicity in the illustration, assume that we have already
acquired a set of likely and partially supported invariants
through invariant detection on the transaction histories. In
Table I, the invariants labeled with ✓ are successfully verified
by the static verifier, while the ones with ✗ are unverified.
In Step 1⃝, we perform a Houdini-like static inference on
these detected invariant candidates. Consequently, three likely
invariants are verified, excluding to ̸= 0. In the subsequent
step (Step 2⃝), nine additional implication invariant candidates
are generated from the previously unverified likely invariants
and partially supported invariants, according to the rules in
FINDIMPLICATIONS (see Fig. 4). However, after the modular
verification, only one implication is confirmed. Furthermore,
we weaken these unverified implication invariants in Step 3⃝
using WEAKENIMPLICATIONS (see Fig. 5) to derive four new
implication candidates for further validation. Eventually, all
the invariants listed in Sect. III are successfully recovered (in a
logically equivalent form). Moreover, two other invariants,
balances[to] ≥ old(balances[to]) and balances[from] ≤
old(balances[from]), are verified, which provide additional
insights on how the balances of the sender and the receiver
should change when transferFrom is called, beyond the
standard specifications.

V. IMPLEMENTATION

A. Overview

Figure 6 demonstrates the high-level architecture of IN-
VCON+, our automated invariant detection tool for Solidity
smart contracts. The inputs to INVCON+ include a set of
historical transactions and the corresponding contract source
code, while its output is a collection of smart contract invariant
specifications or the accordingly annotated contract code.
INVCON+ comprises four modules: (1) a data parser that
decodes contract code and transaction histories to extract
concrete execution trace set; (2) a dynamic invariant detector
that generates a set of likely and partially supported invariants;
(3) a modular invariant verifier and an implication learner
that verify and learn contract invariants, respectively; and (4)
a suppressor that simplifies the results by removing redundant
invariants. Notably, the implication learner has already been
detailed in Sect. IV-C.

B. Data Parser of Smart Contract Transactions

Given a contract, we first collect all of its historical
transactions. For each transaction, we decode the specific
function input based on the contract’s Application Binary
Interface (ABI), and we interpret the transaction output in
accordance with the contract’s storage layout specifications.
This layout dictates where each state variable is stored in the
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TABLE I: Illustration example of invariant verification.

Step Invariants

1⃝ Likely Contract Invariants:
totalSupply = SumMap(balances) ✓
Likely Function Pre/post-conditions:
to ̸=0 ✗
balances[to] ≥ old(balances[to]) ✓
balances[from] ≤ old(balances[from]) ✓

Partially Supported Function Pre/post-conditions:
from ̸= to
from = to
balances[from] = old(balances[from]) - tokens
balances[to] = old(balances[to]) + tokens
allows[from][msg.sender] = old(allows[from][msg.sender]) - tokens
balances[from] = old(balances[from])
balances[to] = old(balances[to])

2⃝ Implication Invariant Candidates:
to ̸=0 =⇒ allows[from][msg.sender] = old(allows[from][msg.sender]) - tokens ✓
to ̸=0 =⇒ balances[from] = old(balances[from]) - tokens ✗
to ̸=0 =⇒ balances[to] = old(balances[to]) + tokens ✗
to ̸=0 =⇒ balances[from] = old(balances[from] ✗
to ̸=0 =⇒ balances[to] = old(balances[to]) ✗
from ̸=to =⇒ balances[from] = old(balances[from]) - tokens ✗
from ̸=to =⇒ balances[to] = old(balances[to]) + tokens ✗
from = to =⇒ balances[from] = old(balances[from] ✗
from = to =⇒ balances[to] = old(balances[to]) ✗

3⃝ Weakened Implication Invariant Candidates:
to ̸=0 ∧ from ̸=to =⇒ balances[from] = old(balances[from]) - tokens ✓
to ̸=0 ∧ from ̸=to =⇒ balances[to] = old(balances[to]) + tokens ✓
to ̸=0 ∧ from = to =⇒ balances[from] = old(balances[from]) ✓
to ̸=0 ∧ from = to =⇒ balances[to] = old(balances[to]) ✓

Transactions

Smart
Contract

Data Parser

Contract & History

Dynamic
Invariant
Detector

Modular
Invariant
Verifier

Suppressor

Invariants

Implication
Learner

∆

Clikely

Cpartial

Clikely \ Invs or
Cimp \ Invs

Cimp
Invs

Fig. 6: The architecture overview of INVCON+.

blockchain database. For instance, as shown in Fig. 1, the first
declared state variable totalSupply is stored at the first
slot (0x0) in the contract’s blockchain database.

The input of a contract transaction is represented as a
tuple (sender, function, parameters), which encapsulates the
transaction’s sender, the invoked function’s name, and the corre-
sponding input parameters. Conversely, the transaction’s output
is denoted as (status, storageChanges). Here, status signifies the
transaction’s success or failure, while storageChanges details
the alterations in the contract’s storage across various slots. By
aligning storage slots with the contract’s storage layout, one
can effectively interpret these storage modifications as changes
in the values of the contract’s state variables. Employing
the previously described preprocessing technique enables the
extraction of a sequence of data triples (i.e., execution traces).
These triples consist of the actual values of state variables and
function input variables at the point of function entry, as well
as the most recent values of state variables at the point of
function exit. It is important to note that any misrecognition
of variables can lead to incorrect invariant results. We have
implemented measures to ensure the accuracy of variable

recognition. For state variables of primitive types, we directly
ascertain their values, as the storage layout for these variables
remains constant during runtime. In the case of non-primitive,
dynamic state variables, to reduce computational cost, we
initially utilize the known variable values to hypothesize a
correlation between the altered storage slots and the dynamic
state variables. However, if this approach fails to produce
an accurate mapping, it becomes necessary to replay the
entire transaction. This replay process enables us to track
the comprehensive execution information, including storage
modifications, thus allowing for the accurate determination of
the correct mapping.

C. Dynamic Invariant Detector

The effectiveness of dynamic invariant detection largely
depends on the diversity and scale of the customized invariant
templates used. In our methodology, these invariant templates
are required to conform to the invariant specification language
outlined in Fig. 2. However, it is both impossible and impracti-
cal to cover every conceivable invariant template. Our approach,
akin to that of INVCON [20], limits the scope to unary,
binary, and ternary invariant templates. Unlike INVCON, our
templates are specifically designed for Solidity smart contracts,
which are predominantly used for financial applications. These
contracts often entail intricate scientific computations on
scalar variables. Furthermore, Solidity features an array of
complex data structures, such as mapping and struct. To
effectively infer invariants related to these structures, we have
incorporated several derivation templates, such as MemberItem
and MappingItem, which facilitate access to elements within
these data structures. Additionally, drawing inspiration from
the significance of balance invariants as highlighted by Wang
et al. [31], we have introduced a SumMap derivation template.
This template is specifically designed to aggregate the values
contained within a mapping variable.
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Dynamic invariant detection employs a statistical methodol-
ogy to generate likely primitive invariants with a certain degree
of statistical confidence. Contrasting with the approach of IN-
VCON, our method retains invariants that are refuted by certain
transactions in the final results. This is because less stringent
forms of these invariants, expressed as implications, may still
hold true for certain contracts. Both the likely invariants and
the falsified ones constitute a high-quality set of primitive
predicates. Each of these predicates has been empirically
verified through historical transaction data of smart contracts.
In our evaluation setting, each valid primitive invariant must
be supported by at least three historical transactions.

Note that INVCON+ supports not only the ERC20 and
ERC721 standards, but also other customized smart contracts
from DApp developers [32]. Currently, INVCON+ does not
support proxy-like smart contracts since their functionality and
data storage are dynamically-linked from external contracts,
posing threats to the validity of our invariant analysis. We plan
to address this in future works.

D. Modular Invariant Verifier

The Houdini algorithm [14] is a widely recognized technique
commonly used in program annotation and validation processes.
Its primary objective is to automatically generate invariant
annotations from a group of candidates. To adapt Houdini
algorithm for Solidity contracts, we initially instrument the
contracts with the mined invariants. This entails converting the
invariants into a compatible format and then embedding them
into the contract. The annotations are strategically placed at
the beginning of functions to align with their specific names
and arguments. Subsequently, we transform the instrumented
contracts into Boogie [33] programs, leveraging the existing
formal verification tool VeriSol [29] for Solidity smart contracts.
We have refined the Boogie translator in VeriSol to better
accommodate contracts with inheritance and polymorphism
features. For instance, the original translator lacked support
for unnamed parent contract calls using the “super” keyword
in Solidity, and it did not handle function overloading where
a contract includes multiple functions with the same name.
We have enhanced its translation rules to effectively translate
these complex contracts into Boogie programs. Finally, we
utilize Boogie’s own Houdini modular verifier to infer among
the aforementioned invariant annotations, resulting in a set of
verified invariants.

E. Suppressor

An invariant is deemed redundant if it can be derived from
another invariant. The invariants verified by INVCON+ may
contain such redundancies. Instead of eliminating redundancies
in the dynamically detected invariants (as what Daikon [13]
does), we only remove redundancies from the invariants that
are successfully verified. This design leaves more choices to the
implication learner, when synthesizing implication invariants.
Among the verified invariants, we utilize the Z3 solver [34]
to determine if one invariant predicate can be deduced from
another. Following this analysis, we retain only the strongest
invariant predicates in our final results.

In the next section, we will evaluate the effectiveness and
performance of our implementation in invariant inference.

VI. EVALUATION

In this section, we evaluate INVCON+ to answer the
following research questions:

1) RQ1: How effectively does INVCON+ generate invariants
for smart contracts?

2) RQ2: How does the length of transaction histories used
affect the performance of INVCON+?

3) RQ3: How effective are the invariants detected by IN-
VCON+ in preventing real-world security attacks?

A. Methodology

Benchmark. To answer RQ1 and RQ2, we collected real-world
smart contracts implementing the most popular ERC20 and
ERC721 standards, which have been studied extensively in
previous works [3], [6], [16], [35], [36]. The most important
reason of choosing smart contracts implementing common
standards is that their invariant specifications are better under-
stood, making it easier to obtain the ground truth. First, we
queried the public Ethereum ETL dataset hosted on the Google
BigQuery platform [37] and then identified 13,116 contract
addresses flagged as ERC20 deployed between 2021 and 2022.
Next, we identified 2,689 ERC721 contract addresses deployed
between 2020 and 2022. To facilitate our analysis, we kept
only open-source contracts written in Solidity versions ranging
between 0.5.0 and 0.5.17, which are currently supported by
VERISOL. Finally, we obtained 361 ERC20 contracts and 10
ERC721 contracts for the experimental evaluation, where each
contract has at least 50 historical transactions as of June 2023.
Note that INVCON+ is able to detect likely invariants for smart
contracts of Solidity versions beyond 0.5. The resulting likely
invariants could be verified using other state-of-the-art verifiers
such as Certora [38], which we leave as our future work.

To establish the ground truth for ERC20 and ERC721
contract specifications and ensure the included invariants
are comprehensive, we investigated multiple external sources.
These include the formal specifications referenced in the
existing literature [6], [16], popular smart contract libraries,
such as OpenZeppelin [10], and online documentations pro-
vided by smart contract formal verification companies. We list
the collected ERC20 and ERC721 invariant specifications in
Table II and Table III, respectively. These specifications are
mainly based on Certora [22], [23], [39], KEVM [24], [35], and
OpenZeppelin API documentations [40], [41]. We analyzed
each of the collected invariants and manually translated it
into our own specification language (C.f. Fig. 2), which is
a straightforward exercise in most cases. We categorized
these invariant specification into contract invariants, function
preconditions and postconditions in Tables II and III. The
functions listed in each table are the most commonly used
standard functions for ERC20 and ERC721 contracts. Some
specifications documented in external sources were omitted,
e.g., “Emitting a Transfer event” for the transfer
function, because the particular language features are not
supported by our specification language.
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TABLE II: Common ERC20 invariants.

Categories Preconditions Postconditions

transfer(to, amount) [a1] msg.sender ̸= 0
[a2] to ̸= address(0)
[a3] amount ≥ 0
[a4] amount ≤ balances[msg.sender]
[a5] balances[to] + amount ≤ MAXVALUE

[b1] to ̸= msg.sender =⇒ balances[msg.sender] =
old(balances[msg.sender]) - amount
[b2] to ̸= msg.sender =⇒ balances[to] = old(balances[to]) + amount
[b3] to = msg.sender =⇒ balances[to] = old(balances[to])
[b4] to = msg.sender =⇒ balances[msg.sender] = old(balances[msg.sender])
[b5] totalSupply = old(totalSupply)

transferFrom (from, to,
amount)

[a6] from ̸= address(0)
[a7] to ̸= address(0)
[a8] amount ≥ 0
[a9] amount ≤ balances[from]
[a10] amt ≤ allowed[from][msg.sender]
[a11] balances[to] + amount ≤ MAXVALUE

[b6] allowed[from][msg.sender] = old(allowed[from][msg.sender]) - amount
[b7] from ̸= to =⇒ balances[from] = old(balances[from]) - amount
[b8] from ̸= to =⇒ balances[to] = old(balances[to]) + amount
[b9] from = to =⇒ balances[from] = old(balances[from])
[b10] allowed[from][msg.sender] = old(allowed[from][msg.sender]) - amount
[b11] totalSupply = old(totalSupply)

approve(spender,
amount)

[a12] amount ≥ 0
[a13] spender ̸= address(0)

[b12] allowed[msg.sender][spender] = amount
[b13] totalSupply = old(totalSupply)

increaseAllowance(
spender, amount)

[a14] spender ̸= address(0)
[a15] amount ≥ 0
[a16] allowed[msg.sender][spender] + amount ≤
MAXVALUE

[b14] allowed[msg.sender][spender] = old(allowed[msg.sender][spender]) +
amount
[b15] totalSupply = old(totalSupply)

decreaseAllowance(
spender, amount)

[a17] spender ̸= address(0)
[a18] amount ≥ 0
[a19] allowed[msg.sender][spender] ≥ amount

[b16] allowed[msg.sender][spender] = old(allowed[msg.sender][spender]) -
amount
[b17] totalSupply = old(totalSupply)

mint(account, amount) [a20] account ̸= address(0)
[a21] amount ≥ 0
[a22] balances[account] + amount ≤ MAXVALUE

[b18] balances[account] = old(balances[account]) + amount
[b19] totalSupply = old(totalSupply) + amount

burn(from, amount) [a23] from ̸= address(0)
[a24] amount ≥ 0
[a25] balances[from] ≥ amount

[b20] balances[from] = old(balances[from]) - amount
[b21] totalSupply = old(totalSupply) + amount

pause() [a26] paused = false [b22] paused = true

unpause() [a27] paused = true [b23] paused = false

Contract Invariant [c1] totalSupply = SumMap(balances)

TABLE III: Common ERC721 invariants.

Categories Preconditions Postconditions

(safe)-
transferFrom(from,
to, tokenId)

[a28] from = _tokenOwner[tokenId]
[a29] from ̸= address(0)
[a30] to ̸= address(0)
[a31] (msg.sender = from ∨ msg.sender =
_tokenApprovals[tokenId] ∨
_operatorApprovals[from][msg.sender] = true)

[b24] from ̸= to =⇒ _ownedTokensCount[from] = old( _ownedToken-
sCount[from]) - 1
[b25] from ̸= to =⇒ _ownedTokensCount[to] = old( _ownedToken-
sCount[to]) + 1
[b26] from = to =⇒ _ownedTokensCount[from] = old( _ownedToken-
sCount[from])
[b27] from = to =⇒ _ownedTokensCount[to] = old( _ownedToken-
sCount[to])
[b28] _tokenOwner[tokenId] = to
[b29] _tokenApprovals[tokenId] = address(0)

approve(to, tokenId) [a32] _tokenOwner[tokenId] ̸= address(0)
[a33] (msg.sender = _tokenOwner[tokenId] ∨
_operatorApprovals[_tokenOwner[tokenId] ][msg.sender] =
true)

[b30] _tokenApprovals[tokenId] = to

setApproveForAll(
operator, _approved)

[a34] operator ̸= msg.sender [b31] _operatorApprovals[msg.sender][operator] = _approved

Contract Invariant [c2] len(_tokenOwner) = SumMap(_ownerTokenCount)

Evaluation Metrics. We use two evaluation metrics to evaluate
INVCON+ on the ERC20 and ERC721 contracts. Particularly,
we use Precision and RecallERC20 (RecallERC721) to measure
the effectiveness of the generated invariants, denoted as
Xproved. We denote the ground truth invariants (e.g., ERC20)
as Y . Formally,

Precision =
|Xproved|

|X|
, (2)

RecallERC20(RecallERC721) =
|Xproved ∩ Y |

|Y |
, (3)

where precision refers to the proportion of the generated
invariants which are correct and recall is the proportion of the

ground truth invariants which can be successfully generated.
Since the contract execution trace set ∆ from transaction
histories may only contain a subset of functions invocations,
i.e., some functions are never invoked. For a fair comparison,
let Y ⇂ ∆ represent the ground truth invariants for the functions
appeared in the histories, and we use the adjusted recall in our
experiments: |Xproved∩Y |

|Y ⇂∆| .

Note that although the ground truth invariants are derived
based on multiple external sources and widely deemed to
be standard, they may still be incomplete, as there are
infinitely many correct invariants in theory. The purpose of
collecting the ground truth invariants is to include the list of
common expectations that are needed for contract safety and
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TABLE IV: The comparison results on ERC20 contracts.

Tool #Inv Prec. RecERC20 Avg.time (s)

INVCON 413.23 0.095 0.19 13.99
INVCON+ Naive 480.89 0.094 0.63 15.25
INVCON+ Primitive 22.49 1.000 0.61 20.57
INVCON+ 46.12 1.000 0.80 250.25

reliability. On the other hand, certain smart contracts may not
faithfully implement the ERC standards, and as a result, either
some ground-truth invariants may not hold for them or they
satisfy additional invariants not included in the ground truth.
Nevertheless, an ideal invariant generation tool should be able
to recover as many ground-truth invariants as possible, and
meanwhile, recover other relevant invariants that are correct
and useful in describing unique smart contract behaviors.

B. Experiment Setup

All the experiments were conducted on a desktop computer
with the Ubuntu 20.04 OS, an Intel Core Xeon 3.50GHx
processor, and 32GB of RAM. To facilitate the evaluation, we
have crawled and cached all transaction histories in advance
for the contracts used in our experiments.

C. RQ1: Effectiveness of Invariant Generation

Baseline. To evaluate the performance of INVCON+, we used
INVCON as our baseline. INVCON uses Daikon as the back-end
invariant detection engine and more implementation details
can be found in the previous work [20]. To the best of
our knowledge, Cider [21] is the only automated invariant
generation tool for smart contracts besides INVCON. We have
contacted the authors of Cider recently and the authors indicated
that the repository is no longer available. We will discuss and
compare with this work later.

Additionally, we compared INVCON+ with its two variants:
INVCON+ Naive, which performs only dynamic invariant
detection tailored to Solidity contracts, and INVCON+ Primitive,
which employs the Houdini algorithm to generate verified invari-
ants based only on dynamically detected invariant candidates.

Results. Table IV presents the comparison results for 361
ERC20 contracts, with a constraint of utilizing a maximum of
200 transactions per contract. The first column displays the
names of the tools, while the second column enumerates the
averaged number of invariants generated by each respective
tool per contract. The middle two columns showcase the overall
Precision and RecallERC20 scores, and the last column provides
the averaged time usage for each tool.

INVCON+ achieves the highest recall score, reaching 0.80,
and generates approximately 46 invariants per contract, all of
which are successfully verified by VeriSol. Notably, INVCON
performs the least favorably in terms of the invariants generated,
even when compared with INVCON+ Naive. Specifically,
INVCON produces the second-highest number of invariants,
yet its recall score is significantly lower than that of INVCON+
Naive, while maintaining a similar precision score of less
than 0.1. The poor performance is primarily attributed to
the fact that INVCON’s underlying invariant detection engine,

Daikon, supports only Boolean, integer/float, and string types
native to Java. Consequently, the address type (20 bytes
long) in the Solidity language cannot be seamlessly converted
into a Java integer (8 bytes long). Its conversion to the
Java string type discards semantic information, rendering
the straightforward production of common invariants (e.g.,
a1, a2 in Table II) unattainable for INVCON. Additionally,
Daikon employs floating-point operations in arithmetic invariant
templates (e.g., linear equation templates), which is not allowed
in the Solidity semantics, leading to incorrect invariants for
b6, b10 in Table II.

INVCON+ Primitive exhibits a slightly lower recall score
than INVCON+ Naive, because some ground truth invariants
that are inferred as likely invariants by INVCON+ Naive
may not be verified by INVCON+ Primitive. This may be
due to contract implementations slightly deviating from the
standard. For example, many ERC20 tokens do not enforce the
precondition a2 of the transfer function in Table II, because
transferring token to zero address could be used to implement
the token burning functionality. The verified invariants are a
more accurate reflection of the actual contract implementations,
compared with the likely invariants. Leveraging an algorithm
capable of producing implications that widely exist in ERC20
invariants (C.f. Table II), INVCON+ outperforms all the baseline
tools, yielding 100% precise invariant results.

Regarding the time usage, it is unsurprising that INVCON+
takes the most time, whereas INVCON and INVCON+ Naive
finish the fastest. In our experiments, we observed that the
static inference process consumes the majority of the time,
constituting nearly 53% of the overall time usage, as depicted
in Fig. 9. This is primarily due to the iterative application
of static inference until no more implication candidates are
provided. Moreover, implication invariants generated in later it-
erations tend to be more intricate, resulting in more complicated
SMT formulas which take more time to solve. To enhance the
efficiency of INVCON+, we recommend capping the iterations
used in the verification process to four; under such a setting,
INVCON+ demonstrates an averaged time savings of one minute
in the entire verification process without compromising the
quality of resulting invariants.

Additionally, we investigated further on the contracts for
which INVCON+ generated additional invariants deviating
from the ground-truth ones. Many of these contracts are
found to be non-compliant with ERC20 specifications. As
illustrated in Fig. 7, we examined a real-world contract,
TokenMintERC20Token4, where the _mint function de-
viates from the contract invariant c1—the sum of account
balances always equals to the total supply—indicating non-
compliance with the standard. This discrepancy arises because
only 1% of the total supply tokens have been distributed to
the Account (Line 15). ››

Invariant Quality. Mutation testing is a technique that
introduces small syntactic changes (mutants) to the program
to simulate common faults. The premise is that a strong and
precise set of invariants should cause many of these mutants
to be rejected by the verifier–that is, the verification condition

4https://etherscan.io/address/0x62c23c5f75940c2275dd3cb9300289dd30992e59

https://etherscan.io/address/0x62c23c5f75940c2275dd3cb9300289dd30992e59
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1 contract TokenMintERC20Token is ERC20 {
2 address Account;
3 uint256 _totalSupply;
4 mapping(address => uint256) _balances;
5

6 // other functions omitted
7 /** @dev Creates `amount` tokens and assigns them to

`account`,↪→
8 * increasing the total supply.
9 * Requirements

10 * - `to` cannot be the zero address.*/
11 function _mint(address account, uint256 amount)

internal {↪→
12 require(account != address(0), "ERC20: mint to the

zero address");↪→
13 _totalSupply = _totalSupply.add(amount);
14 _balances[account] = _balances[account].add(amount);
15 _balances[Account] = _totalSupply/100;
16 }
17 }

Fig. 7: TokenMintERC20Token contract violating c1.

TABLE V: The mutation testing results on ERC20 contracts
against the verified invariants by INVCON+.

Categories approve transfer transferFrom

No. total mutants 1,539 1,141 297
No. killed mutants 998 (64.8 %) 624 (54.6 %) 101 (34.0 %)

P1. Contract invariants 245 (24.5 %) 344 (55.1 %) 55 (54.4 %)
P2. Function pre/post 763 (76.4 %) 465 (74.5 %) 61 (60.4 %)

P3. ERC20 standard 751 (75.2 %) 266 (42.6 %) 43 (42.5 %)
P4. Non-ERC20 standard 995 (99.7 %) 601 (96.3 %) 98 (97.0 %)

fails for mutated versions of the code. Thus, a high number
of killed mutants indicates that the invariants successfully
capture essential semantic properties of the program. Thus, to
assess the significance of the invariants generated by INVCON+,
we conducted mutation testing on the same benchmark and
computed the corresponding mutation scores against these
invariants. Table V presents the mutation testing results on
ERC20 contracts, specifically focusing on the three most
important functions: approve, transfer, and transferFrom. We
introduced six mutation operators, such as binary/unary-op-
mutation and require-mutation, along with the others, based
on the mutation generator Gambit [42] developed by Certora.5

This mutation-based approach was also adopted by Certora to
evaluate the quality of smart contract specifications.6 In total,
we generated 1, 539, 1, 141, and 297 mutants for approve,
transfer, and transferFrom, respectively. Table V shows that
64.8%, 54.6%, and 34.0% of mutants of approve, transfer, and
transferFrom are successfully killed, respectively.

To delve into those killed mutants, in Table V, we use
P1, P2, P3, and P4 to denote different types of invariants.
The resulting invariants can be classified either into contract-
level invariants (P1) and function-level pre/post-conditions (P2)
according to context difference, or into ERC20 and non-ERC20
according to their standard compliance. The corresponding
rows show the number of killed mutants by these invariants.
Although the contract invariants (P1) account for 24.5 % to
54.4 % of the killed mutants, function pre/post-conditions (P2)
demonstrate a more substantial impact occupying at most
76.4 % of the killed mutants. Moreover, non-ERC20 standard

5https://www.certora.com/
6https://docs.certora.com/en/latest/docs/gambit/index.html

1 function _transfer(address sender, address recipient,
uint256 amount) internal {↪→

2 require(sender!=address(0), "zero address");
3 require(recipient!=address(0), "zero address");
4

5 _balances[sender]=_balances[sender].sub(amount);
6 _balances[recipient]=_balances[recipient].add(amount);
7 emit Transfer(sender, recipient, amount);
8 }
9 function _approve(address owner, address spender,

uint256 value) internal {↪→
10 require(owner!=address(0), "zero address");
11 require(spender!=address(0), "zero address");
12

13 _allowances[owner][spender] = value;
14 emit Approval(owner, spender, value);
15 }
16

17 function transferFrom(address sender, address recipient,
uint256 amount) public returns (bool) {↪→

18 _transfer(sender, recipient, amount);
19 _approve(sender, msg.sender,

_allowances[sender][msg.sender].sub(amount));↪→
20 return true;
21 }

Fig. 8: Illustration of the overprotected transferFrom function.

TABLE VI: ERC721 invariants generated by INVCON+.

Category Preconditions Postconditions

(safe)-
transferFrom

[a28, a29, a30] [b24, b25, b26, b27, b28,
b29]

approve [a32] [b30]

setApproveForAll [a34] [b31]

Contract Invariant [c2]

invariants successfully eliminate nearly the entire set (96 %
more) of the total killed mutants. In contrast, ERC20 standard
invariants eliminate a smaller set of mutants. This suggests that
the invariants generated by INVCON+ capture richer program
semantics, contributing to a more comprehensive set of invariant
specifications for smart contracts.

Interestingly, Table V reveals that only 34% of mutants
related to the transferFrom function are successfully elimi-
nated. Upon investigation, we discovered that transferFrom is
overprotected, where one of its function-level preconditions
is redundant. Figure 8 depicts a common implementation of
transferFrom, facilitating token transfer on behalf of the token
owner through two internal functions, _transfer and _approve.
This design rationale primarily aims at direct code reuse for
the other two public functions, transfer and approve. However,
in the transferFrom function, both requirements (Line 2 and
Line 10) check if the sender parameter is a zero address.
Consequently, mutations on either Line 2 or Line 10 do not
diminish the requirements that transferFrom should adhere
to, resulting in a low mutation score for transferFrom. It is
noteworthy that redundant requirements in smart contracts lead
to higher gas consumption during transaction execution and
should be minimized whenever possible.

Invariant Crowdsourcing. Less popular smart contracts
may have scarce transaction histories. For example, many
ERC721 contract instances may not have enough transactions
to infer high-quality invariants. Each contract instance can
slightly deviate from the standard specifications. Therefore, we
hypothesize that reverse engineering invariants from a single
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Invariant Detection
6.32%

Static Inference

53.03%

Implication Inference

40.63%

Fig. 9: The time usage by different components of INVCON+.

contract of limited transaction histories is inferior to that from
multiple contracts. We validate this hypothesis on a set of
10 ERC721 contracts, restricting the evaluation to at most
200 transactions per contract. The objective is to examine IN-
VCON+’s effectiveness in recovering the ground truth invariants
listed in Table III by combining invariant results from multiple
contracts. Notably, to achieve meaningful combination, every
invariant result will be normalized according to a universal
ERC721 definition on the name of state variables and the name
of function input variables.

Table VI presents the combined invariant results from all
ERC721 contracts. It demonstrates that INVCON+ success-
fully recovers the contract invariants, all postconditions, and
nearly all preconditions except a31 and a33, which contain
disjunctions over predicates. Consequently, the combination of
invariant results from multiple contracts significantly improves
the overall recall rate (14/16).

Comparison with Cider [21]. We have contacted the authors
of Cider and were unable to obtain a copy of the tool at the
time of writing. Unable to compare with Cider experimentally,
we highlight their qualitative differences. First, the type
of invariants mined by Cider is limited to only contract-
level invariants. In contrast, beyond contract-level invariants,
INVCON+ can also support function-level pre/post-conditions.
Second, all the invariants mined by Cider are related to
arithmetic operation, which account for only a small proportion
of invariants detected by INVCON+. For instance, the non-
arithmetic condition such as a34 and b30 in Table III cannot
be generated by Cider.

Answer to RQ1: INVCON+ is able to reverse engineer
standard invariant specifications from contract transaction
histories, achieving a recall of 0.80, and takes no more than
five minutes per contract. Additionally, the uncommon
invariants generated for ERC20 contracts capture important
program semantics beyond the established standards. More-
over, the evaluation on ERC721 contracts demonstrates
the advantage to mine common invariants from multiple
contracts and their transaction histories.

D. RQ2: Impact of Transaction Histories

The length of the transaction histories used can influence
the effectiveness of INVCON+. To investigate this impact, we
selected the top 10 ERC20 contracts with the longest transaction
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Fig. 10: The averaged number of invariants generated with
different number of transactions.
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Fig. 11: The averaged ERC20 recall score of the invariant
results generated with different number of transactions.

histories, ensuring that all the chosen contracts have a history
of at least 10,000 transactions. In evaluating the influence
of transaction history length, we employed the earliest 4,000
transactions and divided them into 20 groups, each subsequent
group having 200 more transactions than the previous one.

We utilized INVCON+ Primitive as the baseline and com-
pared with it on the number of verified invariants and the
corresponding recall score. Additionally, to explore the effect
of applying the detected partially supported invariant candidates,
which hold for a subset of the transaction histories, we
compared INVCON+ with a variant, INVCON+ w/o Partial,
that does not use these partial candidates. In this experiment,
we considered the ground truth invariants from the functions
which are observed in the earliest 4,000 transactions, when
computing the recall score, i.e., RecallERC20.

Figure 10 illustrates the number of verified invariants per
contract corresponding to the use of different transaction history
lengths. The impact of transaction history size on the number
of verified invariants is evident, with INVCON+ generating
the most invariants, followed by INVCON+ INVCON+ w/o
Partial. This demonstrates that the partially supported invariant
candidates, although do not hold on their own, may be useful
in constructing richer implication invariants. By incorporating
partial invariant candidates, INVCON+ captures subtle contract
behaviors more effectively, resulting in more comprehensive
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invariant specifications—approximately two times and one time
more than INVCON+ w/o Partial and INVCON+ Primitive,
respectively.

In Fig. 11, the recall score of invariant results is presented
for varying transaction history lengths. Clearly, all recall
scores increase with longer transaction histories, as more
function invocations are observed. Notably, INVCON+ achieves
a higher recall score compared to the baselines. The figure
also indicates a more significant gain in recall score from 200
to 400 transactions, with negligible gains after 400, 1,000, and
2,200 transactions for INVCON+ Primitive, INVCON+ w/o
Partial, and INVCON+, respectively. This observed difference
suggests that INVCON+ has a higher chance of capturing
more comprehensive invariant specifications with increased
transaction histories. The number of transactions would affect
the overall execution time of INVCON+ where longer transac-
tions necessitate more time. However, the experiment results
indicate that INVCON+ is efficient and takes only 0.12 seconds
on average to yield invariants per transaction. Additionally, to
effectively apply INVCON+, it is recommended to use around
2,000 transactions for invariant detection.

Answer to RQ2: The scale of transaction histories affect
the invariant results of INVCON+, while longer histories
empower INVCON+ to generate more comprehensive
invariant specifications. For practicality, we recommend
using 2,000 transactions for invariant detection.

E. RQ3: Application in Securing Smart Contracts

The invariants generated by INVCON+ capture the key
semantics of smart contracts under normal executions, which
may serve as a basis for formal contract specifications. High-
quality contract specifications have been shown to be effective
in securing smart contracts through runtime validation [16]
and static verification [29]. To answer RQ3, we evaluated
INVCON+ on a set of benchmark contracts from SECBIT [43],
which contains 24 types of vulnerabilities in real-world ERC20
contracts exposed to security attacks that have resulted in
significant financial losses.

Table VII provides an overview of the verification results for
the evaluated ERC20 contracts, categorized by vulnerability
types. It contains information about the overall count of vul-
nerabilities and the effectiveness of our generated invariants in
detecting them. The benchmark contracts used in our evaluation
encompass 9 instances of integer overflow vulnerabilities and
15 other vulnerability types. However, certain vulnerabilities
are beyond the scope of formal specifications, such as v14,
v21, and v24 which are related to constructor naming, v15 and
v16 which are associated with different Solidity versions, and
v23 which pertains to function visibility. We focused on the
remaining 18 types of vulnerabilities. Note that some of the
vulnerabilities identified are beyond the specifications outlined
in the ERC20 standard (see Table II) and they can only be
detected using richer customized specifications.

For each of vulnerability types, we evaluated the verification
results of the invariants generated by INVCON+ on the
corresponding benchmark contracts. We selected the top three

1 function batchTransfer(address[] _receivers,
uint256 _value) public whenNotPaused returns
(bool) {

↪→

↪→

2 uint cnt = _receivers.length;
3 uint256 amount = uint256(cnt) * _value;
4 require(cnt > 0 && cnt <= 20);
5 require(_value > 0 && balances[msg.sender] >=

amount);↪→

6

7 [msg.sender] = balances[msg.sender].sub(amount);
8 for (uint i = 0; i < cnt; i++) {
9 balances[_receivers[i]] =

balances[_receivers[i]].add(_value);↪→

10 Transfer(msg.sender, _receivers[i], _value);
11 }
12 return true;
13 }

Fig. 12: batchTransfer function in BEC contract.

contracts with the highest occurrence of each vulnerability
type and assessed whether the invariants detected by INVCON+
could prevent the corresponding attacks on these contracts. The
results are shown in Table VII. We found that INVCON+ was
able to detect all overflow vulnerabilities in the benchmark
contracts. For instance, Fig. 12 demonstrated that INVCON+
detected the integer overflow vulnerability (CVE-2018-10299)
in the batchTransfer function of the BEC contract. This
vulnerability is caused by the unchecked multiplication of cnt
and _value in Line 3. If an attacker calls batchTransfer
with a large cnt value, the unsigned integer amount will
overflow, potentially allowing the attacker to receive more
tokens than intended. However, such a transaction would violate
invariant c1 in Table II, as the totalSupply would no longer
equal to the sum of all balances. Thus, such an attack can be
effectively prevented, if the generated invariants are enforced
for each function execution.

INVCON+ is unable to detect some remarkable mistakes
that totally deviate from programmer expectations. For ex-
ample, v11 is a vulnerability that allows any party to
halt the token transfer process. This issue arises from the
modification of the onlyFromWallet modifier, wherein
“==” was mistakenly replaced with “!=”. Consequently,
anyone other than walletAddress can arbitrarily invoke
the two permissioned functions: enableTokenTransfer
and disableTokenTransfer. INVCON+ failed to de-
tect this vulnerability for two primary reasons. First, the
onlyFromWallet function is not specified in the ERC20
standard, preventing the application of the existing invariant
templates. Second, the contract histories contain many irregular
behaviors exploiting these functions, hindering INVCON+ from
inferring correct invariants related to onlyFromWallet.

Answer to RQ3: INVCON+ is able to detect invariants
that are useful for preventing 17 types of real-world smart
contract vulnerabilities. Enforcing invariants in contract
executions may ensure the security and reliability of smart
contracts.

F. Discussion
Recently, large language models have been applied to
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TABLE VII: Common ERC20 vulnerabilities.

ID Vulnerability Types Total Detected

v1 batchTransfer-overflow 13 Yes
v2 totalsupply-overflow 521 Yes
v3 verify-invalid-by-overflow 2 Yes
v4 owner-control-sell-price-for-

overflow
1 Yes

v5 owner-overweight-token-by-
overflow

9 Yes

v6 owner-decrease-balance-by-mint-
by-overflow

487 Yes

v7 excess-allocation-by-overflow 1 Yes
v8 excess-mint-token-by-overflow 9 Yes
v9 excess-buy-token-by-overflow 4 Yes

v10 verify-reverse-in-transferFrom 79 Yes
v11 pauseTransfer-anyone 1 No
v12 transferProxy-keccak256 10 Yes
v13 approveProxy-keccak256 10 Yes
v14 constructor-case-insensitive 4 N/A
v15 custom-fallback-bypass-ds-auth 1 N/A
v16 custom-call-abuse 144 N/A
v17 setowner-anyone 3 Yes
v18 allowAnyone 4 Yes
v19 approve-with-balance-verify 18 Yes
v20 check-effect-inconsistency 1 Yes
v21 constructor-mistyping 4 N/A
v22 fake-burn 2 Yes
v23 getToken-anyone 3 N/A
v24 constructor-naming-error 1 N/A

generate invariant properties for smart contracts [44], [45].
SmartInv [44] leverages fine-tuned large language models
(LLMs) to automatically infer invariants for smart contracts.
Although its source code is publicly available, the fine-tuned
model itself is not released, limiting reproducibility and
deployment. PropertyGPT [45], like SmartInv, relies on LLMs
to generate invariants through prompt-based inference. All three
tools, SmartInv, PropertyGPT, and INVCON+, perform formal
verification of the inferred invariants, either by integrating
existing verifiers such as VeriSol [29] (used by SmartInv and
INVCON+) or using a custom prover (e.g., SolSEE [46] for
PropertyGPT).

To distinguish INVCON+ from these LLM-based approaches,
we focus on the advantages of its template-based inference
framework compared to the LLM-based generation used in
SmartInv and PropertyGPT.

First, INVCON+ offers significantly lower deployment over-
head. Both PropertyGPT and SmartInv depend on resource-
intensive foundation models such as GPT, which incur high
computational and financial costs. Moreover, these approaches
require manually curated training datasets, which are labor-
intensive to construct and often limited in scope. For example,
PropertyGPT is trained on only 23 annotated smart contract
projects. In contrast, INVCON+ is lightweight, self-contained,
and easy to deploy. It does not require any labeled training
data or LLM infrastructure, making it well-suited for use
in continuous monitoring scenarios on blockchains without
imposing additional operational burdens.

Second, the invariants produced by INVCON+ are more
structured and predictable. SmartInv generates invariants at

arbitrary program points, including intermediate states during
function execution. However, such states can be semantically
ambiguous, especially in the presence of transaction reversion,
making their correctness difficult to confirm. PropertyGPT,
while using in-context learning to guide invariant inference,
has been observed to produce invariants that do not align with
any ground truth, requiring human review to assess their validity.
In contrast, INVCON+ enforces that all generated invariants
conform to well-defined invariant templates (see Figure 2),
ensuring that all outputs fall within a semantically meaningful
and verifiable class of specifications.

In summary, INVCON+ distinguishes itself from LLM-driven
approaches by offering a more deployable, predictable, and
verifiable framework for invariant generation, making it espe-
cially suitable for real-world smart contract monitoring [47].

VII. RELATED WORK

The related works can be broadly categorized into smart
contract security analysis and invariant inference.

A. Smart Contract Security Analysis

The security analysis primarily focuses on detecting smart
contract vulnerabilities. Common vulnerabilities in smart con-
tracts include integer overflow/underflow [4], reentrancy [48],
and dangerous delegatecall operations [49]. For instance, in
2017, the Parity wallet contract was hacked due to missing
protection for the delegatecall operation, a feature that allows
one contract to securely delegate part of its functionality to
another contract. As a result, the attacker gained control of the
wallet and stole 150,000 ETH, valued at approximately $30
million USD at the time.

These common vulnerabilities have been extensively studied
in [15], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59],
[60], [61]. Most static analysis tools, such as Slither [30],
Securify [53], Zeus [58], and Ethainter [51], utilize control-
flow, data-flow, or taint-flow analysis for vulnerability detection,
usually achieving a high recall but low precision rate. In
contrast, the others [56], [57], [62] use symbolic execution for
program path exploration to identify contract vulnerabilities,
along with a higher precision but lower recall rate. There are
also formal verification tools for ensuring the correctness of
functional properties [18], [19], [63], and workflow policy [29]
in smart contracts. The dynamic analyses [59], [61], [64], [65],
[66] perform random or model-based testing on smart contracts
and then check execution results against predefined oracles for
finding a wide range of vulnerabilities. Although these tools
have been proven effective in detecting common vulnerabilities,
unfortunately, Zhang et al. [67] found that only 20.5% of real-
world smart contract bugs can be successfully detected by
state-of-the-art tools. This is because the existing tools use
simple, generic, and hard-coded security patterns or oracles,
which are ineffective to recognize subtle logic bugs on specific
contracts. To mitigate this gap, Zhang [68] proposes an abstract
type system that can model a large part of business logic bugs
into accounting errors, which are detectable with type checking.
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Because there is no one-size-fits-all patterns or oracles for
identifying contract logic bugs, most valued Web3 projects hire
third-party security auditing companies to manually review their
contracts. Despite undergoing costly code auditing, numerous
projects still fall victim to security breaches [69]. In our opinion,
one root cause is that contract developers and the corresponding
auditors may have divergent expectations on smart contracts,
which are not easy to pinpoint without sufficient contract specifi-
cations. Therefore, apart from enhancing existing security tools,
the invariants generated by INVCON+ can reinforce contract
specifications to mitigate the incompleteness and inaccuracy
issues of automated verification and contract auditing.

B. Invariant Inference

The static and dynamic invariant inference has been well-
studied for traditional programs. ESC/Java [70] is a well-
known static checking tool for Java programs. It leverages
invariant annotations to define properties in the code, improving
the precision of static checking. ESC/Java’s emphasis on
invariants helps developers express expectations precisely,
allowing potential issues to be detected early in development.
Daikon [13] is a well-known dynamic invariant detection
tool to automatically infer likely invariants from program
executions. Daikon takes program execution traces as input,
which are typically obtained through testing. These execution
traces consist of sequences of program states and variable
values observed during the program’s runtime. InvCon [20]
was the first tool that generates likely invariants for smart
contracts. With Daikon as the back-end invariant detection
engine, InvCon implemented an intermediary input transformer
that converts historic contract transactions to the compatible
data trace files accepted by Daikon. In addition, some invariant
templates are customized to support unique Solidity features,
e.g., MappingItem.

There also exist other works related to invariant generation
for smart contracts. SolType [17] is a type checking tool
for Solidity smart contracts. It enables developers to add
refinement type annotations to smart contracts, incorporating
static analysis to prove that arithmetic operations are safe from
integer overflows or underflows. SolType can infer useful type
annotations, but they are limited to only contract-level invariants
related to arithmetic operation. Using SolType as a verifier to
learn a policy, Cider [21] applies deep reinforcement learning
to automatically learn contract invariants. The learned contract
invariants are mainly used to guard arithmetic operations in
smart contracts to avoid integer overflows and underflows.
However, the correctness of the learned contract invariants is
still not formally verified.

Distinguished from the aforementioned works, INVCON+ is
the first to implement a unified invariant generation framework
for Solidity contracts encompassing techniques from both
dynamic detection and static inference, where the generated
invariants are verified against the contract code.

VIII. CONCLUSION

We have presented INVCON+, a novel invariant generation
framework for Solidity smart contracts where the invariants

result from the integration between dynamic invariant detec-
tion and static inference. Because implication invariants are
important to capture more fine-grained program semantics
of smart contracts, INVCON+ devises an iterative process to
repeat the generation and verification of implications to over-
come its combination explosion problem. We have evaluated
INVCON+ on real-world ERC20 and ERC721 contracts and
demonstrated that INVCON+ is able to achieve good recall to
recover common specifications. In addition, the experiments
on mutation testing and vulnerable benchmark contracts have
shown that the invariant specifications generated are effective
to exclude program mistakes and make contracts secure from
vulnerabilities.
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[19] Á. Hajdu and D. Jovanović, “solc-verify: A modular verifier for solidity
smart contracts,” in Verified Software. Theories, Tools, and Experiments:
11th International Conference, VSTTE 2019, New York City, NY, USA,
July 13–14, 2019, Revised Selected Papers 11. Springer, 2020, pp.
161–179.

[20] Y. Liu and Y. Li, “Invcon: A dynamic invariant detector for ethereum
smart contracts,” in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, 2022, pp. 1–4.

[21] J. Liu, Y. Chen, B. Tan, I. Dillig, and Y. Feng, “Learning contract
invariants using reinforcement learning,” in Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering,
2022, pp. 1–11.

[22] “Openzeppelin erc20 contract specifications.” [Online]. Avail-
able: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/
master/certora/specs/ERC20.spec

[23] “Openzeppelin erc721 contract specifications.” [Online]. Avail-
able: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/
master/certora/specs/ERC721.spec

[24] G. Ros, u, “ERC20-K: Formal Executable Specification of ERC20,”
Mar. 2023, original-date: 2017-11-20T22:28:46Z. [Online]. Available:
https://github.com/runtimeverification/erc20-semantics

[25] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith, “Modular
verification of software components in c,” IEEE Transactions on Software
Engineering, vol. 30, no. 6, pp. 388–402, 2004.

[26] K. R. M. Leino, G. Nelson, and J. B. Saxe, “Esc/java user’s manual,”
ESC, vol. 2000, p. 002, 2000.

[27] K. R. M. Leino, “This is boogie 2,” manuscript KRML, vol. 178, no.
131, p. 9, 2008.

[28] J. W. Nimmer and M. D. Ernst, “Invariant inference for static checking:
An empirical evaluation,” ACM SIGSOFT Software Engineering Notes,
vol. 27, no. 6, pp. 11–20, 2002.

[29] Y. Wang, S. K. Lahiri, S. Chen, R. Pan, I. Dillig, C. Born, and I. Naseer,
“Formal specification and verification of smart contracts for Azure
blockchain,” arXiv preprint arXiv:1812.08829, 2018.

[30] “Slither,” https://github.com/crytic/slither, 2021, the Solidity Source
Analyzer.

[31] H. Wang, Y. Li, S.-W. Lin, L. Ma, and Y. Liu, “VULTRON: Catching
vulnerable smart contracts once and for all,” in Proceedings of the
41st International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER). IEEE Press, 5 2019, pp. 1–4.

[32] Liu, Ye, Y. Liu, Y. Li, and C. Artho, “Specification mining for smart
contracts with trace slicing and predicate abstraction,” 2025.

[33] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino,
“Boogie: A modular reusable verifier for object-oriented programs,”
in Formal Methods for Components and Objects: 4th International
Symposium, FMCO 2005, Amsterdam, The Netherlands, November 1-4,
2005, Revised Lectures 4. Springer, 2006, pp. 364–387.

[34] M. Research, “Z3,” https://github.com/Z3Prover/z3, 2022, accessed:
December 15, 2023.

[35] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu et al., “KEVM: A complete
formal semantics of the Ethereum virtual machine,” in 2018 IEEE 31st
Computer Security Foundations Symposium (CSF). IEEE, 2018, pp.
204–217.

[36] X. Li, C. Su, Y. Xiong, W. Huang, and W. Wang, “Formal verification of
bnb smart contract,” in 2019 5th International Conference on Big Data
Computing and Communications (BIGCOM). IEEE, 2019, pp. 74–78.

[37] E. ETL, “Ethereum in BigQuery: a public dataset for smart contract an-
alytics,” https://cloud.google.com/blog/products/data-analytics/ethereum-
bigquery-public-dataset-smart-contract-analytics, 2017.

[38] Certora, “Securing web3 with decentralized intelligence,” https://
www.certora.com/.

[39] “Openzeppelin pausable contract specifications.” [Online].
Available: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/
master/certora/specs/Pausable.spec

[40] OpenZeppelin, “ERC 20 - OpenZeppelin Docs.” [Online]. Available:
https://docs.openzeppelin.com/contracts/3.x/api/token/ERC20

[41] “ERC 721 - OpenZeppelin Docs.” [Online]. Available: https:
//docs.openzeppelin.com/contracts/2.x/api/token/ERC721

[42] Certora, “Gambit: Mutant generation for Solidity,” https://github.com/
Certora/gambit, 2022, accessed: December 9, 2023.

[43] S. Labs, “sec-bit/awesome-buggy-erc20-tokens: A Collection of
Vulnerabilities in ERC20 Smart Contracts With Tokens Affected,” Aug.
2018. [Online]. Available: https://github.com/sec-bit/awesome-buggy-
erc20-tokens

[44] S. J. Wang, K. Pei, and J. Yang, “Smartinv: Multimodal learning for
smart contract invariant inference,” in 2024 IEEE Symposium on Security
and Privacy (SP). IEEE, 2024, pp. 2217–2235.

[45] Y. Liu, Y. Xue, D. Wu, Y. Sun, Y. Li, M. Shi, and Y. Liu, “Propertygpt:
Llm-driven formal verification of smart contracts through retrieval-
augmented property generation,” in Proceedings of the 32nd edition
of the Network and Distributed System Security Symposium (NDSS),
2024.

[46] S.-W. Lin, P. Tolmach, Y. Liu, and Y. Li, “Solsee: a source-level symbolic
execution engine for solidity,” in Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2022, pp. 1687–1691.

[47] Z. Chen, Y. Liu, S. M. Beillahi, Y. Li, and F. Long, “Demystifying
invariant effectiveness for securing smart contracts,” Proceedings of the
ACM on Software Engineering, vol. 1, no. FSE, pp. 1772–1795, 2024.

[48] D. Siegel, Understanding The DAO Attack, 2016. [Online]. Available:
https://www.coindesk.com/understanding-dao-hack-journalists

[49] P. Santiago, The Parity Wallet Hack Explained, 2017. [Online].
Available: https://blog.openzeppelin.com/on-the-parity-wallet-multisig-
hack-405a8c12e8f7/

[50] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop
on Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2019, pp. 8–15.

[51] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis,
“Ethainter: a smart contract security analyzer for composite vulnerabilities,”
in Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2020, pp. 454–469.

[52] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
Ethereum smart contracts,” in Proceedings of the 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain,
2018, pp. 9–16.

[53] Securify, Software Reliability Lab, 2019. [Online]. Available: https:
//securify.ch/

[54] Y. Feng, E. Torlak, and R. Bodik, “Precise Attack Synthesis for Smart
Contracts,” arXiv preprint arXiv:1902.06067, 2019.

[55] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security. ACM, 2016, pp. 254–269.

[56] “Manticore,” https://github.com/trailofbits/manticore, 2019, symbolic
Execution Tool for Smart Contracts.

[57] “Mythril,” https://github.com/ConsenSys/mythril, 2019, a Security Anal-
ysis Tool for EVM Bytecode.

[58] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts,” in Ndss, 2018, pp. 1–12.

[59] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart contracts
for vulnerability detection,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 259–269.

[60] V. Wüstholz and M. Christakis, “Harvey: A greybox fuzzer for smart
contracts,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2020, pp. 1398–1409.

[61] Echidna, Trail of Bits, 2019. [Online]. Available: https://github.com/
trailofbits/echidna

[62] “Oyente,” https://github.com/melonproject/oyente, 2019, an Analysis Tool
for Smart Contracts.

[63] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev, “Verx: Safety verification of smart contracts,” in 2020 IEEE
symposium on security and privacy (SP). IEEE, 2020, pp. 1661–1677.

[64] H. Wang, Y. Liu, Y. Li, S.-W. Lin, C. Artho, L. Ma, and Y. Liu,
“Oracle-supported dynamic exploit generation for smart contracts,” IEEE
Transactions on Dependable and Secure Computing, 2020.

[65] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in Proceedings of

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/certora/specs/ERC20.spec
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/certora/specs/ERC20.spec
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/certora/specs/ERC721.spec
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/certora/specs/ERC721.spec
https://github.com/runtimeverification/erc20-semantics
https://github.com/crytic/slither
https://github.com/Z3Prover/z3
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://www.certora.com/
https://www.certora.com/
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/certora/specs/Pausable.spec
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/certora/specs/Pausable.spec
https://docs.openzeppelin.com/contracts/3.x/api/token/ERC20
https://docs.openzeppelin.com/contracts/2.x/api/token/ERC721
https://docs.openzeppelin.com/contracts/2.x/api/token/ERC721
https://github.com/Certora/gambit
https://github.com/Certora/gambit
https://github.com/sec-bit/awesome-buggy-erc20-tokens
https://github.com/sec-bit/awesome-buggy-erc20-tokens
https://www.coindesk.com/understanding-dao-hack-journalists
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://securify.ch/
https://securify.ch/
https://github.com/trailofbits/manticore
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/echidna
https://github.com/trailofbits/echidna
https://github.com/melonproject/oyente


17

the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 778–788.

[66] Y. Liu, Y. Li, S.-W. Lin, and C. Artho, “Finding permission bugs in
smart contracts with role mining,” in Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). New York, NY, USA: ACM, Jul. 2022, pp. 716–727.

[67] Z. Zhang, B. Zhang, W. Xu, and Z. Lin, “Demystifying exploitable bugs
in smart contracts,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 2023, pp. 615–627.

[68] B. Zhang, “Towards finding accounting errors in smart contracts,” in
Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, 2024, pp. 1–13.

[69] Sayfer, “3 Hacks an Audit Could Not Find,” https://sayfer.io/blog/3-
hacks-an-audit-could-not-find/, 2023, accessed: December 18, 2023.

[70] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata, “Extended static checking for java,” in Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language design and
implementation, 2002, pp. 234–245.

Ye Liu is a research scientist from the Singapore
Management University (SMU). He received his
Ph.D. from the College of Computing and Data
Science at the Nanyang Technological University
(NTU) in June 2023. Before that, He received his
M.Sc. from the Beihang University in January 2019,
and B.E. from the Northeastern University (China)
in June 2016. Later, he worked for half a year
as a research assistant in the cybersecurity lab at
NTU. His main research interest includes smart
contract security, and program analysis. He has won

two Distinguished Paper Awards from top-tier conferences (NDSS’25 and
ISSTA’22).

Chengxuan Zhang is a Ph.D. student at the College
of Computing and Data Science, Nanyang Techno-
logical University (NTU). He received B.E. from
the Nanyang Technological University in Computer
Science. He started his Ph.D. study from August
2022, supervised by Assoc. Prof. Yi Li. His research
interests mainly focus on smart contract reliability
and security.

Yi Li is an Associate Professor at the College of
Computing and Data Science, Nanyang Technological
University (NTU). Dr. Li has been leading the Soft-
ware Reliability and Security Lab (SRSLab@NTU)
since 2018. His research interests are in program
analysis and automated reasoning techniques with
applications in software engineering and software
security. Together with his research team, he develops
solutions enabling the construction of high-quality
software systems that are both reliable and sustain-
able. Currently, his work focuses on the security and

fairness of decentralized applications and blockchain systems, as well as the
robustness and dependability of AI systems. His work in these areas won
five Distinguished Paper Awards and two Best Artifact Awards at top-tier
conferences, including NDSS’25, ASE’23, ISSTA’22, FSE’21, ICSME’20, and
ASE’15. He regularly serves on the program committees of many flagship
conferences in software engineering, including ICSE, FSE, ASE, and ISSTA.

https://sayfer.io/blog/3-hacks-an-audit-could-not-find/
https://sayfer.io/blog/3-hacks-an-audit-could-not-find/

	Introduction
	Background
	Solidity Smart Contracts
	Invariant Inference
	Modular Verification
	Houdini Algorithm

	Invariant Specification Language
	Invariant Generation Approach
	Algorithm
	Primitive Invariant Inference
	Implication Invariant Inference
	Termination
	Running Example

	Implementation
	Overview
	Data Parser of Smart Contract Transactions
	Dynamic Invariant Detector
	Modular Invariant Verifier
	Suppressor

	Evaluation
	Methodology
	Experiment Setup
	RQ1: Effectiveness of Invariant Generation
	RQ2: Impact of Transaction Histories
	RQ3: Application in Securing Smart Contracts
	Discussion

	Related Work
	Smart Contract Security Analysis
	Invariant Inference

	Conclusion
	Acknowledgment
	References
	Biographies
	Ye Liu
	Chengxuan Zhang
	Yi Li


