
Yi Li
Associate Professor
NTU CCDS

May 27, 2024

Automated Invariant Generation
for Solidity Smart Contracts

Acknowledgement

Ye Liu Chengxuan Zhang

Smart Contracts
No need to trust intermediaries, much lower costs

Security Threats to Smart Contracts
No need to trust intermediaries, but still need to trust code is correct

• What the developer expects (specification) may
be inconsistent with how the code was written
(implementation)

• This may lead to security vulnerabilities
(loopholes in contracts)

• How to check if the code is correct?

• Many existing tools and techniques

• But we need contract specifications first!

• Problem? Nobody writes specifications :-(

A simple ERC20 contract
iToken Duplication Issue ($8M loss)

contract iToken … {

 function transfer(address _from, address _to, uint256 _value) public returns (bool res) {
 uint256 _balancesFrom = balances[_from];
 uint256 _balancesTo = balances[_to];

 require(_balancesFrom >= _value);
 uint256 _balancesFromNew = _balancesFrom - _value;
 balances[_from] = _balancesFromNew;

 uint256 _balancesToNew = _balancesTo + _value;
 balances[_to] = _balancesToNew;
 }
}

https://fullycrypto.com/bzx-suffers-token-duplication-incident

It goes wrong when “_from == _to”!

10

10
5

5

15

15!

contract ERC20 {
 // state variables
 uint totalSupply;
 mapping(address => uint) balances;
 mapping(address => mapping(address => uint)) allows;
 //...
 function transferFrom(
 address from,
 address to,
 uint tokens
) public returns (bool) {
 if (to == address(0)) {
 return false;
 }
 allows[from][msg.sender] = allows[from][msg.sender].sub(tokens);
 balances[from] = balances[from].sub(tokens);
 balances[to] = balances[to].add(tokens);
 return true;
 }
}

A simple ERC20 contract
Correct implementation annotated with contract specifications (invariants)

Requires: to ≠ 0 ⇒ old(balances[from]) >= tokens

Ensures: to ≠ 0 ∧ from ≠ to ⇒
balance[from] = old(balance[from]) − tokens
∧ balance[to] = old(balance[to]) + tokens

Ensures: to ≠ 0 ∧ from = to ⇒
balance[from] = old(balance[from])
∧ balance[to] = old(balance[to])

ContractInv: SumMap(balances) = totalSupply

InvCon [Liu&Li, 2022]
Inferring likely specs from past executions

Blockchain
Platform

Contract
ABI

Transactions

Storage
Layout

Data Trace
Generator Data Traces

Invariant
Detection

Engine

Invariants0x00765EaAB…

"preconditions":
"_to != 0",
"msg.sender != 0”,
"_value >= msg.value",
"_value > msg.value",
"_value != msg.value”,
"_to != _from",
……

"postconditions":
"Sum(balances[...]) > 0",
"Sum(balances[...]) == 10000000000000000000000000000",
"Sum(balances[...]) one of [10000000000000000000000000000]”,
"totalSupply == ori(totalSupply)",
"totalSupply >= ori(totalSupply)",
"totalSupply <= ori(totalSupply)",
……

See it live: http://52.77.235.110/invcon

http://52.77.235.110/invcon

Looks good, but …

• Likely invariants may not always hold, for example:

• Inferred based on limited historical transactions

• Irrelevant invariants hold by accident

Sum(balances[...]) == 10000000000000000000000000000
Sum(balances[...]) one of [10000000000000000000000000000]

_to != _from

msg.value < block.timestamp

InvCon+ Overview

Dynamic
Detection Engine

(InvCon)

Suppressor

Invariants

0x00765EaAB…

Contract &
History

"preconditions":
"_to != 0",
"msg.sender != 0”,
"_value >= msg.value",
"_value > msg.value",
"_value != msg.value”,
"_to != _from",
……

"postconditions":
"Sum(balances[...]) > 0",
"Sum(balances[...]) == 10000000000000000000000000000",
"Sum(balances[...]) one of [10000000000000000000000000000]”,
"totalSupply == ori(totalSupply)",
"totalSupply >= ori(totalSupply)",
"totalSupply <= ori(totalSupply)",
…… Modular

Invariant
Verifier

Implication
Learner

"preconditions":
"_to != 0",
"msg.sender != 0”,
"_value >= msg.value",
"_value > msg.value",
"_value != msg.value”,
"_to != _from",
……

"postconditions":
"Sum(balances[...]) >= 0",
"Sum(balances[...]) == 10000000000000000000000000000",
"Sum(balances[...]) one of [10000000000000000000000000000]”,
"totalSupply == ori(totalSupply)",
"totalSupply >= ori(totalSupply)",
"totalSupply <= ori(totalSupply)",
……

"preconditions":
"_to != 0",
"msg.sender != 0”,
"_value >= msg.value",
……

"postconditions":
"Sum(balances[...]) >= 0",
"totalSupply == ori(totalSupply)",
"totalSupply >= ori(totalSupply)",
"totalSupply <= ori(totalSupply)",
"(_to != _from) => balances[to] == ori(balances[to]) + _value",
"(_to != _from) => balances[to] == ori(balances[to]) - _value",
……

"preconditions":
"_to != 0",
"msg.sender != 0”,
"_value >= msg.value",
……

"postconditions":
"Sum(balances[...]) >= 0",
"totalSupply == ori(totalSupply)",
"totalSupply >= ori(totalSupply)",
"totalSupply <= ori(totalSupply)",
"(_to != _from) => balances[to] == ori(balances[to]) + _value",
"(_to != _from) => balances[to] == ori(balances[to]) - _value",
……

"preconditions":
"_to != 0",
"msg.sender != 0”,
"_value >= msg.value",
……

"postconditions":
"Sum(balances[...]) >= 0",
"totalSupply == ori(totalSupply)",
"totalSupply >= ori(totalSupply)",
"totalSupply <= ori(totalSupply)",
"(_to != _from) => balances[to] == ori(balances[to]) + _value",
……

"preconditions":
"_to != 0",
"msg.sender != 0”,
"_value >= msg.value",
……

"postconditions":
"Sum(balances[...]) >= 0",
"totalSupply == ori(totalSupply)",
"(_to != _from) => balances[to] == ori(balances[to]) + _value",
……

Automatically generate statically verified invariants (based on VeriSol)

Evaluation

Effectiveness
How many expected invariants can be successfully generated?

Common ERC20
invariants

Effectiveness
How many expected invariants can be successfully generated?

Common ERC721 invariants

Effectiveness
How many expected invariants can be successfully generated?

InvCon

InvCon+ Native

InvCon+ Primitive

InvCon+

Recall
0.0 0.3 0.5 0.8 1.0

0.8

0.61

0.63

0.19

The comparison result on ERC20 contracts.

Scalability
How does the length of transaction histories used affect the performance of InvCon+?

In
va

ria
nt

 n
um

be
r

0

25

50

75

100

Transaction number
0 1000 2000 3000 4000

InvCon+ InvCon+ w/o partial InvCon+ Primitive

The averaged number of invariants generated with different number of transactions.

Security Applications

• Dataset:

• Awesome Buggy ERC20
Tokens

• Real-world vulnerabilities in
ERC20 smart contracts with
financial losses

• Results:

• Invariants detected by InvCon+
useful for preventing most real-
world vulnerabilities

function batchTransfer(
 address[] _receivers,
 uint256 _value
) public whenNotPaused returns (bool) {
 uint cnt = _receivers.length;
 uint256 amount = uint256(cnt) * _value;
 require(cnt > 0 && cnt <= 20);
 require(_value > 0 && balances[msg.sender] >= amount);

 [msg.sender] = balances[msg.sender].sub(amount);
 for (uint i = 0; i < cnt; i++) {
 balances[_receivers[i]] = balances[_receivers[i]].add(_value);
 Transfer(msg.sender, _receivers[i], _value);
 }
 return true;
}

Detecting security vulnerabilities
CVE-2018-10299 from BeautyChain (BEC)

batchTransfer function in the BEC contract

Violates “totalSupply == SumMapping(balances)” !!!

A bit more on Generating Specs

Automated Generation of Formal Specifications using LLMs
SpecGen: Ma et al. https://arxiv.org/abs/2401.08807

https://arxiv.org/abs/2401.08807

Enhanced Spec Generation Capability
SpecGen: Ma et al. https://arxiv.org/abs/2401.08807

• Existing invariant generation approaches struggle on non-trivial cases

• Invariant templates based on heuristic are often limited

• E.g., Daikon and Houdini only generates “nums != null”, “\result[i] >= 0”,
etc.

https://arxiv.org/abs/2401.08807

Evaluation
SpecGen: Ma et al. https://arxiv.org/abs/2401.08807

https://arxiv.org/abs/2401.08807

Repository: https://github.com/ntu-SRSLab/InvCon

Questions?

Usages of InvCon+

• Infer specs for deployed contracts

• Derive specs interactively during internal testing

https://github.com/ntu-SRSLab/InvCon

