
Specification Mining for Smart Contracts with Trace
Slicing and Predicate Abstraction

Ye Liu1
Nanyang Technological University

Singapore
li0003ye@e.ntu.edu.sg

Yixuan Liu
Nanyang Technological University

Singapore
liuy0255@e.ntu.edu.sg

Yi Li
Nanyang Technological University

Singapore
yi li@ntu.edu.sg

Cyrille Artho
KTH Royal Institute of Technology

Sweden
artho@kth.se

Abstract—Smart contracts are computer programs running
on blockchains to implement Decentralized Applications. The
absence of contract specifications hinders routine tasks, such as
contract understanding and testing. In this work, we propose
a specification mining approach to infer contract specifications
from past transaction histories. Our approach derives high-level
behavioral automata of function invocations, accompanied by
program invariants statistically inferred from the transaction
histories. We implemented our approach as tool SMCON and
evaluated it on eleven well-studied Azure benchmark smart
contracts and six popular real-world DApp smart contracts.
The experiments show that SMCON mines reasonably accurate
specifications that can be used to enhance symbolic analysis
of smart contracts achieving higher code coverage and up to
56 % speedup, and facilitate DApp developers in maintaining
high-quality documentation and test suites.

I. INTRODUCTION

Blockchain technology has developed rapidly in recent
years, since the introduction of Bitcoin [1] by Nakamoto in
2008. Blockchain itself is a distributed ledger maintained and
shared by a peer-to-peer (P2P) network, and it evolved into a
platform which supports the deployment and execution of smart
contracts, popularized by Ethereum [2]. Smart contracts are self-
executing computer programs used to implement Decentralized
Applications (DApps). Users interact with smart contracts by
executing transactions on the blockchain. Ethereum, the most
prominent smart contract platform, is empowering many DApps,
spanning areas such as finance, health, governance, games,
etc. [3]. As of May 2023, there are more than 50 million smart
contracts deployed on Ethereum, and these smart contracts
have supported 13,968 DApps [4], [3].

Despite the high stakes involved, smart contracts are often
developed in an undisciplined way. The existence of bugs and
vulnerabilities compromises the reliability and security of smart
contracts and endangers the trust of users. Durieux et al. [5]
reported that nearly 10% of the smart contracts may contain
security vulnerabilities related to access controls. ERC-20 [6] is
the most popular smart contract standard on Ethereum, yet 13%

This work was done while Ye Liu was a student at Nanyang Technological
University.

of the ERC-20 token contracts do not conform to the standard
specification [7]. Moreover, Qin et al. [8] demonstrated how
economic behavior models can be exploited to attack the DeFi
ecosystem with flash loans. A major difficulty in validating
the conformance of smart contracts, i.e., whether the contract
implementation adheres to the expected behaviors, is the lack
of documented formal specifications.

Formal specifications capture the expected contract behaviors,
in terms of formal languages, based on a formal model [9]
with precise semantics. Specifications of a smart contract
play a central role in describing, understanding, reasoning
about contract behaviors, and detecting, through testing and
verification, non-conformance issues such as functional bugs
and security vulnerabilities.

Similar to traditional formal specifications, two forms of
smart contract specifications have been studied in past work: (1)
function-level program invariants [10], which are used in test-
ing [11], verification [12], [13], and runtime validation [14] of
smart contracts; and (2) contract-level behavioral specifications
in the form of automata [15], which can be used to support
contract synthesis [16], model-based testing [17], design
verification [18], and workflow verification [19]. Specifically,
Wang et al. [19] performed workflow verification via semantic
conformance checking between state machine-based workflow
specifications and smart contracts from the Azure Blockchain
Workbench, an enterprise blockchain from Microsoft.

In this paper, we focus on mining high-level automata-
based specifications automatically for smart contracts. Many
approaches have been proposed for this task on traditional pro-
gram traces: for example, grammar inference techniques [20],
[21], [22] and deep learning-based techniques [23] have been
used to learn automata from a set of program execution traces.
The k-tail algorithm and its variants [24], [25], [26] merge states
if the same set of “tail” invocation sequences are observed.

However, the way smart contracts behave poses new chal-
lenges for mining automata-based behavioral models. As they
are usually deployed on public blockchain networks, smart
contracts handle multiple user interactions simultaneously.
Therefore, the execution traces recorded in contract transaction

histories consist of interleaving events triggered by different
user interactions and may belong to different sessions. Since
there does not exist a standard approach for managing user
sessions, the execution traces cannot be easily separated for
independent interactions. Moreover, predicate abstraction is
crucial in deriving compact but accurate automata. Yet, the
choice of predicates remains challenging and is often tightly
tied with the specific analysis tasks. The predicate abstraction
techniques used in computing state abstractions must be tailored
to take into account the specific data structures and runtime
environments of smart contracts.

To mine more accurate automata specification efficiently for
smart contracts, we propose a specification mining algorithm
powered by trace slicing and predicate abstraction [27]. The
contract specification mining process is preceded by a slicing
of the transaction histories. We perform trace slicing on the
transaction histories via a parametric binding learned from
the existing test suites. A slice of history is a sequence of
inter-related transactions, e.g., all transactions related to one
specific trade session. Smart contract transaction histories, being
stored persistently on blockchain, record all past function
executions since the contract deployment. To find suitable
predicate candidates for state abstraction, we use a statistical
inference technique [28], [10] to generate a set of dynamic
invariants, based on the transaction histories. Then, we follow
the counterexample-guided abstraction refinement (CEGAR)
approach [21] to perform a lazy state abstraction, and introduce
minimal existential abstraction to ensure the automata specifica-
tion is accurate and simple. Finally, our automata specification
subsumes all observed invocation sequences and at the same
time preserves its generality.

In summary, we make the following contributions. First, we
formalize the specification mining problem for smart contracts.
Second, we propose a CEGAR-based specification mining
algorithm, powered by trace slicing and predicate abstraction.
Third, we implement our approach in tool SMCON and evaluate
it on eleven well-studied Azure benchmark smart contracts and
six popular real-world DApp smart contracts. The experiments
indicate that the mined specifications are precise and useful for
DApp development and can enhance symbolic analysis of smart
contracts in achieving higher code coverage and detecting more
issues within smaller number of function call sequences and
speeding up symbolic execution by up to 56 % by enforcing
trace slicing. The benchmarks, raw results, and source code
are available at: https://sites.google.com/view/smcon/.

Organization. The rest of the paper is organized as follows.
Section II provides the background. Section III illustrates
our approach through an example. Section IV introduces our
specification mining algorithm, followed by the implementation
and evaluation in Sect. V. We compare with the related work
in Sect. VI and conclude the paper in Sect. VII.

II. BACKGROUND

We borrow terminology about (non-)parametric events and
traces from [29].

Definition 1 (Non-Parametric Events and Traces). Let ξ be a
set of (non-parametric) events, called base events or simply
events. An ξ-trace, or simply a (non-parametric) trace is any
finite sequence of events in ξ, that is, an element in ξ⋆. If event
e ∈ ξ appears in trace w ∈ ξ⋆ then we write e ∈ w.

Definition 2 (Parametric Events and Traces). Let X be a set
of parameters and let V be a set of corresponding parameter
values. If ξ is a set of base events as in Definition 1, then
let ξ(X) be the set of corresponding parametric events e(θ),
where e is a base event in ξ and θ is a partial function in
[X ⇁ V]. A parametric trace is a trace with events in ξ(X),
that is, a word in ξ(X)⋆.

From a user’s perspective, a smart contract is a set of
interface functions which can be invoked to execute contract
code. Let these interface functions be represented as base events:
ξ is the set of interface function names and e ∈ ξ corresponds
to a contract function. The execution of e accepts parameters
(denoted as X), including the user-provided function inputs
(X1) and the contract state variables (X2) stored on the
blockchain. Let V be the corresponding values of X in
parametric traces. Let DX , DX1

, and DX2
be the corresponding

domains. Finally, given a smart contract, let ξ(X) be the
set of all function executions, and any function invocation
sequence can be represented as a parametric trace (word) in
ξ(X)⋆. The behaviors of a smart contract can be captured by a
labeled transition system that accepts all its function invocation
sequences.

Definition 3 (Labeled Transition System (LTS) [30]). A smart
contract is a labeled transition system (S , s0,Σ, δ) where S
is a set of possibly-infinite states, S ⊆ DX2

s0 ∈ S is an
initial state, Σ is a possibly-infinite alphabet, Σ ⊆ ξ(X)⋆, and
δ ⊆ S × Σ× S is a set of transitions.

An LTS can be represented more compactly by abstracting
it into an EFSM .

Definition 4 (Extended Finite State Machine (EFSM) [31]).
EFSM is defined as a 6-tuple (Q, q0,Σ

′, G, U, T) where,
• Q is a finite set of symbolic states under a predicate

abstraction α : S → Q,
• q0 ∈ Q is the initial symbolic state,
• Σ′ is a finite alphabet defined, Σ′ ⊆ ξ⋆,
• G is a set of guarding function gi such that gi: DX →
{True,False},

• U is a set of update function ui such that ui: DX → DX ,
• T is a transition relation, T : Q×G × Σ → U ×Q.

To compute state abstractions, predicate abstraction [21] is
typically used, which is a function to create a partition of the
domains of data types. For example, the widely used predicate
abstraction for integer domain is {neg , zero, pos} which
represent negative, zero and positive numbers respectively.
However, there could be many EFSM candidates that an LTS
can be abstracted into. In this paper, we borrow the concept of
minimal existential abstraction [32] and later use it to obtain
a compact EFSM .

Definition 5 (Minimal Existential Abstraction [32]). EFSM
= (Q, q0,Σ

′, G, U, T) is the minimal existential abstraction of
LTS = (S , s0,Σ, δ) with respect to α : S → Q iff,

∃s0 ∈ S · α(s0) = q ⇐⇒ q = q0 (1)

∃(s0, e0(θ0), s1), . . . , (sn−1, en−1(θn−1), sn) ∈ δ ·
α(s0) = q0 ∧ α(s1) = q1 ∧ · · · ∧ α(sn−1) = qn−1 ∧ α(sn) = qn

⇐⇒ (q0, gi, e0, ui, q1), . . . , (qn−1, gj , en−1, uj , qn) ∈ T (2)

Intuitively, the minimal existential abstraction implies that:
(1) the initial concrete state can be mapped to the initial
symbolic state in the extended finite state machine, and vice
versa; (2) every concrete path is preserved in the extended
finite state machine, and every symbolic path in the extended
finite state machine has at least a corresponding concrete path.

III. APPROACH AT A GLANCE

We illustrate our approach using the GameChannel con-
tract from a DApp called Dicether. Dicether is a decentralized
casino application on Ethereum, relying on a smart contract to
provide an open, secure, and fair gaming experience. A new
game is created by calling the contract function createGame.
When approaching the end of a game, an admin user may invoke
the serverEndGame function to close the game. More details
can be found in its development documentation [33].

Figure 1 overviews how we separate interleaving interactions
from past transaction histories. A transaction history is a
sequence of transactions, where each transaction can be
decoded as a contract function invocation. We apply a slicing
function, which is determined by interaction patterns observed
in test suites, on the transaction history, to produce a set of
independent invocation sequences. For GameChannel, there
are six game interaction sequences, corresponding to six user
sessions. For instance, user1 : A(gameId:1) indicates the
invocation of createGame by user1 for creating a game
with index 1. For simplicity, we omit the values of the
other function parameters and the transaction environment
variables. A function invocation may change the values of
state variables, thus updating contract states. In Fig. 1, the
first game is created by user1 and after a while ended
by user2. Three game states, s0, s1, and s2, are involved.
The second game is created by user3, and later canceled
by user2 and user3 via serverCancelActiveGame and
userCancelActiveGame, respectively.

From these invocation sequences, we can construct an
extended finite state machine annotated with function pre-/post-
conditions, as a specification of the observed contract behav-
iors. Specifically, in GameChannel, each function pre-/post-
condition consists of a set of predicates either relevant to game
state variables or function input parameters. Figure 3a shows
the data structure used in GameChannel, where server,
gameIdCntr, and gameIdGame maintain information about
the game manager, the number of created games, and all game
state information, respectively. The game state variables include
status, roundId, endInitiatedTime, and stake.
The variable status being ENDED (0) indicates that a game

either has not been created or has already been terminated;
roundId is an unsigned integer used to record the current
game round; endInitiatedTime records when a game is
required to terminate itself as per users’ requests; and stake
keeps the amount of fund that a player deposits into the contract
when creating a game. Since all parameter values, including
contract state variables and user-provided function inputs, can
be decoded from blockchain transactions, we can infer dynamic
invariants to be candidates of predicates on function pre-/post-
conditions. Figure 2 shows the 11 resulting predicates.

Assume that all contract state variables are initialized to zero,
so s0 can be represented by P1∧P6∧P8∧P10. These predicates
also form the pre- and post-conditions in Table I, where some
other parameter predicates in the pre- and post-conditions
are over function input parameters, i. e., “ roundId” and
caller of the function, i. e., “caller”. The precondition of
the createGame function is that all variable values, namely,
status, stake, roundId, and endInitiatedTime, are
zero; and its postcondition is that when createGame finishes,
the variable status is set to ACTIVE (1) and the deposited
stake is greater than zero and equals to the transferred fund,
i. e., msg .value.1

Figure 3b shows our mined automaton, of which we have
confirmed the correctness using the ground truth specification
of GameChannel. The mined automaton has seven symbolic
states. Only createGame can be called at the initial state (q0).
Furthermore, when the caller is server, he/she is allowed
to call serverEndGame to terminate the game and move
towards the final state (q6) where status changes to be
ENDED (0). Such an automaton captures the common usages
of GameChannel and its permission policies, thus being a
likely contract specification.

As for automata construction, SMCON uses a CEGAR-like
approach, which will be detailed in Sect. IV. Briefly, we
perform a lazy abstraction, i. e., we do not refine predicate
abstraction unless we have to. To obtain an extended finite
state machine, SMCON takes the sliced independent invocation
sequences and the inferred function pre-/post-conditions as
input. Initially, we construct an automaton containing only two
states and then revisit the automaton to recognize the spurious
symbolic paths that have no support, i. e., a corresponding
concrete invocation sequence in the past observations. Then we
refine the automaton to eliminate the spurious paths via either
splitting larger states or removing unreachable transitions. We
repeat this process until no spurious path is included in the
resulting automaton.

IV. CONTRACT SPECIFICATION MINING

In this section, we introduce the specification mining problem
for smart contracts and present our proposed algorithm.

Smart Contract Specification Mining. Given a contract’s
transaction histories, where all the past contract behaviors are

1In Solidity smart contracts, msg.value refers to the amount of transferred
native cryptocurrency, e.g., ETH on Ethereum, during contract function
execution.

s0 s6 s7
 A(caller4, game@3) C(caller2, game@3)

s0 s9 s10 s11
A(caller5, game@4) B(caller2, game@4) G(caller5, game@4)

s0 s1 s2
A(caller1, game@1) D(caller2, game@1)

s0 s3 s4 s5
A(caller3, game@2) C(caller2, game@2) E(caller3, game@2)

s8
G(caller4, game@3)

s0 s12 s13
 A (caller6, game@5) E(caller6, game@5)

s0 s15 s16 s17
 A(caller7, game@6) F(caller7, game@6) B(caller2, game@6)

s14
 C(caller2, game@5)

Trace-1

Trace-2

Trace-3

Trace-4

Trace-5

Trace-6

Transaction history

Trace slicer
Develop

docs
Test
cases

E: userCancelActiveGame
F: userEndGameConflict

G: serverForceGameEndA: createGame
B: serverEndGameConflict

C: serverCancelActiveGame
D: serverEndGame

Fig. 1: Six game invocation sequences for GameChannel.

TABLE I: The function pre-/post-conditions of GameChannel.

Functions Preconditions Post-conditions

createGame P1 ∧ P6 ∧ P8 ∧ P10 P2 ∧ P6 ∧ P8 ∧ P11 ∧ (stake = msg.value)
serverEndGameConflict (P2 ∨ P3) ∧ (roundId > 0) ∧ (caller = server) P1 ∨ (P4 ∧ P7 ∧ P9) ∧ (roundId = roundId)
serverCancelActiveGame (P2 ∨ (P3 ∧ P6)) ∧ (caller = server) P1 ∨ (P4 ∧ P9)
serverEndGame P2 ∧ (caller = server) P1

userCancelActiveGame P2 ∨ (P4 ∧ P6) P1 ∨ (P3 ∧ P9)
userEndGameConflict (P2 ∨ P4) ∧ (roundId > 0) P1 ∨ (P3 ∧ P7 ∧ P9) ∧ (roundId = roundId)
serverForceGameEnd P4 ∧ (caller = server) P1

P1 : status = 0 P2 : status = 1

P3 : status = 2 P4 : status = 3 P5 : status > 3

P6 : roundId = 0 P7 : roundId > 0

P8 : endInitiatedTime = 0 P9 : endInitiatedTime > 0

P10 : stake = 0 P11 : stake > 0

Fig. 2: The 11 predicates that partition the game state.

captured by LTSh , the specification mining problem is to mine
an EFSM as the likely specification of the smart contract.
To solve the specification mining problem, we first perform
a trace slicing on the input transaction histories, to obtain
multiple independent invocation traces. Next, we find predicates
that belong to preconditions or post-conditions of the smart
contract’s functions. Finally, we implement a counterexample-
guided abstraction refinement loop to produce an extended finite
state machine, satisfying the minimal existential abstraction
property (see Definition 5).

A. Trace Slicing

Smart contracts are public-facing, and, by their nature,
simultaneously accept inputs from multiple users. Contract
executions in such a setting result in a linear transaction
history, which consists of interleaving execution traces triggered
through multiple user interactions/sessions. To record data
owned by different users, most smart contracts supporting
DApps, maintain a collection of custom data objects, in-
dexed by user(session)-specific parameters. For example, the
GameChannel contract maintains many concurrent game
instances as state variables. To interact with a particular game
instance, a user needs to specify the value of its gameId,
through input parameters of the transaction (see Fig. 1). To mine

meaningful contract specifications from transaction histories
with mixed interactions, one has to slice them into independent
traces for each game instance.

Definition 6 (Trace Slicing [29]). Given a parametric trace
τ ∈ ξ(X)⋆ and a parametric binding θ in [X ⇁ V], let the
θ-trace slice τ ↾θ∈ ξ⋆ be the non-parametric trace defined as:

• ϵ ↾θ= ϵ, where ϵ is the empty trace/word, and

• (τe(θ′)) ↾θ=

{
(τ ↾θ)e, if θ′ ⊑ θ

τ ↾θ, otherwise
where we say that θ′ is less informative than θ, written θ′ ⊑ θ
iff for any x ∈ X , if θ′(x) is defined then θ(x) is also defined
and θ′(x) = θ(x).

A transaction history of smart contract can be seen as a
parametric trace, and trace slicing slices the history into a set
of independent invocation sequences via certain parametric
bindings (e.g., θ) [29]. A trace slice τ ↾θ first filters out
all the parametric events that are irrelevant to the parameter
instance θ. A trace slice also forgets the parameter bindings of
parametric events. As a result, a trace slice is non-parametric
and merely a list of base events. To find parametric bindings,
we should first ascertain the relation between different events,
or say function invocations in smart contracts. Such parametric
bindings can be inferred from the existing DApp test suites,
which demonstrate typical usage scenarios and user interaction
patterns. Specifically, we may observe a group of related
functions and what parameter values they share in a unit
test. For example, the test suites for GameChannel contain
many well-written test cases where game objects are explicitly
specified by the “gameId” variable in each contract function.
Therefore, we can use such relations as a configuration to
instruct how to automatically slice the transaction history

1 contract GameChannel{

2 enum GameStatus {

3 ENDED, ACTIVE, USER_INITIATED_END,

SERVER_INITIATED_END↪→

4 }

5 struct Game {

6 GameStatus status;

7 uint128 stake;

8 uint32 roundId;

9 uint endInitiatedTime;

10 }

11 // @dev Game id counter.

12 uint public gameIdCntr = 0;

13 address public server;

14 mapping (uint => Game) public gameIdGame;

15 // functions ...

16 }

(a) State variables of GameChannel.

q1

q5 q2q3 q4

q6

 True / [stake = msg.value]
 A

[caller== server]
D

E

[caller==server]
C E, G

[caller==server]
CB

G

F

B

status =
stake =
roundId =
endInitiatedTime = q0

status = ENDED
stake >= 0
roundId >= 0
endInitiatedTime >= 0

status = USER_INITIATED_END
stake >= 0
roundId = 0
endInitiatedTime = 0

status = ACTIVE
stake >= 0
roundId = 0
endInitiatedTime = 0

(b) The mined automaton.

Fig. 3: The core data structure and the mined automaton of GameChannel.

according to the corresponding values of “gameId” to generate
a set of independent game invocation sequences.

B. Predicate Discovery from Dynamic Invariants

The choice of predicates is crucial for computing good
state abstractions. In this paper, we use likely pre- and post-
conditions of contract functions as candidates. Because of
the blockchain transparency, we may decode the values of
contract state variables and user-provided function inputs,
before and after each function invocation. Then we statistically
infer dynamic invariants for each function, which hold for all
observed invocations in the past transaction histories. But since
the transaction history may be limited, the inferred pre- and
post-conditions are likely to hold, which is good enough to
serve as predicate candidates.

More specifically, we define a predicate template as “x ▷◁ y”,
where x ∈ X is a parameter, and y ∈ X ∪ K is either a
parameter or constant, and ▷◁ is an operator from the set
{=,!=,>,<,<=,>=}. The template is instantiated on all suc-
cessful transactions, which are not reverted during executions,
and the instances which always hold are kept as predicate
candidates for either function pre- or post-conditions. The
predicates defined over state variables are used in constructing
the symbolic states Q in EFSM.

The inference process is similar to how dynamic invariants
are detected in Daikon-like systems [28] through a set of
predefined invariant templates. However, smart contracts are
usually writting in Turing-complete programming languages
such as Solidity, supporting complex data structures including
array, mapping and custom struct. Thus, we built our invariant
inference on a tool called InvCon+ [34], [10] capable of
invariant detection for smart contracts.

C. Automata Construction

The over-generalization of the inferred function pre-/post-
conditions is the main difficulty for their direct use in mining
high-level automata specifications. To address this problem, we
use a CEGAR-like approach to mine automata specifications
with predicate abstraction.

Algorithm 1 SPLITREMOVE(qn, tn+1, EFSM)

1: Let ⟨q0, Q,Σ, G, U, T ⟩ = EFSM
2: Let tn+1 = (qn, gm, em, um, qn+1) ∈ T ▷ a transition

from state qn to qn+1 by the invocation to function em where
gm, um are its precondition and post-condition, respectively.

3: q̂1 = qn ∧ gm
4: q̂2 = qn ∧ ¬gm
5: if SAT(q̂1) ∧ SAT(q̂2) then ▷ qn is splittable with gm.
6: Q← (Q \ qn)∪ {q̂1, q̂2} ▷ replace qn with two new states.
7: Removes transitions starting or ending with qn in T
8: else
9: if ∄ π′

n ·π′
n ∈EFSM ∧concretize(π′

n⊕tn+1) ∈ LTSh then

10: T ← T \ tn+1 ▷ remove unreachable transition tn+1

11: else
12: Let Sqn|π′

n
be the set of all the concrete states of qn in

the history LTSh , which are visited by the observed invocation
sequences of π′

n.
13: Q← (Q\{qn})∪{Pred(Sqn|π′

n
), qn∧¬Pred(Sqn|π′

n
)}

14: Removes transitions starting or ending with qn in T

15: return ⟨q0, Q,Σ, G, U, T ⟩ ▷ return the resulting automaton

Counterexample-guided abstraction refinement. To mine
a precise specification, the key is to compute a precise
state abstraction α, which partitions the contract state. The
abstraction function α is implicitly computed following the
paradigm of counterexample-guided abstraction refinement [21].
We define our specification mining algorithm by the three rules
in Fig. 4. Our algorithm takes as input past observations of
concrete invocation sequences and inferred function pre-/post-
conditions. When the algorithm terminates, it produces an
EFSM containing no spurious states and transitions.

The INIT rule initializes a preliminary extended finite state
machine containing two states: q0, referring to ∧

x∈X1

x = 0

that all state variables are valued zero, and ¬q0 for the
remaining cases. The guard function G and update function
U are directly instantiated by the inferred function pre- and
postconditions, respectively. Also, the transition relation set T
is initialized to be empty. Then, we apply the CONSTRUCT
rule to add theoretically feasible state transitions to the
automaton. A state transition is theoretically feasible if and

⊥ INIT⟨q0 ← ∧
x∈X1

x = 0, Q← {q0,¬q0},Σ, G← {gm}m, U ← {um}m, T ← ∅⟩

⟨q0, Q,Σ, G, U, T ⟩ ∃ qi, qj ∈ Q · (qi ∧ gm) ∧ (qj ∧ um) ∄ t · (qi, gm, em, um, qj) ∈ T
CONSTRUCT⟨q0, Q,Σ, G, U, T ← T ∪ {t}⟩

EFSM : ⟨q0, Q,Σ, G, U, T ⟩ ∃ πn : q0t1t2 · · · tnqn ∈ EFSM ∃ concretize(πn) ∈ LTSh

∃ πn+1 : πn ⊕ tn+1qn+1 ∈ EFSM ∄ concretize(πn+1) ∈ LTSh
RMPATH

EFSM ← SPLITREMOVE(qn, tn+1, EFSM)

Fig. 4: Specification mining rules.

only if it satisfies the logical conjunction of symbolic states
and function preconditions or post-conditions. The resulting
automaton could be over-generalized such that it includes
spurious state transition paths. Therefore, we need to apply
the RMPATH rule, following Algorithm 1 to eliminate those
spurious state transition paths that are not supported in the
concrete observations. Algorithm 1 rules out spurious paths
by either state splitting or transition removal. These rules
would be applied many times according to a fair scheduling.
When the algorithm terminates, it produces an extended finite
state machine, containing no spurious states or transitions. The
illustration of a running example and the fair scheduling and
its proof are available at https://sites.google.com/view/smcon/.

Loop transitions. The resulting automaton does not allow
loop transitions according to the RMPATH rule. However, this
kind of automaton may not be precise and useful contract
specifications. Because many smart contracts have behavior
cycles, it is preferred to have loop transitions in the resulting
automaton. Therefore, we limit the range of path selection when
applying RMPATH, i. e., a loop transition can only be covered
once in any selected path. For example, a state transition path
q−Eventa−q−Eventa−q is not under our consideration when
allowing loop transitions. With this minor modification to the
RMPATH rule, the resulting automaton allows loop transitions
so that it may express cycles.

V. IMPLEMENTATION AND EVALUATION

A. Implementation

We implement trace slice approach and specification min-
ing algorithm as a tool named SMCON, written in around
3K lines of Python code. Specifically, we apply our trace
slicing approach to retrieve independent user action traces
from transaction histories according to the given trace slice
configurations, and then we invoke InvCon+ to produce
corresponding likely invariants. Based on these sequences and
likely invariants, we are able to perform specification mining
for smart contracts. Additionally, our algorithm relaxes the
RMPATH rule to allow loops in the contract specifications
for better generality (see Sect. IV-C). We used the Z3 SMT
solver [35] for discharging satisfiability queries.

We generate function-level invariants for smart contracts
from the past transaction histories and filter the gener-
ated invariants to keep those expressing parameter relations

TABLE II: The Azure smart contract benchmark.

Contract Description Formal Specifications

States # Transitions

AssetTransfer Selling high-value assets 11 32
BasicProvenance Keeping record of ownership 4 4
BazaarItemListing Selling items 4 5
DefectCompCounter Product counting 3 2
DigitalLocker Sharing digital files 7 12
FreqFlyerRewards Calculating flyer rewards 3 3
HelloBlockchain Request and response 3 3
PingPongGame Two-player games 4 2
RefrigTransport IoT monitoring 5 8
RoomThermostat Thermostat installation and use 3 4
SimpleMarketplace Owner and buyer transactions 4 4

Average 4.64 7.18

(see Sect. IV-B). These invariants serve as the parameter
predicates that we use for automata construction (see Sect. IV).

Through experiments, we evaluated SMCON to answer the
following three research questions:
• RQ1: How effectively does SMCON mine smart contract

specifications compared with the state-of-the-arts?
• RQ2: How effectively does SMCON mine automata from

real-world DApp smart contracts, and with these automata,
how is symbolic analysis for smart contracts enhanced?

• RQ3: What are the implications for DApp developers?

B. Methodology

To answer RQ1, we evaluate SMCON on parametric-free
smart contracts from a well-studied benchmark used for Azure
enterprise blockchain, where none of these contracts have
index-related data structures so we do not perform trace
slicing on their transactions. This benchmark includes 11 smart
contracts exhibiting stateful behaviors, ranging over supply
chain management, digital control, virtual games, etc. Each of
these contracts is properly documented, and their specifications
have been well formalized and examined by the previous work.
Such ground truth specifications are deemed as the reference
models in our evaluation. Because SMCON aims to dynamically
infer specification models from past contract executions, we
produce 10,000 transactions per contract using random test case
generation. In detail, we deploy every contract 100 times to our
testnet. Each contract instance is tested using 100 randomly
generated transactions, which finally produce a trace, namely
a sequence of contract executions. Subsequently, we perform
SMCON on these contract traces to mine contract specification
models.

To answer RQ2, we evaluate SMCON on real-world para-
metric smart contracts running on Ethereum. We selected
six popular Ethereum DApp smart contracts as shown in
Table IV. We selected them from the Top-10 DApps covering
different application domains [3], such as decentralized gaming,
gambling, non-fungible token (NFT) usage, and an exchange
market. For example, the DApp SuperRare has a total
trading volume up to 557 million dollars contributed by more
than 10,000 users in nearly 100,000 transactions [36]; and
MoonCatRescue has a total trading volume up to 73 million
dollars involving more than 11,000 users [37]. These DApps
have been deployed and running for a long period, since as early
as 2017, and their past transaction data can be downloaded from
Ethereum. Most of these DApps (except 0xfair) maintain some
form of design documentation on their websites or GitHub
repositories; some also provide formal specifications, such
as Dicether [33]. In addition, well-organized DApp projects,
such as the studied ones, maintain test suites that exercise the
core functionalities of the contracts with reasonable coverage.
With these artifacts, we are able to construct ground models
manually for DApp contracts. We collected their contract code
and transaction data from Etherscan [4] and Ethereum archive
node hosted by QuickNode [38]. Particularly, the number of
transactions used for specification mining is also capped at
10,000 for all DApp smart contracts.

Evaluation Metrics. To evaluate SMCON, we use the accu-
racy metric recommended in [39] for automata specification
mining evaluation. The accuracy metric measures the similarity
between the mined automata specification and the ground truth,
considering both precision and recall. Precision is defined as
the percentage of sequences generated by the mined automata
that are accepted by the ground truth, while recall is the
percentage of sequences generated by the ground truth that
are accepted by the mined automata. Following [23], we
use the F1-score to measure the overall accuracy, which is
defined as: F1 = 2×Precision×Recall

Precision+Recall . Since automata may have
infinite sequences when they have loop transitions, to obtain
accurate precision, recall and F1-score, we follow the similar
strategies used in previous works [23], [40], [41] to generate
the sequences. We set the maximum number of generated
sentences to 10,000 with minimum coverage of each transition
to be 20 in the generated traces [23] and restrict the length
of the traces to twice the number of transitions [25] in the
ground-truth models that have been formalized by the Azure
benchmark or manually constructed by ourselves. In addition,
for RQ1, we divide the transaction data into a training and a
test set, where we mine the model from contract executions in
the training set. We use another accuracy metric, denoted as
Acc, to measure how many percentages of contract executions
in testing set are accepted by the mined model.

C. Experiment Setup

All experiments were conducted on an Ubuntu 20.04.1
LTS desktop equipped with an Intel Core i7 16-core
processor and 32 GB of memory. The ground truth,

benchmark contracts, and raw results are available at:
https://sites.google.com/view/smcon/.

D. RQ1. Effectiveness of SMCON

To answer RQ1, we compared SMCON with five baseline
approaches. K-tail [24] learns an automaton from prefix trees
of traces by merging nodes with the same ‘tail’ of length k.
We evaluated its two settings, 1-TAIL when k = 1 and 2-TAIL
when k = 2. SEKT [25] is a type of state-enhanced k-tail,
which extends k-tail using program state information inferred
from the full set of observed executions. We also evaluated
its two settings, SEKT-1 when k = 1 and SEKT-2 when
k = 2. CONTRACTOR++ [42], [25] creates finite state machine
models exclusively based on program invariants inferred from
the observed executions. To the best of our knowledge, there
exists only one other approach to mine state machine models
from smart contract executions, by Guth et al. [43]. However,
their tool was not available for comparison at the time of
writing. We will discuss this related work and compare with it
in Sect. VI.

The original benchmark contracts do not always satisfy
the specifications that come with them, which has also been
revealed by a previous study [19]. For a fair comparison with
the other approaches, we manually repaired these issues and
also reported them to the developer [44], [45], [46], [47].
For instance, SimpleMarketplace is a contract application that
implements a workflow for a simple transaction between an
owner and a buyer in a marketplace. SimpleMarketplace has an
AcceptOffer function to allow owner to accept the offer made
by buyers. However, AcceptOffer even succeeds when there is
no offer placed, thus violating its formal specification [47].

Evaluation results. Table III provides a detailed overview
of the comparative performance of various tools, including
our developed tool SMCON, in the domain of smart contract
specification mining. Each row corresponds to a specific smart
contract, with columns showcasing essential metrics such as
the number of state machine models generated (# States), the F-
score (F1), and the accuracy (Acc). The evaluated tools, denoted
as 1-TAIL, 2-TAIL, SEKT-1, SEKT-2, CONTRACTOR++, and
SMCON, allow for a comprehensive analysis of their capabili-
ties in extracting and representing contract specifications. The
variety of contracts considered, ranging from AssetTransfer to
SimpleMarketplace, ensures a diverse and thorough assessment
of each tool’s performance across different use cases. We
do not compare with grammar inference and deep learning
techniques since our preliminary experiments with the minimal-
description-length grammar inference by LearnLib [48] indicate
that grammar inference tends to overgeneralize, having very
poor precision, while deep learning techniques demand a large
volume of training data that is difficult to collect from real-
world transactions.

Upon closer examination of the data, it is evident that
SMCON consistently exhibits competitive performance metrics,
followed by CONTRACTOR++. Notably, in the AssetTransfer
contract, SMCON outperforms CONTRACTOR++ by generating
a state machine model with 13 states, resulting an higher F1

TABLE III: Experiement results on the Azure benchmark.

Contract 1-TAIL 2-TAIL SEKT-1 SEKT-2 CONTRACTOR++ SMCON

States F1 Acc # States F1 Acc # States F1 Acc # States F1 Acc # States F1 Acc # States F1 Acc

AssetTransfer 24 0.52 0.93 40 0.47 0.77 24 0.52 0.93 40 0.47 0.77 13 0.2 1 13 0.34 0.97
BasicProvenance 4 0.72 1 6 0.67 1 4 0.67 1 6 0.7 1 3 0.63 1 3 0.8 1
BazaarItemListing 9 0.94 1 94 0.97 0.84 9 0.94 1 83 0.98 0.87 3 0.89 1 3 1 1
DefectCompCounter 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1
DigitalLocker 18 0.57 0.95 29 0.34 0.94 18 0.57 0.95 29 0.34 0.94 9 0.95 1 10 0.87 1
FreqFlyerRewards 3 1 1 5 1 1 3 1 1 5 1 1 2 1 1 2 1 1
HelloBlockchain 4 1 1 5 1 1 4 1 1 5 1 1 3 1 1 3 1 1
PingPongGame 4 0.77 1 4 0.75 1 4 0.77 1 4 0.75 1 5 0.51 1 4 0.77 1
RefrigTransport 6 0.7 1 8 0.68 1 6 0.7 1 8 0.69 1 5 0.43 1 5 0.69 1
RoomThermostat 5 0.88 1 9 0.88 1 5 0.88 1 9 0.88 1 5 1 1 6 1 1
SimpleMarketplace 5 1 1 6 1 1 5 1 1 6 1 1 4 1 1 5 1 1

Average 7.73 0.83 0.99 19.00 0.80 0.96 7.73 0.82 0.99 18.00 0.80 0.96 5.00 0.78 1.00 5.18 0.86 1.00

0 2createGame

1
3

reveal

close
joinGame

close

Fig. 5: The mined automaton for 0xfair. Note that we exclude
parametric bindings for simplicity.

score of 0.34 with neglectable loss of precision. Across all
contracts, SMCON maintains an average of 5.18 states per
model, an impressive F1 score of 0.86, and nearly perfect
accuracy (1.00). These results highlight the efficacy of SMCON
in accurately capturing the intricacies of smart contract behavior.
The tool’s robust performance, in terms of model compactness,
accuracy and F1 score, distinguishes it from other baseline
approaches, emphasizing its potential as a reliable solution for
specification mining tasks.

In summary, SMCON emerges as a promising tool for
smart contract specification mining, achieving good precision,
recall, and accuracy for around three minutes per contract.
The presented results demonstrate its consistent ability to
generate accurate state machine models across a diverse set of
contracts. The high average F1 score and accuracy substantiates
effectiveness in capturing the intended behavior of smart
contracts. These results establish SMCON as a valuable resource
for researchers and practitioners in search of a dependable and
adaptable tool for real-world smart contract analysis.

E. RQ2. Experiment Results on Real-world Smart Contracts

Table IV illustrates the automata mining results of SMCON
on six real-world DApp contracts. The model complexity
of specifications mined varies a lot. CryptoKitties has the
simplest model with two states and three transitions. The model
can be interpreted as a regular language “(createAuction →
bid | cancelAuction)∗”, where each active auction accepts only
one bid. Figure 5 shows the specifications mined for 0xfair,2

which perfectly articulates the usage scenarios of a Rock-Paper-
Scissor game. 0xfair employs a seal mechanism to achieve
fairness where nobody can cheat on others. First, the creator
encrypts his choice and publicizes the choice proof, namely,
the corresponding cryptographic signature, when creating a
game via createGame. Naturally, the second player joins this

2https://etherscan.io/address/0xa8f9c7ff9f605f401bde6659fd18d9a0d0a802c5

0 25 50 75 100
0

20

40

60

Mythril-SMCon

Mythril-Random

(a) CryptoKitties
0 25 50 75 100

0

10

20

30

Mythril-SMCon

Mythril-Random

(b) CryptoPunks
0 25 50 75 100

0

10

20

Mythril-SMCon

Mythril-Random

(c) SupeRare

0 25 50 75 100
0

10

20

30

40

Mythril-SMCon

Mythril-Random

(d) MoonCatRescue
0 25 50 75 100

20

40

Mythril-SMCon

Mythril-Random

(e) 0xfair
0 25 50 75 100

0

20

40

Mythril-SMCon

Mythril-Random

(f) Dicether

Fig. 6: Opcode coverage achieved with the number of function
call sequences used. The x-axis and y-axis indicate the number
of function call sequence and the percentage of opcode
coverage, respectively.

game with an explicit choice via joinGame. Finally, the creator
reveals his choice by decrypting the choice with the secret
key, which is used to determine the game winner. In addition,
a game should be closed when it expires, because no other
players join or the creator fails to reveal the choice.

The remaining four DApps have more complex models,
which we omit due to limited space. We manage to assess
these mined models through their existing test suites. We first
re-ran all the test cases for each DApp and found that many
test cases failed. For example, MooncatRescue has 1,119 test
cases, with 993 passing and 126 failing mostly due to VM error
messages slightly unmatched with the expected. Next, we were
able to construct their ground truth specifications manually,
where two of the authors spent two hours per smart contract
individually. In particular, we ensured that the tested behaviors
must be included in the ground-truth specifications and added
any additional untested behaviors clearly documented. Because
the transaction data used is collected from an uncontrolled
blockchain environment, the diversity of historical usage
behaviors have a considerable impact on the mined model.
Our study shows that GameChannel achieved the highest
precision of 93.1 % and recall of 97.9 %, respectively, while
SupeRare scored the second highest recall of 96.1 % for
SupeRare, followed by CryptoPunks achieving 80.7 %, and
MoonCatRescue achieved the second highest precision of
85.6 %. Therefore, we believe our mined models for real-

https://etherscan.io/address/0xa8f9c7ff9f605f401bde6659fd18d9a0d0a802c5

TABLE IV: Experiment results on real-world DApp contracts.

Description
Mined Opcode Coverage Number of Issues

Specifications Mythril-Random Mythril-SMCon Statistics Mythril-Random Mythril-SMCon Statistics

#State #Tran. Avg. Var. Avg. Var. p-value Â12 Avg. Var. Avg. Var. p-value Â12

CyptoKitties kitty auction 2 5 68.20% 0.0016 70.21% 0.0214 0.3785 0.6667 4.5 0.3 6.5000 7.5000 0.0677 0.6667
CryptoPunks punk market 20 81 23.72% 0.0003 35.72% 0.0162 0.0345 0.8333 1 0.4 1.3333 0.6667 0.2243 0.6389
SupeRare art market 15 88 24.58% 0 28.12% 0.0130 0.2415 0.3333 0 0 0.3333 0.2667 0.0873 0.6667
MoonCatRescue cat adoption 18 70 18.88% 0.0003 38.76% 0.0028 0.0001 1 1 0 1 0 NA 0.5000
0xfair RPS game 4 5 46.11% 0.0003 50.09% 0.0000 0.0011 1 4 0 5 0 NA 1
Dicether bet game 8 16 50.83% 0.0022 32.99% 0 0.0001 0 4 0.8 3 0 0.0204 0.1667

Average 38.72% 0.0008 42.65% 0.0089 0.1093 0.6389 2.4167 0.25 2.8611 1.4056 0.1000 0.6065

world DApp contracts shall capture widely-used high-level
program specifications, which can be used to enhance DApp
development, e.g., uncovering issues of DApp document and
test suites.

We study the effectiveness of the resulting automata for
symbolic analysis of smart contracts. Unlike testing, symbolic
analysis often yields a more comprehensive security report
by effectively exploring multiple program paths at once.
Nevertheless, symbolic analysis may face path explosion
problem, which largely affects its performance. In Table IV, we
compare two usages of the state-of-the-art industrial symbolic
analysis tool named Mythril [49]—by providing randomly
generated function call sequences, i.e., Mythril-Random, and
by providing function call sequences generated from automata
specifications minded by SMCON, i.e., Mythril-SMCON. For
each contract, we cap the length of function call sequences
to be five, the time budget to be one hour while the timeout
of symbolic execution of a function call sequence is set to 10
minutes. For reliable comparison, we repeated such symbolic
analysis process six times per contract. Notice, for contract
functions absent in our mined automata, we perform random
selection and insert the selected ones into the function call
sequence generated by the model.

Smart contracts are compiled into opcodes executable on
the Ethereum Virtual Machine. Table IV shows the opcode
coverage achieved and the number of issues reported by Mythril-
Random and Mythril-SMCON. At first glance, most of the code
coverage statistics seem low. This is partly because we only
test the public contract functions that could alter program states
while leaving untested the other view functions that only access
program states. The timeout setting also has an impact on this,
and we will explain it later. Overall, Mythril-SMCON achieves
42.65 % code coverage and finds around 3 issues per contract,
which is more than what Mythril-Random achieves. Note, the
issues reported by Mythril are often considered as warnings
for developers to check, which may not always reflect real
vulnerabilities. In detail, Mythril-SMCON outperforms Mythril-
Random in all cases except Dicether. Moreover, Mythril-
SMCON is proved more likely to explore new program paths,
since Mythril-SMCON displays a larger variance of the code
coverage than Mythril-Random except 0xfair and Dicether. Our
further investigation shows that Dicether has two preparation
functions to execute before any game-related operations, which
are not included in the mined automata, but such problem can
be mitigated using dependency analysis [50]. For 0xfair, the

program path constraints are too complicated to solve within
the given timeout, which will be illustrated in Fig. 7. We also
perform statistics analysis using Mann Whitney U-test to show
the significance level of the experiment result and Vargha and
Delaney’s A12 statistical test to determine the extent to which
Mythril-SMCON outperforms Mythril-Random. The results
in Table IV indicate that in terms of code coverage or number
of issues reported, Mythril-SMCON usually performs better
than Mythril-Random in 4 out of 6 cases, with resulting Â12

scores exceeding 0.6 and p-values being smaller than or close
to a significance level of 0.05. We also delve into how SMCON
promote efficiency of symbolic analysis in achieving good
opcode coverage with much less function call sequences. As
shown in Fig. 6, except Dicether, SMCON helps Mythril reach
a higher opcode coverage with less number of function call
sequences compared to its random counterpart, highlighting
the usefulness of the specifications mined. We acknowledge
that there are many studies that improve fuzzing effectiveness
by incorporating valuable feedback information from static
analysis [51] and dynamic analysis [50], [52]. The high-level
behavior automata mined by SMCON align with this field and
complement these existing fuzzing tools.

To speed up symbolic analysis, we could also enforce
the trace slice setting by fixing trade session parameter,
e.g., gameId, to a constant because most trade sessions are
homogeneous, non-interleaving and symbolic analysis of a trade
session should suffice. To investigate this impact, we sampled
the function call sequences derived from the mined automata of
the DApp contracts where each sequence represents a particular
trade scenario. Figure 7 draws the overall time consumptions
for default and trace slice setting, where for each setting, we
symbolically execute each sequence five times. Trace slice
setting takes smaller time for all cases except CryptoKitties,
where MoonCatRescue has 56% speedup, followed by 0xfair’s
36%.

In summary, the automata infered by SMCON about high-
level program behaviors is critical to reduce the burden of
symbolic analysis for complicated smart contracts, and it can
complement existing speedup techniques, such as predicting
unsatisfiable symbolic path with machine learning models [53].

F. RQ3. Implications in DApp Development

Outdated Documentation. Management of documentation and
ensuring its consistency with contract implementation is often
labor-intensive. For instance, Dicether is a gambling game

R
un

tim
e

ov
er

he
ad

 (s
ec

on
ds

)

0

500

1000

1500

2000

2500

CyptoKittie
s

CryptoPunks

SupeRare

MoonCatRescue
0xfair

Dicether

Default (w/o Trace Slice) with Trace Slice

Fig. 7: Time consumption of symbolic analysis with or without
enforcing trace slicing.

running on Ethereum, first launched in 2018. We investigated
and collected eight contract versions of Dicether so far from
DAppRadar [3] and Etherscan [4] where maintenance occurs
the most in its first year and each contract version lived for
about two months on average. By differentiating between
these contract versions, we found some contract maintainence
performs only routine tasks, e.g., minimal patching for security
and reliability considerations. In contrast, some maintenance
updates introduce substantial changes to business logics. When
comparing its first contract version3 with the seventh contract
version,4 we noticed function renaming changes, e.g., play-
erCancelActiveGame to userCancelActiveGame. Additionally,
for the original contract version, the server user or normal
player cannot perform any operation until a created game
session is accepted. However, this business logic was removed
in the seventh contract version. Yet, the only formal docu-
mentation [33] of the Dicether design is outdated and can
no longer reflect the program behaviors of the recently used
contract versions. To summarize, we believe SMCON could
mine high-level automata for evolving smart contracts that can
facilitate developers to track new changes easily and maintain
high-quality documentation.

Test Suite Bias. Developing test suites for smart contracts
is non-trivial since developers usually have little knowledge
of how smart contracts are used after contract deployment
to blockchains, thus crafting test cases for functions that are
rarely used could waste human efforts and missing test cases for
functions that are heavily used could leave a room for security
risks. For example, CryptoPunks is one of the earliest examples
of using Non-Fungibale Tokens (NFTs) on Ethereum, which
inspired the ERC-721 standard to some extent. CryptoPunks has
10,000 unique collectible characters called punks, with proof
of ownership stored on Ethereum [54]. To start with, function
getPunk or setInitialOwners of CryptoPunks is called
to assign punks to users. Users can transfer the ownership of a
punk by calling transferPunk. Users can make a bid to a
punk via enterBidForPunk. CryptoPunks has a set of test
suites in its GitHub repository covering seven use scenarios

3https://etherscan.io/address/0xc95d227a1cf92b6fd156265aa8a3ca7c7de0f28e
4https://etherscan.io/address/0xaec1f783b29aab2727d7c374aa55483fe299fefa

such as setting the initial owner(s) of punks or opening a sale for
punks [55]. However, in the existing test suites, there is only one
test case for setInitialOwners, while the other test cases
all focus on setInitialOwner. An interesting observation
is that, based on transaction histories, the contract manager
always use setInitialOwners to initialize a batch of
punks for a group of owners instead of setInitialOwner
for individual assignment. Our mined automata highlights this
disproportional focus on rarely used functions, while inadequate
tests were written for more frequently used functionalities. For
example, it may be expected to test setInitialOwners
whether a punk assigned to one owner can be wrongly
overwritten by a succeeding owner in the same group, which
is indeed not enforced in the current contract implementation.

Threats to validity. An internal threat is potential errors
in the manually derived ground truth for DApp contract
specifications. To mitigate this, we collected well-documented
smart contracts from popular DApp projects and re-ran their test
suites. Additionally, our tool implementation and experimental
scripts might contain bugs. Two authors closely collaborated
on the tool and reviewed the code regularly. We also checked
for outliers in the results, uncovering and fixing a few bugs.
Externally, our findings may not generalize to all DApp smart
contracts. To address this, we selected representative DApps
from various application domains.

VI. RELATED WORK

Smart Contract Specification Mining. Several tools have been
developed for mining smart contract specifications, which can
be categorized into low-level functional specifications [56], [57],
[58], [10], [34] and high-level behavioral specifications [43].
SolType [56] focuses on Solidity smart contracts, allowing
developers to add refinement type annotations for static
analysis of arithmetic operations. While it effectively detects
issues like integer overflows, it is limited to contract-level
arithmetic invariants. Cider [57] extends SolType by using deep
reinforcement learning to infer contract invariants, but these
remain unverified. SmartInv [58] takes a multimodal learning
approach to infer invariants that identify hard-to-detect bugs.
InvCon [10] and InvCon+ [34] infer invariants from blockchain
transactions, with VeriSol [19] verifying their correctness.
However, these tools only infer invariants at function boundaries
and do not capture higher-level state transitions.

Guth et al. [43] mine specifications by slicing transaction
histories into independent sequences and constructing a finite
state machine (FSM) based on data dependencies. Our approach
differs in two key ways: (1) we use test suite-based contract
interaction patterns for more precise slicing, and (2) we
mine extended finite state machines (EFSM), which are more
expressive than traditional FSMs.

Automata Mining. Automata mining has a rich history [22],
[23], [20], [25], [59], [24], [26], [60]. Traditional approaches,
such as grammar inference [61] and counterexample-guided
abstraction refinement (CEGAR) [21], have been applied to
learn behavioral models of systems. Aarts et al. [20] built on the

https://etherscan.io/address/0xc95d227a1cf92b6fd156265aa8a3ca7c7de0f28e
https://etherscan.io/address/0xaec1f783b29aab2727d7c374aa55483fe299fefa

L* algorithm [62] to generate restricted EFSMs from dynamic
execution traces. RPNI-MDL [22] merges states based on the
minimum description length principle, but only works with
positive traces. The k-tail algorithm [24] and its extensions [26],
[25] merge states based on trace suffixes and incorporate input
predicates to capture data relations. Krka et al. [25] developed
TEMI to mine more complex EFSMs, while Synoptic [60]
uses temporal invariants before applying k-tail.

Other methods such as CONTRACTOR++ [42], [25] infer
FSMs from program invariants, and Le and Lo [23] use deep
learning for automata specification generation. Despite the
success of these techniques, smart contract specification mining
presents unique challenges, particularly the dynamic, stateful
environment of real-world smart contracts. The interaction
between users and the system, reflected in transaction histories,
requires specialized techniques like trace slicing to extract
meaningful specifications. This complexity differentiates smart
contract mining from traditional mining approaches.

VII. CONCLUSION

In this paper, we have formally defined the specification
mining problem for smart contracts and proposed a CEGAR-
like approach to mine automata specifications based on past
transaction histories. The mined specifications capture not only
the allowed function invocation sequences, but also the inferred
program invariants describing contract semantics precisely.
Such contract specifications are useful in contract understand-
ing, testing, verification, and validation. Our evaluation results
show that our tool, SMCON, mines specifications accurately and
efficiently; it may also be used to enhance symbolic analysis
for smart contracts and facilitate developer in maintaining
high-quality document and test suites.

ACKNOWLEDGEMENT

We thank all the anonymous reviewers for their constructive
feedback on this work. This work was supported by the
Nanyang Technological University Centre for Computational
Technologies in Finance (NTU-CCTF). Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of NTU-CCTF.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

[2] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.

[3] “Dappradar,” https://dappradar.com/, 2023.
[4] “Etherscan,” https://etherscan.io, 2023.
[5] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review

of automated analysis tools on 47,587 Ethereum smart contracts,” in
Proceedings of the ACM/IEEE 42nd International conference on software
engineering, 2020, pp. 530–541.

[6] “EIP-20: A standard interface for tokens,” https://eips.ethereum.org/EIPS/
eip-20, 2015.

[7] T. Chen, Y. Zhang, Z. Li, X. Luo, T. Wang, R. Cao, X. Xiao, and
X. Zhang, “TokenScope: Automatically detecting inconsistent behaviors
of cryptocurrency tokens in ethereum,” in Proceedings of the 2019 ACM
SIGSAC conference on computer and communications security, 2019,
pp. 1503–1520.

[8] K. Qin, L. Zhou, B. Livshits, and A. Gervais, “Attacking the DeFi
ecosystem with flash loans for fun and profit,” in International Conference
on Financial Cryptography and Data Security. Springer, 2021, pp. 3–32.

[9] J. Jiao, S. Kan, S.-W. Lin, D. Sanan, Y. Liu, and J. Sun, “Semantic
understanding of smart contracts: Executable operational semantics of
Solidity,” in 2020 IEEE Symposium on Security and Privacy (SP). IEEE,
2020, pp. 1695–1712.

[10] Y. Liu and Y. Li, “InvCon: A dynamic invariant detector for Ethereum
smart contracts,” in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Oct. 2022.

[11] H. Wang, Y. Li, S.-W. Lin, L. Ma, and Y. Liu, “VULTRON: Catching
vulnerable smart contracts once and for all,” in Proceedings of the
41st International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER). IEEE Press, 5 2019, pp. 1–4.

[12] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev, “Verx: Safety verification of smart contracts,” in 2020 IEEE
symposium on security and privacy (SP). IEEE, 2020, pp. 1661–1677.

[13] Y. Liu, Y. Li, S.-W. Lin, and R. Zhao, “Towards automated verification of
smart contract fairness,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020, pp. 666–677.

[14] A. Li, J. A. Choi, and F. Long, “Securing smart contract with runtime
validation,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2020, pp. 438–453.

[15] A. Mavridou and A. Laszka, “Designing secure ethereum smart contracts:
A finite state machine based approach,” in International Conference on
Financial Cryptography and Data Security. Springer, 2018, pp. 523–540.

[16] ——, “Tool demonstration: FSolidM for designing secure Ethereum
smart contracts,” in International conference on principles of security
and trust. Springer, 2018, pp. 270–277.

[17] Y. Liu, Y. Li, S.-W. Lin, and Q. Yan, “ModCon: A model-based testing
platform for smart contracts,” in Proceedings of the 28th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (FSE), Nov. 2020.

[18] A. Mavridou, A. Laszka, E. Stachtiari, and A. Dubey, “VeriSolid: Correct-
by-design smart contracts for Ethereum,” in International Conference
on Financial Cryptography and Data Security. Springer, 2019, pp.
446–465.

[19] Y. Wang, S. K. Lahiri, S. Chen, R. Pan, I. Dillig, C. Born, I. Naseer, and
K. Ferles, “Formal verification of workflow policies for smart contracts in
azure blockchain,” in Working Conference on Verified Software: Theories,
Tools, and Experiments. Springer, 2019, pp. 87–106.

[20] F. Aarts, F. Heidarian, H. Kuppens, P. Olsen, and F. Vaandrager, “Au-
tomata learning through counterexample guided abstraction refinement,”
in International Symposium on Formal Methods. Springer, 2012, pp.
10–27.

[21] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in International Conference on Computer
Aided Verification. Springer, 2000, pp. 154–169.

[22] C. De la Higuera, Grammatical inference: learning automata and
grammars. Cambridge University Press, 2010, vol. 24, no. 3-4.

[23] T.-D. B. Le and D. Lo, “Deep specification mining,” in Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2018, pp. 106–117.

[24] A. W. Biermann and J. A. Feldman, “On the synthesis of finite-
state machines from samples of their behavior,” IEEE transactions on
Computers, vol. 100, no. 6, pp. 592–597, 1972.

[25] I. Krka, Y. Brun, and N. Medvidovic, “Automatic mining of specifications
from invocation traces and method invariants,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2014, pp. 178–189.

[26] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic generation of
software behavioral models,” in Proceedings of the 30th international
conference on Software engineering, 2008, pp. 501–510.

[27] S. Graf and H. Saidi, “Construction of abstract state graphs with PVS,”
in Computer Aided Verification, vol. 97, 1997, pp. 72–83.

[28] “Daikon,” http://plse.cs.washington.edu/daikon/, 2021, the Daikon invari-
ant detector.

[29] C. Lee, F. Chen, and G. Roşu, “Mining parametric specifications,”
in Proceedings of the 33rd International Conference on Software
Engineering, 2011, pp. 591–600.

[30] S. M. Beillahi, G. Ciocarlie, M. Emmi, and C. Enea, “Behavioral
simulation for smart contracts,” in Proceedings of the 41st ACM SIGPLAN

https://dappradar.com/
https://etherscan.io
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
http://plse.cs.washington.edu/daikon/

Conference on Programming Language Design and Implementation, 2020,
pp. 470–486.

[31] K.-T. Cheng and A. S. Krishnakumar, “Automatic functional test
generation using the extended finite state machine model,” in 30th
ACM/IEEE Design Automation Conference. IEEE, 1993, pp. 86–91.

[32] P. Chauhan, E. Clarke, J. Kukula, S. Sapra, H. Veith, and D. Wang,
“Automated abstraction refinement for model checking large state spaces
using sat based conflict analysis,” in International Conference on Formal
Methods in Computer-Aided Design. Springer, 2002, pp. 33–51.

[33] “Dicether: A secure dice game,” https://dicether.github.io/paper/paper.pdf,
2018.

[34] Y. Liu, C. Zhang et al., “Automated invariant generation for solidity
smart contracts,” arXiv preprint arXiv:2401.00650, 2024.

[35] L. d. Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337–340.

[36] “SuperRare,” https://www.dapp.com/app/SuperRare, 2022.
[37] “MoonCatRescue,” https://dappradar.com/ethereum/games/

mooncatrescue, 2022.
[38] “Quicknode,” https://www.quicknode.com/, 2023.
[39] D. Lo and S.-C. Khoo, “Quark: Empirical assessment of automaton-

based specification miners,” in 2006 13th Working Conference on Reverse
Engineering. IEEE, 2006, pp. 51–60.

[40] T.-D. B. Le, X.-B. D. Le, D. Lo, and I. Beschastnikh, “Synergizing
specification miners through model fissions and fusions (t),” in 2015 30th
IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 2015, pp. 115–125.

[41] D. Lo, L. Mariani, and M. Santoro, “Learning extended fsa from software:
An empirical assessment,” Journal of Systems and Software, vol. 85,
no. 9, pp. 2063–2076, 2012.

[42] G. De Caso, V. Braberman, D. Garbervetsky, and S. Uchitel, “Automated
abstractions for contract validation,” IEEE Transactions on Software
Engineering, vol. 38, no. 1, pp. 141–162, 2010.

[43] F. Guth, V. Wüstholz, M. Christakis, and P. Müller, “Specification mining
for smart contracts with automatic abstraction tuning,” arXiv preprint
arXiv:1807.07822, 2018.

[44] “Bug report in defective-component-counter smart contract,” https://
github.com/Azure-Samples/blockchain/issues/278, 2024.

[45] “Bug report in digital-locker smart contract,” https://github.com/
Azure-Samples/blockchain/issues/279, 2024.

[46] “Bug report in hello-blockchain smart contract,” https://github.com/
Azure-Samples/blockchain/issues/280, 2024.

[47] “Bug report in simple-marketplace smart contract,” https://github.com/
Azure-Samples/blockchain/issues/281, 2024.

[48] “LearnLib–an open framework for automata learning,” https://learnlib.de/,
2022.

[49] “Mythril,” https://github.com/ConsenSys/mythril, 2019, a Security Anal-
ysis Tool for EVM Bytecode.

[50] H. Wang, Y. Liu, Y. Li, S.-W. Lin, C. Artho, L. Ma, and Y. Liu,
“Oracle-supported dynamic exploit generation for smart contracts,” IEEE
Transactions on Dependable and Secure Computing, vol. 19, no. 3, pp.
1795–1809, 2020.

[51] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna: effective,
usable, and fast fuzzing for smart contracts,” in Proceedings of the 29th
ACM SIGSOFT international symposium on software testing and analysis,
2020, pp. 557–560.

[52] C. Shou, S. Tan, and K. Sen, “Ityfuzz: Snapshot-based fuzzer for smart
contract,” in Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2023, pp. 322–333.

[53] M. Yang, D. Lie, and N. Papernot, “Exploring strategies for guiding
symbolic analysis with machine learning prediction,” in 2024 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2024, pp. 659–669.

[54] “Cryptopunks,” https://www.larvalabs.com/cryptopunks/, 2023.
[55] “CryptoPunks: Collectible characters on the Ethereum blockchain,” https:

//github.com/larvalabs/cryptopunks/tree/master/test, 2017.
[56] B. Tan, B. Mariano, S. K. Lahiri, I. Dillig, and Y. Feng, “Soltype:

refinement types for arithmetic overflow in solidity,” Proceedings of the
ACM on Programming Languages, vol. 6, no. POPL, pp. 1–29, 2022.

[57] J. Liu, Y. Chen, B. Tan, I. Dillig, and Y. Feng, “Learning contract
invariants using reinforcement learning,” in Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering,
2022, pp. 1–11.

[58] S. J. Wang, K. Pei, and J. Yang, “Smartinv: Multimodal learning for
smart contract invariant inference,” in 2024 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 2024, pp. 126–126.

[59] N. Walkinshaw, R. Taylor, and J. Derrick, “Inferring extended finite
state machine models from software executions,” Empirical Software
Engineering, vol. 21, no. 3, pp. 811–853, 2016.

[60] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst,
“Leveraging existing instrumentation to automatically infer invariant-
constrained models,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software
engineering, 2011, pp. 267–277.

[61] E. M. Gold, “Language identification in the limit,” Information and
control, vol. 10, no. 5, pp. 447–474, 1967.

[62] D. Angluin, “Learning regular sets from queries and counterexamples,”
Information and computation, vol. 75, no. 2, pp. 87–106, 1987.

https://www.dapp.com/app/SuperRare
https://dappradar.com/ethereum/games/mooncatrescue
https://dappradar.com/ethereum/games/mooncatrescue
https://www.quicknode.com/
https://github.com/Azure-Samples/blockchain/issues/278
https://github.com/Azure-Samples/blockchain/issues/278
https://github.com/Azure-Samples/blockchain/issues/279
https://github.com/Azure-Samples/blockchain/issues/279
https://github.com/Azure-Samples/blockchain/issues/280
https://github.com/Azure-Samples/blockchain/issues/280
https://github.com/Azure-Samples/blockchain/issues/281
https://github.com/Azure-Samples/blockchain/issues/281
https://learnlib.de/
https://github.com/ConsenSys/mythril
https://www.larvalabs.com/cryptopunks/
https://github.com/larvalabs/cryptopunks/tree/master/test
https://github.com/larvalabs/cryptopunks/tree/master/test

	Introduction
	Background
	Approach at a Glance
	Contract Specification Mining
	Trace Slicing
	Predicate Discovery from Dynamic Invariants
	Automata Construction

	Implementation and Evaluation
	Implementation
	Methodology
	Experiment Setup
	RQ1. Effectiveness of SmCon
	RQ2. Experiment Results on Real-world Smart Contracts
	RQ3. Implications in DApp Development

	Related Work
	Conclusion
	References

