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Abstract—The complexity of the Ethereum smart contracts
makes it challenging to avoid security flaws. This problem led
to many code analysis tools, which detect potential flaws and
report them textually. However, the lack of context and visual
information in these reports hinders the stakeholders’ under-
standing of the detailed information. Visualization can assist a
developer in grasping such context, but current state-of-the-art
visualization tools provide only fixed and limited visualization
types. To this end, we present ContractViz, based on the versatile
platform Eclipse Trace Compass (TC), which supports various
views and analyses in parallel. Our contribution enables TC to
visualize Ethereum transaction traces using flame charts and
gas consumption plots. This reveals information on account
activities and provides insights into the correct or possibly flawed
behaviors.

GitHub repo—https://github.com/AisXiaolin/ContractViz
YouTube video—https://aisxiaolin.github.io/VideoDemo/
Index Terms—Blockchain, Smart Contracts, Visualization,

Eclipse Trace Compass, Transaction Logs

I. INTRODUCTION

Smart contracts manage information and assets using
blockchain technology, providing immutable pieces of soft-
ware with unique self-executable properties [1]. However,
security issues have become concerning since they frequently
lead to financial loss. One infamous security incident is the
DAO attack, which ultimately led to a loss of around $ 60
million due to the vulnerability caused by a reentrancy attack
on an Ethereum smart contract [2].

The root problem is that smart contracts often have ex-
ploited flaws, resulting in financial loss, including reentrancy
attacks [3], infinite loops [4] and gas inefficiency problems [5].
These flaws exist because many smart contract functionalities
are intricate and complex (e. g., callbacks [6], external contract
calls [3], or dependencies on block timestamps [7]).

To detect such flaws early in development, ideally, before
a contract is deployed as immutable software on a pro-
duction blockchain, many vulnerability analysis tools have
been developed [8]. These analysis tools often find subtle
flaws in software, but static (compile-time) analysis tools may
over-report problems due to over-approximating all possible

outcomes; dynamic analysis tools may miss issues due to no
test revealing them. We, therefore, need a way to understand
and validate the output of these tools, but that output is usually
textual and hard to evaluate, especially against potential false
positives [1]. Our method potentially speeds up this process
and can also improve trust in diagnostics.

Visualizing execution behavior can help a developer un-
derstand the code’s functionality or find the root cause of a
suspected problem. Our work, ContractViz, shown in Fig.2,
complements existing approaches by showing the transaction
log details on Eclipse Trace Compass (TC). TC is a mature
platform that combines visual analytics with filters and statis-
tics and offers several types of visualization alongside a tabular
log representation. ContractViz augments TC with smart-
contract visualization and shows the corresponding gas usage,
balance changes, or call stack behavior when the transaction is
performed, allowing users to interact with detailed execution
flows between Uniswap smart contracts and taken contracts
like Wrapped Ether and USDC. The added features shown in
the foundational capabilities of Eclipse Trace Compass are all
uniquely tailored for Smart Contract data analysis.

However, a number of mismatches between traditional pro-
grams and smart contracts prevent a straightforward visual-
ization of TC. First, traditional programs (and TC) do not
have a notation of account balances or gas fees, which are
prevalent in smart contracts. Second, TC expects all events to
be annotated by a time stamp taken from a system clock, but
this information is not available for blockchain transactions.
Third, TC expects the data in specific formats.

In the following sections, we will discuss our method and
tool in more detail. We extract the necessary data and fill
it into the required data fields in TC’s trace event format.
ContractViz can show (1) gas consumption over time and (2)
detailed function call traces. The above insights also provide
insight into solving inefficiencies, out-of-gas issues, reentrancy
vulnerabilities, and infinite loops.
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Fig. 1. Data Retrieval, Processing and Visualization

II. BACKGROUND

A. Smart contracts

Smart contracts are self-executable programs operating on
blockchain platforms when predefined conditions are met.
Once deployed on a blockchain platform like Ethereum, a con-
tract is immutable and can be invoked by sending transactions
to its address. Its state can be modified through transactions
and is recorded in the blockchain’s ledger [1].

The decentralized nature of smart contracts ensures that no
single entity controls the contract’s execution and governs ac-
cess [6]. Gas fees were introduced to ensure that computational
resources are allocated efficiently and to prevent the abuse of
resources required to manage smart contracts. Unlike Bitcoin,
Ethereum is Turing-complete, and gas fees are used to solve
the challenges related to the halting problems. An Ethereum
smart contract will halt its execution once the gas fee has been
used, preventing the program from entering infinite loops and
consuming excessive amounts of resources [9]. Callbacks in
smart contracts occur when the contract calls a function in
another contract. The most concerning vulnerability in this
context is the reentrancy attack, where an unintended loop
changes the state of a contract by allowing the external contract
to alter the internal state unexpectedly [3], [6].

B. Eclipe Trace Compass

Eclipse Trace Compass1 (TC) is open-source software for
analyzing the traces and logs of a system. It provides different
views, graphs, and metrics to help extract informative informa-
tion from traces. Developers can interact with the visualized
data across different forms of representations. TC also supports
statistical analysis over trace data.

III. DATA PREPARATION AND SOFTWARE SETUP

A. Ethereum Smart Contract Trace Extraction

Ethereum Virtual Machine (EVM) traces are not stored
directly on the blockchain; rather, they are generated on
demand by an Ethereum node. To collect real smart contract
traces, we deploy an Erigon2 node. Erigon is an optimized
Ethereum client that supports high-performance data retrieval,
making it suitable for our needs. We access the relevant
data through a sequence of Remote Procedure Calls (RPC)
interactions, which allow us to communicate with the node
programmatically.

1https://eclipse.dev/tracecompass/
2https://erigon.tech/

TABLE I
DATA MAPPING TABLE

Source Field Mapped Field

traces.callType traceEvent.name
blockNumber traceEvent.pid

traces.gas args.gasUsed

We use the trace_transaction RPC call to collect
traces for a given transaction. This call replays a transaction
to provide a detailed log of each internal operation, including
calls and value transfers. For temporal context, we retrieve
the block timestamp associated with the transaction using the
eth_getBlockByNumber RPC call, specifying the block
number.

To illustrate this process, consider the transaction shown in
Fig.2. The hash number was carefully selected for our analysis
to have more detailed internal transactions. The transaction
hash3 shown represents a transaction from block number
14157500.

B. Mismatches between smart contract data and regular exe-
cution traces

Eclipsed Trace Compass requires the input JSON file to
have a trace event format so that the software can parse the
input data into log traces. TC expects seven mandatory data
items, which include name, cat, ph, pid, tid, ts, args,
representing a trace event’s name, category, phase, process
ID, thread ID, timestamp and other arguments, respectively.
However, events in smart contracts are not timestamped;
instead, they are added to a block with a specific number, and
that block number increases monotonically over time. Smart-
contract data also includes items like gas usage, which TC
does not support.

C. Conversion of EVM traces to TC’s Trace Event Format

Our conversion converts each smart contract event to sup-
port all mandatory fields while allowing additional data to be
attached to events. This conversion involves two steps:

First, we map event fields to TC’s expected structure where
possible, reusing TC’s functionality. Table I shows three
entries that can be directly matched from the traces’ raw data.
Furthermore, we have to convert a single function call to a
triple of data items with these expected seven fields: Each
function call is represented by its duration and type, with
event type B and E representing the beginning and end of the
event and the middle C representing the counter events. The
timestamps for these three events have been designed so that
the function call at a higher hierarchy has a longer duration
to cover its sub-traces.

We use attribute call for all traceEvent.cat items,
since we do not need subcall to show any branch-
out functions. The number for traceEvent.pid is

30x55a72f6c7608257afed88cd423e050368c0e3b2cba94a23c51ab811827b89f01
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the blockNumber from the raw data.4 We manually adjust
the traceEvent.tid so that the correct hierarchy repre-
sents the correct parent and child function call. The gas fee
has been directly imported to the args.gasUsed, making
it one of the optional domain-specific types of parameters that
we can supply to TC.

Second, we calculate the timestamps for different event
types. We converted the block deployed time to UNIX times-
tamp format and inserted it in the “End” event type for the
last function call. The timestamp is then calculated backward
from that point. For simplicity, we assign a unit time duration
to leaf nodes.

D. Trace Compass Data-driven Analyses

TC comes equipped with several pre-built analyses, enabling
the efficient processing of the collected traces and the extrac-
tion of important information, thus providing the user with
valuable insights into the traced system. The extracted infor-
mation is often plotted as time-synchronized views, graphs,
and charts. For custom analysis development, TC provides
different methods tailored to the user’s expertise and different
levels of analysis complexity. For instance, users can de-
velop analyses as Java modules or leverage Eclipse Advanced
Scripting Environment (EASE) to implement the analysis in
JavaScript or Python. Moreover, TC supports the development
of analyses in XML code, thus enabling users to define rules
for data extraction and processing directly from the traces.
The data generated by custom analyses are often visualized
using time graphs and XY chart views. An XY chart displays
data series as numerical values plotted over time. The X-axis
represents time, while the Y-axis can represent any numerical
value that is relevant to the analysis (e.g., gas consumption).
On the other hand, a time graph view is divided into two
sections: a tree viewer on the left displaying different entries
and a Gantt-like viewer on the right that shows the state of
these entries over time. Fig. 2 shows a flame chart, which is
an example of a time-graph view, whereas the chart below
representing the variation of gas fee per function type is an
example of an XY chart.

We have developed several analyses to show the variation
of gas consumption from different perspectives, such as per
function type and per transaction. As the scripting and XML-
based methods enable users to share and run analyses in TC
without the need for recompilation, we chose to implement our
analyses using XML code. Our “Ethereum Fee per Function”
view, for instance, displays time on the X-axis and gas cost
on the Y-axis. Different types of function calls are represented
by lines of different colors. Once a function type is selected,
the chart updates to reflect changes in gas cost when calls
to this function type are triggered and result in different gas
consumption. Even when multiple calls for the same function
type overlap, the chart displays the specific gas usage for the
newly triggered function call.

4We use the callType as traceEvent.name and the blockNumber
as traceEvent.pid so they appear as labels in suitable places.

IV. VISUAL ETHEREUM CALL TRACE ANALYTICS

ContractViz will help users and developers understand
smart contracts and their transactions. It generates a synthetic
timestamp for each event depending on its block’s timestamp
and the execution order. This meets TC’s requirements for
timestamped trace logs for a detailed visualization of smart
contract interactions. The analysis results show the potential
to improve transaction security concerns; below, we discuss the
analysis of gas usage (which can highlight out-of-gas risks [5]
in specific portions of the code) and detailed call traces (which
can show unexpectedly deep recursion, indicative of a potential
reentrancy [3] vulnerability).

A. Gas Consumption Over Time

In a smart contract on Ethereum, the gas cost corresponds
to the resources needed for its execution. Using Eclipse Trace
Compass to plot the gas usage for each transaction over time
can improve the chances of identifying potential inefficiencies
and gas-related vulnerabilities. Once the correct pattern for
the particular smart contact type has been confirmed, the gas
inefficiencies in the smart contract execution could be directly
spotted [5]. Patterns would also be detected when the contract
runs out of gas, leading to the transaction’s failure or even
denial of service [3], [10]. Since Ethereum has also been
introduced as a platform that facilitates a Turing-complete
programming language to be executed on the network, an
Ethereum smart contract must be triggered with payment of
the required gas fee to avoid exceeding available computation
resources.

Visualizing gas usage helps distinguish and recognize how
infinite loops or complex function calls will drain the gas
unexpectedly. Correlation shows that the opcodes and source
code parameters can directly increase or decrease the gas
cost [11]. Developers can deliberately adjust or optimize gas
consumption; thus, the gas alone cannot be the sole metric
for evaluating the transactions, plus it lacks the sequential
context. From our generated XY chart analysis, function calls
have been categorized and grouped, comparing the gas cost
between different function types and horizontally showing
the difference between the same function calls. This supports
developers in assessing whether the gas fee has been designed
reasonably for efficiency and resource distribution [12].

B. Detailed Function Call Traces

Showing the internal function calls can help reveal reen-
trancy vulnerabilities, infinite loops, or similar security issues.
ContractViz shows transaction log entries as a time series or
as various diagrams. The visualized traces show the function
call hierarchy inside a transaction, especially which parent
function call triggers the child function. The tracked internal
function calls can suggest reentrancy vulnerabilities so the
developers can detect and spot the functions that have been
called multiple times before the previous call is completed.
For example, the visualized function call hierarchy on the
upper part of Fig. 2 can show infinite loops and recursive
calls that might be caused by exhausting the gas of a contract



Fig. 2. ContractViz User Interface

or unpredictable contract transaction behavior. Potential access
control issues could also be shown in the visualization of the
internal function calls. Thus, developers can ensure that the
function calls are protected and only authorized parties can
access specific system resources [13].

V. RELATED WORK

Different approaches can be used to visualize smart con-
tracts and reveal their behaviors. We give a brief overview
of key related works, classifying them as dashboards that
summarize key data, model-based approaches that use user-
defined graphical models to represent key functionality, and
graph analysis approaches where extracted data is represented
as a graph without an underlying human-defined model.

Dashboards: A dashboard view is often used as an entry
point to smart contract analysis tools to provide an overview of
the results [14], [15]. A dashboard can show transaction logs
along with application-specific data, such as which data items
were used or modified most often. In this way, the application
integrates a dashboard as an overview of its internal state and
hides low-level details of the smart contract [14]. A dashboard
can give access to manage larger code bases [15] to help
compare smart contracts and analyze their code. BlockSec5,
for instance, provides the visualization of call stacks similar
to the flame chart in TC. However, TC complements this
feature, focuses on the run-time behavior of code, and is
application-agnostic (while still allowing a user to filter the

5https://blocksec.com/

data to highlight specific items). Unlike BlockSec, TC allows
multiple analyses to be shown on one single screen. Instead
of embedding hyperlinks to more detailed information that
redirect users to another page on BlockSec, TC enables this
feature by hiding more detailed data behind the button, and
detailed information unfolds only when the mouse hovers
above.

Model-based approaches: Model-based approaches use
a high-level model to reason about low-level functionality.
These models often have a graphical notation, with UML
being the most well-known example [16]. To model the
structure of smart contract code, SCMTool provides a graphi-
cal modeling platform using UML-like class diagrams [17].
The focus lies on how different components relate to and
interact with each other. However, structural models often
do not represent semantics sufficiently well and may elide
important details [16]. To this end, behavioral models have
been proposed to model the behaviour of smart contracts [18].
Using dynamic condition-response (DCR) graphs, it is possible
to capture temporal and logical dependencies of different
activities in smart contracts, which can help to understand
them better and can also be used to monitor their behavior
at run time [19]. Compared to model-based approaches, our
work visualizes the direct behavior of the transactions rather
than an abstraction or model of them.

Graph Analysis approaches: A graph-based analysis re-
covers the structure (often also quantitative information such
as coverage percentages) from smart contracts without needing

https://blocksec.com/


a human-defined model as a starting point. A systematic study
has been conducted on Ethereum by constructing the money
flow graph (MFG), smart contract creation graph (CCG), and
smart contract invocation graph (CIG) to characterize their
activities [20]. The examination result of the individual graph
reveals securities issues, including account forensics, anomaly
detection, and deanonymization. Similar to the introduced
graph metrics that provide users with a better understanding
of the properties of Ethereum, TC uses different visualization
windows to analyze the contracts’ properties. Further, TC
extends the graphical features by allowing the developers to
navigate the data and interact with the visualizations.

VI. CONCLUSIONS AND FUTURE WORK

Visualization assists developers in collecting informative
and intuitive data information. Our tool, ContractViz, com-
plements the current state-of-the-art visualization tools by
increasing the fixed and limited visualization types and pro-
viding a more versatile platform. By building on Eclipse
Trace Compass (TC), ContractViz supports multiple views and
analyses in parallel. Our contribution enables TC to visualize
Ethereum transaction traces using flame charts for the internal
function calls and gas consumption over time. The revealed
information on account activities provided insights into the
correct or possibly flawed behaviors.

In future work, we want to further integrate and optimize the
automated conversion of Ethereum traces and create custom,
more compact, or expressive visualizations of that data. An-
other goal is to visualize multiple transactions simultaneously
so that detailed information on the external function calls
can also be shown and analyzed. The result will then be
organized for the user case study, and the generated result
could be worked on to improve our program’s performance
and effectiveness based on the evaluation results.
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em Blockchain e Web Descentralizada. SBC, 2023, pp. 31–36.

[18] M. Eshghie, W. Ahrendt, C. Artho, T. T. Hildebrandt, and G. Schneider,
“Capturing smart contract design with dcr graphs,” in International
Conference on Software Engineering and Formal Methods. Springer,
2023, pp. 106–125.

[19] M. Eshghie, C. Artho, H. Stammler, W. Ahrendt, T. Hildebrandt, and
G. Schneider, “Highguard: Cross-chain business logic monitoring of
smart contracts,” in Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’24. New
York, NY, USA: Association for Computing Machinery, 2024, p.
2378–2381.

[20] T. Chen, Z. Li, Y. Zhu, J. Chen, X. Luo, J. C.-S. Lui, X. Lin,
and X. Zhang, “Understanding Ethereum via graph analysis,” ACM
Transactions on Internet Technology (TOIT), vol. 20, no. 2, pp. 1–32,
2020.


	Introduction
	Background
	Smart contracts
	Eclipe Trace Compass

	Data Preparation and Software Setup
	Ethereum Smart Contract Trace Extraction
	Mismatches between smart contract data and regular execution traces
	Conversion of EVM traces to TC's Trace Event Format
	Trace Compass Data-driven Analyses

	Visual Ethereum Call Trace Analytics
	Gas Consumption Over Time
	Detailed Function Call Traces

	Related Work
	Conclusions and Future Work
	References

