
SpecGen: Automated Generation of Formal
Program Specifications via Large Language Models

Lezhi Ma
Nanjing University

China
lezhima@hotmail.com

Shangqing Liu†
Nanjing University

China
shangqingliu666@gmail.com

Yi Li
Nanyang Technological
University, Singapore

yi li@ntu.edu.sg

Xiaofei Xie
Singapore Management
University, Singapore

xfxie@smu.edu.sg

Lei Bu†
Nanjing University

China
bulei@nju.edu.cn

Abstract—In the software development process, formal pro-
gram specifications play a crucial role in various stages, including
requirement analysis, software testing, and verification. How-
ever, manually crafting formal program specifications is rather
difficult, making the job time-consuming and labor-intensive.
Moreover, it is even more challenging to write specifications
that correctly and comprehensively describe the semantics of
complex programs. To reduce the burden on software develop-
ers, automated specification generation methods have emerged.
However, existing methods usually rely on predefined templates
or grammar, making them struggle to accurately describe the
behavior and functionality of complex real-world programs.

To tackle this challenge, we introduce SpecGen, a novel
technique for formal program specification generation based
on Large Language Models (LLMs). Our key insight is to
overcome the limitations of existing methods by leveraging
the code comprehension capability of LLMs. The process of
SpecGen consists of two phases. The first phase employs a
conversational approach that guides the LLM in generating
appropriate specifications for a given program, aiming to utilize
the ability of LLM to generate high-quality specifications. The
second phase, designed for where the LLM fails to generate
correct specifications, applies four mutation operators to the
model-generated specifications and selects verifiable specifications
from the mutated ones through a novel heuristic selection strategy
by assigning different weights of variants in an efficient manner.
We evaluate SpecGen on two datasets, including the SV-COMP
Java category benchmark and a manually constructed dataset
containing 120 programs. Experimental results demonstrate that
SpecGen succeeds in generating verifiable specifications for 279
out of 385 programs, outperforming the existing LLM-based
approaches and conventional specification generation tools like
Houdini and Daikon. Further investigations on the quality of gen-
erated specifications indicate that SpecGen can comprehensively
articulate the behaviors of the input program.

Index Terms—program verification, specification inference,
large language model

I. INTRODUCTION

Formal specifications play a central role in describing,
understanding, and reasoning about program behaviors. They
capture the intended or actual program behaviors, in terms
of formal languages, with precise semantics. Formal specifi-
cations may take various forms, such as procedure pre-/post-
conditions, loop invariants, and assertions at specific program

† Corresponding author.

locations. They are essential in a variety of software qual-
ity assurance tasks, including software testing [1, 2], model
checking [3, 4], and program verification [5, 6].

Yet, a practical challenge is the absence of documented
formal specifications in most real-world software projects,
since manually writing high-quality specifications is highly
nontrivial. To alleviate the burden on software developers,
several tools have been introduced for generating program
specifications automatically [7, 8, 9], including Houdini [7] and
Daikon [9], two most representative ones for Java programs.
However, these tools rely heavily on predefined templates
or grammars during the specification generation process. As
claimed by Molina et al. [10], the fixed templates involved re-
sult in a limited range of specifications covered, usually yield-
ing overly simplistic specifications that struggle to capture the
complex behaviors and functionalities of real-world programs
accurately. This phenomenon poses non-negligible limitations
for these tools, consequently hindering their applications in
the actual software development process [11, 12, 13].

To address this challenge, we introduce SpecGen, an au-
tomated technique for Java program specification generation
based on the Large Language Models (LLMs). With the rise
of LLMs, extensive research has attempted to apply them in
software engineering and LLMs exhibit outstanding perfor-
mance in various tasks [14, 15, 16, 17, 18], where LLMs have
demonstrated remarkable capabilities on code comprehension
and summarization [19]. Inspired by this insight, we believe
that LLMs can serve as a potent solution to overcome the lim-
itations of existing program specification generation methods.
The core idea of this work is to leverage LLMs to generate
specifications that accurately capture the real behaviors of
input programs, thus imbuing these specifications with richer
semantics for further practical use.

The workflow of SpecGen comes in two phases. In the
first phase, conversation-driven specification generation, we
aim to query the output specifications by conducting a con-
versation with the LLM. To start the conversation, a prompt
is constructed with several few-shot examples for the initial
query. During the conversation process, we utilize the veri-
fication failure information from the specification verifier as

the feedback prompt for the next round of the conversation.
In this way, LLMs receive more cues, facilitating them to
better generate accurate specifications. Nevertheless, despite
the powerful code understanding and generation capabilities
of large language models, they still struggle to handle complex
programs effectively i.e., generating accurate specifications
for complex programs. Through our repeated observation and
testing of the model-generated results, we found that although
the generated content is not highly accurate, it is already very
close to the oracle, which motivates us to design the second
phase, mutation-based specification generation. It focuses on
generating accurate specifications where the LLM fails to
provide verifiable results. Specifically, given a verification
failure result by the LLM, SpecGen endeavors to combine
four different kinds of mutation operators to modify it and
obtain all potential variants. A selector adopting a heuristic
selection strategy by assigning different weights of variants
further repeatedly chooses a subset of these mutated variants
deemed most likely to pass the verification until the results
are successfully verified.

To evaluate SpecGen, we conduct experiments on two
datasets. We first evaluate SpecGen on the benchmark for
the Java category of SV-COMP [20]. To further evaluate the
performance of SpecGen on different kinds of programs, we
constructed another dataset containing 120 Java programs with
manually written ground-truth specifications. The selected
programs are highly representative, encompassing different
control-flow structures and various data structures to avoid
any bias in our evaluation. We compared the performance
of SpecGen on the dataset against multiple baselines. The
results of our evaluation demonstrate that SpecGen signifi-
cantly outperforms the baseline methods. SpecGen success-
fully generated verifiable specifications for 279 out of the
total 385 programs, outweighing 247 for AutoSpec [21], the
best-performing LLM-based approach, and 98 for Houdini,
the best-performing non-LLM method. An ablation study on
mutations was also conducted, proving the effectiveness of all
four types of mutation operators. Additionally, the results of
evaluations on the heuristic selection strategy suggested that
our strategy effectively improves the efficiency of SpecGen
compared to the random selection strategy. Furthermore, a user
study was conducted to evaluate the semantic quality of the
generated specifications, illustrating the ability of SpecGen to
accurately and comprehensively characterize program behav-
iors. The main contributions are summarized as follows:

• A novel approach for formal program specification gen-
eration and corresponding prototype tool [22], leveraging
the Large Language Models to generate accurate and com-
prehensive specifications to describe program behaviors.
Benefiting from the code comprehension ability of LLMs,
our approach is capable of generating specifications with
high quality, overcoming the limitations of existing methods
in generating simplistic and basic specifications.

• A mutation-based generation approach to enrich the diver-
sity of the LLM output, consisting of a set of mutation

operators and a novel heuristic selection strategy proposed
to improve the efficiency of the verification that existing
works fail to consider.

• A dataset named SpecGenBench, with hand-written speci-
fications by experts, facilitating follow-up research. Other
than the established benchmark SV-COMP, we collected
programs on a more diverse spectrum for deeper insights.

• A comprehensive evaluation to evaluate our approach in all
aspects. We compare SpecGen against Purely LLM-based
approaches and representative non-LLM approaches. Spec-
Gen succeeds in 279 out of the 385 programs, significantly
outperforming the baseline approaches.

II. BACKGROUND AND MOTIVATION

A. Specification Generation and Verification

Program specifications encompass precise statements that
describe the intended or actual behaviors of a particular
program, either in its entirety or in distinct parts. In this
work, we focus on generating specifications for the actual
behaviors of input programs. A large proportion of program
specifications are expressed in formal languages, such as
mathematical expressions to describe the constraints on the
behaviors of a program. There are different kinds of speci-
fications such as pre-conditions, which establish constraints
on function parameters, ensuring proper execution of the
function, post-conditions, which delineate the properties of
a set of variables that persist after a function is executed,
and loop invariants, which represent a specialized form of
specification, detailing properties that consistently hold before
executing the loop body. For different programming languages,
the specifications may have different implementation forms.
For example, in Java, the specifications can be expressed in
Java Modeling Language (i.e., JML) [23] where requires
statements denote the pre-conditions of a function, ensures
statements represent the post-conditions of a function, and
maintaining statements specify the loop invariants.

A series of automated program specification generation
tools have been developed [7, 8, 9, 24, 25] to reduce the burden
on software developers. Two representative works are Hou-
dini [7] and Daikon [9]. Both rely on templates defined by
human experts to generate a massive amount of candidate
specifications, which verifiers then filter to eliminate incorrect
candidate specifications until the remaining candidates are suc-
cessfully verified. In particular, the template usually involves
two or three variables and their corresponding operators i.e.,
<var> <op> <var>, where <var> should be filled in with
variable names and <op> should be an operator. For example,
if a function contains two integer parameters x and y and
an integer return value, Houdini may generate candidate pre-
conditions and post-conditions for this function in the form
of x > y, x < y, \result >= 0, \result <= 0, etc.
where \result is the defined variable denoting the return
value in JML. For a program, all available variables within the
scope such as class members, function parameters, and return
values are taken to generate candidate specifications based
on the defined templates and instrumented into corresponding

Fig. 1: An example program and corresponding specifications generated by SpecGen, for which existing tools cannot generate
comprehensive specifications to describe the program behaviors.

points of the input program to verify the correctness of
the specifications. The main difference between Houdini and
Daikon lies in the design of the verifier where Houdini adopts
a JML specification verifier, OpenJML [26], which is designed
from constraint solving [27] for verifying. Yet, Daikon is
based on the runtime checking which compares each candidate
specification with the runtime execution traces.

B. Motivation

The existing automated program specification generation
tools have limitations hindering real-world deployment and
application. They rely on templates defined by human experts
to generate specifications, which results in simple and trivial
specifications. We present an example program on the left of
Figure 1 for illustration. This program aims to search in the
given integer array for the indexes of two separated elements
of which the sum is exactly the given target value, and is
implemented in two nested loops. If there do not exist such ele-
ments in the array, the program returns an empty array. To fully
articulate the behaviors of the program, such properties must
be specified, where Daikon and Houdini fail. In particular, both
Houdini and Daikon can only generate trivial post-conditions
such as nums != null and \result[i] >= 0 for the
method TwoSum() as a whole. As for the outer-layer loop,
only some simple loop invariants are generated, describ-
ing trivial numerical relationships between variables, such
as i >= 0 and i < arr.length. For the inner-layer
loop, the generated specifications are j >= 1, i < j and
j < nums.length, which are similar to the out-layer.
The generated specifications are too trivial, without detailed
information to accurately capture the program’s functionality.

Recently, large language models (i.e., LLMs) [28, 29] have
exhibited powerful capacities in coding [18, 19]. The emer-
gence of these models may greatly compensate for the limita-
tions of traditional software analysis tools in code understand-
ing. A significant amount of work attempts to leverage large
language models in software engineering [30, 31, 32, 33, 34]
and we have witnessed substantial progress brought about
by the introduction of LLMs. Inspired by these works, in
this work, we aim to leverage the large language models
in the automated generation of formal program specifications
to address the limitations of conventional template-based ap-
proaches. From this perspective, we innovate our approach
SpecGen, which generated three parts of specifications for the
example presented in the right part of Figure 1. The first part is

to describe the method TwoSum() as a whole, specifying its
pre-conditions and post-conditions. The specifications in lines
a and b claim that the input array must not be null before
and after the method is executed. The post-condition in line
c specifies that the target value equals the sum of the two
elements corresponding to the indexes stored in the returned
array. The post-condition at line d specifies that there does
not exist such a pair of elements that satisfies the constraint
when the length of the returned array is zero. These generated
specifications can fully articulate the functionality of method
TwoSum(). Furthermore, the loop invariants in the second
and third parts specify corresponding constraints that must be
met within a certain range in the array. These specifications
generated by SpecGen comprehensively describe the semantics
of this function and their correctness is verifiable.

III. APPROACH

A. Overview

The overview of SpecGen is presented in Figure 2, which
consists of two components i.e., conversation-driven specifica-
tion generation and mutation-based specification generation.
The former is designed to communicate with the large lan-
guage model to query the output in a conversational manner. In
particular, a prompt is constructed with some few-shot exam-
ples for the initial query. The verification failure information
provided by the verifier is further used as the prompt for the
next round of conversation if the model-generated results are
incorrect. The conversation will be repeated iteratively until
the generated specifications successfully pass the verifier or
a maximum number of iterations is reached. The latter aims
at generating the specifications of a program that the large
language model fails to generate. Four kinds of mutation
operators are adopted to mutate the specification that failed
verification by the verifier and obtain all potential variants. A
heuristic selector is further designed to efficiently choose a set
of mutated variants most likely to pass verification.

B. Conversation-Driven Specification Generation

Engaging in conversation with large models can fully
leverage their capabilities, better assisting them in generat-
ing the desired content and avoiding potential errors [35].
Inspired by Xia et al. [15], we propose our conversation-
driven specification generation in SpecGen to interact with
the LLM conversationally to generate specifications. There
are two main benefits: firstly, the conversational manner aids

Specifications

Fail

Input Code

Prompt

VerifierLLM

Conversation

Mutator VerifierSelector

Mutation-based Specification GenerationConversation-Driven Specification Generation

Fig. 2: Overview of our SpecGen.

Assistant:

class InputCode {
//@ spec …….
// ……

}

User: The JML specifications you
generated fail verification with error
information as follows:

Please generate again. To fix such error,
you may consider <Guidance>

InputCode.java: LineNum1: ……
InputCode.java: LineNum2: ……

Fig. 3: Conversational generation.

System: You are a JML specification generator for Java programs.

User: Please generate JML specifications for the Java program given below:

Assistant:

class SampleCode {
// ……

}

class SampleCode {
//@ spec …….
// ……

}

User: Please generate JML specifications for the Java program given below:

class InputCode {
// ……

}

……

Fig. 4: Illustration of the initial prompt construction.
the large model in automatically correcting potential syntax
errors in the generated content, secondly, providing the model
with the verification failures information by the verifier in the
conversation helps it generate more accurate specifications.
The design mainly consists of two sequential components:
initial prompt construction, which pre-defined an initial prompt
to prepare for querying with the LLM, and conversational
specification generation, which communicates to the LLM by
incorporating verification failure information produced by the
verifier in the conversation manner to generate verifiable spec-
ifications. The conversation will be repeated iteratively until
the generated specifications pass the verifier or a maximum
number of iterations is reached.

1) Initial Prompt Construction: We need to define the
initial prompt to query with LLM to obtain the model output.
After multiple attempts to assess the impact of different
prompts on the quality of generated program specifications,
we ultimately chose to follow Xia et al. [36] in designing
our prompt. The prompt is presented in Fig. 4 illustrating
the components of the initial prompt, which consists of three
different parts: the system role, few-shot examples, and the
queried program. The system’s role aims to inform LLMs
about our application scenario, which is to generate JML
specifications. We further add some few-shot examples. The
reasons are two-fold. On one hand, few-shot examples can
help the model to generate more accurate outputs [37]. On
the other hand, LLMs can generate the desired output format
that is learned from these examples. Each example is a pair of
a program and its corresponding specifications. We randomly
select it from our collected dataset to construct the few-shot
examples. The last component is the queried program which
requires the model to generate the output.

2) Conversational Specification Generation: Given the ini-
tial prompt, LLM can obtain the initial output for the input

program. As the output of the LLM in the first attempt may not
successfully pass the validation of the verifier, we interleave
the process of specification generation with verification failure
feedback to prompt future generation in a conversational man-
ner which is illustrated in Fig. 3. In particular, each generated
specification by the model is verified by a JML verifier to
test whether the generated result can pass the verifier. If the
verification fails, we construct feedback information using
the reported error message from the verifier as the prompt
for the next generation. The verification error message can
help the model understand the reason for failure and provide
guidance for generating correct specifications. In addition, to
avoid the verifier providing excessively long error messages,
we configure the verifier to report only one verification failure
message per attempt. Furthermore, through a massive amount
of experiments, we summarize several types of common veri-
fication failures reported by the verifier. For each kind of error,
we provide guidance in the natural language to facilitate the
model in generating correct specifications. Upon encountering
these types of verification failures reported by the verifier, we
will insert corresponding guidance information into the prompt
e.g., <Guidance> in Fig. 3 to assist the model in resolving the
issues. The conversation will be repeated iteratively until the
specifications are successfully verified or a maximum number
of iterations is reached.

C. Mutation-based Specification Generation

In the conversation-driven generation process, some few-
shot examples are provided in the initial prompt to start the
query with the LLM. To further stimulate the potential of the
LLM, multi-turn conversation continually guides the LLM in
approaching the accurate specification more closely. Yet, they
still struggle to generate fully correct specifications for some
complex programs. The reasons are two-fold. On the one hand,
in comparison to code generation [37, 38, 39], specification
generation poses greater challenges for LLMs due to the
limited corpora related to program specifications for the model
to learn from. On the other hand, although the verification
failure information provided by the verifier can assist LLMs
in providing higher-quality responses to some extent, as the
error messages are highly abstract and generalized, LLMs still
struggle to accurately understand the semantic information
within error messages for complex programs. While LLMs
may not accurately generate specifications for complex pro-
grams, the generated results are already highly close to the
oracle, inspiring us to design mutation-based generation.

In particular, the mutation-based specification generation
component takes the output generated by the large language

model that fails to pass the verifier through the multi-round
conversation as the input. We further define a set of mutation
operators to modify these generated outputs to obtain more
diverse results. Then a heuristic strategy is adopted for effi-
cient verification. The workflow is presented in Algorithm 1.
Specifically, we define the specifications generated by LLM
that fail verification as the set of template specifications Et,
which consists of different specifications generated for differ-
ent locations in a program, and a set of mutation operators as
M . The MutationBasedGen takes Et and M as the input
and outputs a set of correct specifications as E. The function
SpecMutation corresponds to the mutation operation of
Et, where each kind of mutation operator will be performed
through the mutation function Mutate() (Section III-C1) on a
template specification e (e ∈ Et) to obtain a set of candidates
Emutated (lines 7 and line 8).

After the mutation operations are performed, we further
design the specification selection algorithm to select a subset
Eselected of mutated specifications that can pass the verifica-
tion. The selected subset Eselected is initialized with Et. We
then iteratively require the verifier to check the correctness of
Eselected and obtain a set of refuted specifications denoted
as Erefuted from Eselected that the verifier fails to verify.
After that, we need to replace the failed specifications from
Erefuted with another mutated variant for the next iteration of
verification. The ReSelect function is presented from line 18
to line 25. For each refuted specification er ∈ Erefuted, we
first remove it from the mutation set Emutated and the selected
set Eselected. Then we replace er with another mutated variant
e that comes from the same family by a heuristic selection
strategy (Section III-C2) from line 22 to line 23. Here the
family refers to a set of mutated specifications Ef that come
from the same template specification. Finally, we add e to
the selected set Eselected to prepare for the next iteration
of verification. The above process will be repeated until all
candidates in Eselected are successfully verified i.e., Erefuted

is empty (line 16). Note that if all candidates are refuted,
the process will finally select an empty set of candidates,
guaranteeing the termination of the whole process.

1) Template Specification Mutation: As shown in Table I,
we define four kinds of mutation operators including pred-
icative, logical, comparative, and arithmetic. Each type of
mutation corresponds to one type of operator supported by
JML. LLMs perform well in formulating the overall syntactical
structure of specifications, but they often make mistakes in
grasping the fine-grained relationships between variables, re-
sulting in incorrect operators used to describe the relationships
between variables, which is why our mutation design is cen-
tered around the operators. A mutation operation substitutes
the operators of the corresponding type in the specification
with another of the same type. For example, after applying a
predicative mutation, a \exists predicate within a specifica-
tion may be substituted with \forall. Note that the mutation
for a certain type of operator does not necessarily create only
one mutated candidate. For example, the expression a <= b
may be mutated to a < b or a - 1 <= b. If multiple

Algorithm 1: Mutation-based Specification Generation
Input : Set of template specification Et, set of mutations M
Output: Set of verified specifications E

1 Function MutationBasedGen(Et,M)
2 Emutated = SpecMutation(Et,M)
3 E = SpecSelection(Emutated, Et,M)
4 return E

5 Function SpecMutation(Et,M)
6 Emutated = ∅
7 for e ∈ Et do
8 Emutated = Emutated ∪ Mutate(e,M)

9 return Emutated

10 Function SpecSelection(Emutated, Et,M)
11 Eselected = Et

12 Erefuted = ∅
13 repeat
14 Erefuted = Verify(Eselected)
15 Eselected = ReSelect(Eselected, Emutated, Erefuted,M)
16 until Erefuted is ∅;
17 return Eselected

18 Function ReSelect(Eselected, Emutated, Erefuted,M)
19 for er ∈ Erefuted do
20 Emutated = Emutated\{er}
21 Eselected = Eselected\{er}
22 Ef = GetFamilyOf(er, Emutated)
23 e = SelectByHeuristic(Ef ,M)
24 Eselected = Eselected ∪ {e}

25 return Eselected

TABLE I: The defined mutation operators.

Mutation Type Original Operator Mutated Operators

Predicative \forall \exists
\exists \forall

Logical

&& ∥
∥ &&

<==> <==, ==>
==> <==
<== ==>

Comparative

<= <, ”- 1 <=”
>= >, ”+ 1 >=”
< <=
> >=
== !=
!= ==

Arithmetic + -
- +

mutations can be applied to a specification at the same time,
we try to exhaust each combination of different types of
mutations to get all potential variants. Since the set of all
potential variants of a certain template is determined, the
exhaustive searching process is deterministic. For instance,
the expression x < n + 1 can be mutated to x <= n + 1
from the comparative type, x < n - 1 from the arithmetic
type, or x <= n - 1 by combining them.

2) Mutated Specification Selection: Typically, for a pro-
gram, Houdini [7] verifies all generated specifications at one
time. However, similar practice cannot be applied in SpecGen
as we exhaust all potential combinations of mutations for a
template specification. The set of the obtained specifications
for verification is considerably large, posing a much greater
burden for the verifier within a single verification process.
To address this challenge, we innovate a heuristic selection
strategy to improve the stability and efficiency of verification.

In general, the heuristic selection algorithm finds a specifi-

cation ê such that

ê = argmax
e∈Ef

∑
m∈M

(times(m, e, et) · weight(m)) (1)

where Ef denotes a family of mutated specifications that come
from the same template specification et, and M denotes the set
of all mutations. Given Ef , et, and M , we design the heuristic
selection logic to prioritize selecting important candidates for
verification. In particular, we assign scores for each mutated
candidate e ∈ Ef and select the candidate with the highest
score as the output. To calculate the score of a candidate
e, for all types of mutations m ∈ M , we sum up all the
values of times(m, e, et) multiplied by weight(m), where
times(m, e, et) calculates how many times the mutation m
is performed when et mutates into e, and weight(m) denotes
the corresponding weight of m.

IV. EXPERIMENTAL SETUP

We design the following four research questions for evalu-
ation:
• RQ1: How does SpecGen compare with the baseline ap-

proaches?
• RQ2: How does each type of mutation contribute to the

effectiveness of SpecGen?
• RQ3: How do different candidate selection strategies affect

the efficiency of SpecGen?
• RQ4: To what extent can the generated specification contain

the semantic information of the input program?

A. Implementation

We use the API provided by OpenAI [40] to communicate
with the large language model of gpt-3.5-turbo-1106
for the experiments. Temperature is set to 0.4 to balance the
diversity and rigorousness of the outputs of GPT. 4 few-
shot examples are used during the prompt construction to
balance the input length and response time. The maximum
number of rounds of conversation is set to 10. The verifier is
OpenJML [26], the most recent JML specification verification
tool to check the consistency between Java source code and
JML specifications. Due to the incompleteness in the imple-
mentations of OpenJML, we set a timeout limit of 30 minutes
for a single verification in our implementation to avoid unex-
pected situations, such as the non-responding of OpenJML. All
experiments are conducted on an 8-core workstation with Intel
Core i7-12700H CPU @2.30GHz and 32GB RAM, running
Ubuntu 22.04.3 LTS. The version of OpenJDK is 1.8.0 371
for all experiments except for Houdini, which has to run
under OpenJDK 1.6.0 45. We set the weight of comparative,
logical, arithmetic, and predicative mutation to -1, -2, -4, and
-4 respectively as the comparative mutation is more likely to
pass the verification followed by the logical mutation. The
predicative and arithmetic mutations are the least important
through our observations from extensive experiments. Note
that the weights are defined with negative values, leading to
negative calculated scores as well. The reason for the design is
to prioritize the specification candidates with fewer mutations.

B. Dataset
To comprehensively evaluate the effectiveness of SpecGen,

following previous work [41], we first use an established
dataset, the benchmark of SV-COMP [20], for evaluation.
Specifically, we used 265 class definitions in the Java cat-
egory of SV-COMP benchmark and conducted the necessary
modifications on part of these programs (referred to as Dataset
SV-COMP hereinafter) for ease of evaluation. The remaining
data in the benchmark cannot be applied for specification
generation even with our modification. We made minimal
modifications to SV-COMP programs to ensure they can be
executed outside the SV-COMP environment. Specifically,
the programs destined to trigger false assertions have to
be modified so that the programs can exit properly. Also,
those library calls specific to the competition settings (e.g.
Verifier.nondetInt()) are replaced with equivalent
Java library calls so that they can be successfully compiled. It
is ensured that the semantics of the modified programs remain
unchanged. As calculated by tool JaCoCo [42], these programs
have an average line of code (LoC) of 22.51, along with an
average cyclomatic complexity (CC) of 6.18. However, after a
deep analysis of the characteristics of the data from SV-COMP,
we find that 88.7% programs are loop-free, indicating that
the samples with more complex program structures cannot be
covered by this dataset, inducing limitations on the evaluation.
Also, very few datasets have been established specifically for
specification generation tasks so far.

To remedy this gap, we further collect another dataset, Spec-
GenBench, containing 120 samples as a supplement where 20
programs (including the corresponding specifications) from the
dataset constructed by Nilizadeh et al. [43] and 100 programs
from LeetCode [44]. The selected programs are assured of
the feasibility of expressing their behaviors as JML-specified
verifiable specifications. These programs involve a variety of
control flow structures and encompass multiple data structures
such as arrays, strings, and other data structures supported by
the Java library. They also cover a diverse set of specifications
including post-conditions and loop invariants, involving both
linear and nonlinear relationships between variables, making
them representative of a broad spectrum of scenarios. They can
be categorized into five categories according to their types of
control flow structures [45]. Specifically, Sequential denotes
the programs without branches or loops. Branched represents
the loop-free programs that will contain branches like if-else
or switch structures. Single-path Loop contains the simplest
type of loop, with only one layer of loop structure without
branches in their loop bodies. In contrast, Multi-path Loop
denotes the loops that have branches in the loop bodies. Lastly,
Nested Loop denotes the programs with multiple layers of
loop structure where each layer may have a branch. The
quantity of programs for Sequential, Branched, Single-path
Loop, Multi-path Loop and Nested Loop is 26, 23, 24, 26, and
21, respectively. Programs in SpecGenBench have an average
LoC of 20.77 and an average CC of 6.60.

To obtain the ground truth specifications for the 100 Java
programs from LeetCode, we follow a similar procedure

in Nilizadeh et al. [43] with the help of human experts.
Three experts with rich experience in formal verification were
employed, to manually write specifications for each program.
Each expert is required to write the specifications that can be
successfully verified to describe the functionality and behavior
of the program as accurately and comprehensively as possible.
For a single program, if multiple experts have written verifiable
specifications, another expert is responsible for selecting one
of them as the ground truth.

As Daikon [9] requires a set of test suites instrumented
into the source code to execute the code, we manually write
these test suites for it. A small test suite is initialized first,
on which Daikon is invoked to generate specifications. If
the results fail verification, the counterexample produced by
the verifier will be added to the test suite. The procedure is
repeated until no new specifications are generated. The test
suites achieve an average instruction coverage of 90.16%,
branch coverage of 87.98%, and line coverage of 91.36%.
Lastly, we instrument dummy function calls at the top of each
loop body in a program to ensure Houdini and Daikon can
generate the specifications at these program points.

C. Baselines

We select two conventional approaches and several LLM-
based approaches as the baselines for comparison.
Houdini [7]. It is a template-based JML annotation generator
that relies on a series of pre-defined templates to generate
candidate specifications. Given the input program, it first
generates candidate specifications by filling in the templates
with available variables and all kinds of operators. Afterward,
It iteratively invokes a JML specification verifier to check their
correctness and removes the refuted ones. The process will be
repeated until the remaining candidates are all verified.
Daikon [9]. It is a classic tool for the dynamic detection of
program specifications which relies on the dynamic execution
trace of the target program to infer likely specifications. Given
the input program, it first instruments the target program to
trace certain variables and extracts execution traces. Then the
inference engine reads the trace data and infers the potential in-
variants with a generate-and-check algorithm. Daikon supports
dynamic detection for Java, C/C++, C#, and Perl programs
along with various formats such as DBC format [46], JML
format [23], and CSharpContract format [47].

Apart from the conventional approaches for specification
generation, we further add the LLM-based approaches.
Few-shot LLM. They refer to the large language model i.e.,
gpt-3.5 with few-shot settings in our work to generate
specifications. Under the few-shot settings, the LLM is queried
only once to obtain the final result. We set 0-shot, 2-shot, and
4-shot for few-shot comparison.
Conversational. It refers to the generation technique described
in Section III-B. Conversational generation iteratively queries
the LLM to refine its results, with error information provided
to the LLM as feedback on each iteration. The conversational
setting is based on 4-shot examples. Other settings remain the
same with SpecGen.

AutoSpec [21]. It is a recent technique for specification
generation combining LLMs and static analysis. AutoSpec
first decomposes the input program into its components,
upon which a hierarchy graph is built. For each component,
AutoSpec queries the LLM for corresponding specifications
respectively. Eventually, specifications for all components are
combined to obtain the overall result, which is presented to
a verifier for correctness validation. The progress is repeated
iteratively until the result is successfully verified.

D. Evaluation Metrics

Following the previous works [41, 48], we use the metric of
Number of Passes for assessment. We further add more metrics
for comprehensive evaluation.
Number of Passes. It defines the number of programs for
which the generated specifications of an approach pass the
validation by the verifier. For a program, we consider the
specifications that pass the verifier as the correct specifications.
Success Probability. It is used to evaluate the model-based
approaches. The randomness inherent in the content generated
by large language models may introduce a certain level of
contingency in a successful generation. Thus, we use the
success probability for the measurement. For a test program, it
is calculated by Nsucess

Nattempt
where Nsucess denotes the number of

successful generations of verifiable specifications and Nattemp

denotes a fixed number of trials in total (10 times in SpecGen).
Number of Verifier Calls. It is used to evaluate the efficiency
of our approach. We propose a heuristic selection algorithm to
prioritize the important candidates for the verifier to verify. To
evaluate the effectiveness of the proposed selection algorithm,
we use the number of verifier calls as the evaluation metric.
User Rating. It aims to measure the semantic quality of
the generated specifications. We invited 15 Ph.D. students
who are experts in Java programming language to rate the
specifications generated by different approaches. The research
is conducted using the Likert Scale [49], where students are
required to give a rating from one point to five points for each
case according to a reference rating criteria.

V. EXPERIMENTAL RESULTS

A. RQ1: Comparison with Baselines

The experimental results are presented in Table II where
Num. denotes the number of successfully handled programs,
and Prob. denotes the average success probability. Each LLM-
based approach is granted 10 trials for each program.
Performance on SV-COMP. From Table II, we can find that
on the SV-COMP dataset (265 programs in total), Houdini
handled 56 programs, which is more than Daikon. However,
both underperform LLM-based approaches even in LLM’s
simplest setting i.e. 0-shot setting, which handled 81 programs,
demonstrating the feasibility of employing LLMs for formal
program specification generation. Among the LLM-based ap-
proaches with few-shot settings, as the number of given few-
shot examples increases, the number of programs that LLM
can generate verifiable specifications is also increased, sub-
stantiating the effectiveness of the few-shot examples. Based

TABLE II: Number of programs that successfully pass the verifier and average success probability.

Approach
SV-COMP

(265)

SpecGenBench
Overall
(385)Sequential

(26)
Branched

(23)
Single-path Loop

(24)
Multi-path Loop

(26)
Nested Loop

(21)
Num. Prob. Num. Prob. Num. Prob. Num. Prob. Num. Prob. Num. Prob. Num. Prob.

Daikon 51 - 10 - 10 - 0 - 1 - 0 - 72 -

Houdini 56 - 14 - 11 - 10 - 4 - 3 - 98 -

Few-shot
LLM

0-shot 81 18.28% 23 74.19% 17 58.55% 5 7.08% 7 18.13% 2 3.33% 135 22.93%
2-shot 83 18.79% 20 61.06% 17 53.91% 8 19.29% 13 26.58% 4 3.81% 145 23.48%
4-shot 94 19.40% 23 73.85% 20 57.33% 10 23.40% 12 24.95% 5 6.24% 164 25.25%

Conversational 146 30.95% 23 82.49% 20 75.43% 12 27.02% 13 35.38% 4 9.20% 218 35.95%

AutoSpec 156 42.26% 24 85.38% 21 85.20% 22 57.00% 16 35.38% 8 12.38% 247 46.13%

SpecGen 179 40.41% 24 92.31% 20 79.57% 23 73.75% 20 60.38% 13 36.55% 279 59.97%

on the 4-shots examples in the initial prompt, the multi-turn
conversational manner (in Section III-B) can further improve
the performance, with 146 programs handled, compared to 94
programs of 4-shot LLM. Combining LLM-generated results
and static analysis techniques, AutoSpec achieves enhanced
results with 10 more programs handled. Lastly, SpecGen out-
performs all baseline approaches, with the number of programs
that generated verifiable specifications increasing to 179.
Performance on SpecGenBench. For deeper insights into
the performance of different approaches on different types of
programs, we further investigate the results on SpecGenBench.
Similar to SV-COMP, Houdini outperforms Daikon, especially
in generating specifications for complex program structures
such as loops, Houdini exhibits certain abilities. In terms of the
LLM-based approaches, we find that SpecGen, AutoSpec, and
the conversational approach are all competent in generating
specifications for relatively simple programs such as sequential
and branched. AutoSpec also demonstrates impressive ability
on programs with Single-path Loops, benefiting from the code
decomposition technique adopted. However, when it comes
to generating specifications for programs with more complex
structures such as Multi-path Loops and Nested Loops, Spec-
Gen has a clear advantage. The benefits are from our designed
mutation-based specification generation (Section III-C), which
can correct the erroneous output of the large language model
to generate the verifiable specifications. Although SpecGen
can generate more accurate specifications for different loop
structures, it has a relatively poor performance in generating
verifiable specifications for programs with nested loops.

For LLM-based approaches, we further use success prob-
ability to evaluate the probability of successful generation
for a program in 10 times trials due to the randomness
inherent in the generated content by LLMs. We can ob-
serve that SpecGen achieves an overall success probability
of 59.97%, which is significantly higher than the values of
conversational generation and AutoSpec (35.95% and 46.13%
respectively). AutoSpec is not equipped with any feedback-
refine mechanism. Although conversational generation can
refine the intermediate results through conversation with LLM,
there still exists detailed errors that cannot be fixed, since root
causes of errors are difficult for LLMs to reason. Compared
to these approaches, SpecGen, equipped with conversational
generation and mutation-based generation, is more reliable
with higher probabilities and lower chances of randomness

� � ��� ��� 	���� ��� �� �
� 	
��

�
��

�
��
�

�	 � �

����� �������� �������������� ��!���"��#��

	�	�$�$��%��&�� ����'��������		�	��(���((����)��*

+���&$$$,&$	�	�)�����%-������*$./$����'��������		�	��(���((����)��* �$�
Fig. 5: Venn diagram of verifiable programs.

to generate verifiable specifications. From the results from
SV-COMP and SpecGenBench, we can find that our proposed
approach is orthogonal to different datasets.

Presented in Fig. 5 is the Venn diagram of the programs in
SpecGenBench for which SpecGen and baseline approaches
successfully generated verifiable specifications. It is notewor-
thy that SpecGen generates verifiable specifications for 7
programs that other baselines fail to yield, where 5 are from
the Nested Loop, with the rest 2 from the Single-path Loop.
Further investigation of these programs reveals that they are
relatively complicated and challenging to handle.

Overall, it takes on average 7.07 verifier calls for the con-
versational approach per execution, whereas the figure is 16.19
and 15.51 for AutoSpec and SpecGen, respectively. Under our
experimental settings, the maximum number of rounds for
conversation is set to 10, so conversational generation naturally
finishes execution faster than the other two approaches, but
with relatively poor performance. In comparison, AutoSpec
and SpecGen take more verifier calls to filter the LLM-
generated results and produce more reliable results. Specif-
ically, SpecGen displays a slight advantage over AutoSpec,
indicating that SpecGen can achieve better performance com-
pared to AutoSpec in the same or even shorter period of time.

RQ1: SpecGen outperforms all baselines on two dif-
ferent datasets, generating verifiable specifications for
279 out of 385 programs with the highest success
probability among all LLM-based approaches. In com-
parison, the number of programs handled by Daikon,
Houdini, Conversational generation, and AutoSpec is
72, 98, 218, and 247, respectively.

TABLE III: Effectiveness of different types of mutations.

Approach

SpecGenBench
SV-COMP

(265)
Total
(385)Sequential

(26)
Branched

(23)
Single-path

(24)
Multi-path

(26)
Nested

(21)

w/o Predicative 24 20 20 19 9 167 259
w/o Logical 24 18 14 18 10 151 235

w/o Comparative 24 19 13 12 7 148 223
w/o Arithmetic 23 19 18 21 11 170 262

SpecGen 24 20 23 20 13 179 279

B. RQ2: Ablation Study on Mutation Types

We conduct an ablation study to evaluate the effectiveness
of different mutation types in SpecGen. The results are shown
in Table III where w/o {*} denotes the disabled mutation type.

We can find that SpecGen successfully generates verifiable
specifications for 279 out of a total of 385 programs. SpecGen
w/o Comparative addresses the least number of programs i.e.,
223, indicating that the comparative mutation is the most
important in the defined mutation operations. The main reason
is the frequent usage of numerical variables in programs and
the recurring need to bound their range in the specifications.
SpecGen w/o Logical has the second least number of pro-
grams i.e., 235, indicating that the logical operators are also
important to generate verifiable specifications. This is due
to the necessity of combining two or more expressions for
different properties with logical operations when specifying
complex behaviors. SpecGen w/o Predicative and SpecGen w/o
Arithmetic have the most number of programs (259 and 262
respectively), which means both of them are less important
than the comparative and logical mutation. We still consider
them as they are applicable in certain situations. In some
complex programs, specifications generated by the LLM are
prone to have predicate errors. Hence, the predicative mutation
will be useful. Similar cases exist when there are complicated
numerical constraints on variables, where mutations on arith-
metic operators turn out to be helpful.

Further analyzing the effectiveness of the mutation type for
different kinds of programs, we can find that SpecGen w/o
Comparative handles an especially lower number of programs
in the loop category including single-path, multi-path, and
nested loop. It is due to the rigid demand of scope bounding
for loop variables when loops are involved. Scope bounding
for loop variables is an intricate work where LLMs frequently
make mistakes, substantiating the importance of comparative
mutations. The performance of SpecGen w/o Predicative also
drops on programs with nested loop, because of the relatively
higher quantity and complexity of \forall and \exists
statements involved in these nested programs.

RQ2: Each type of mutations contributes differently
to SpecGen. The comparative mutation contributes the
most to the performance while the predicative and
arithmetic are less important. When combining them
together, SpecGen achieves the best performance.

C. RQ3: Effectiveness of Selection Strategy

In Section III-C2, we design the heuristic selection strategy
to improve the efficiency of verification. We also conduct an

TABLE IV: Average numbers of verifier calls in a single
run under different specification selection strategies in Sec-
tion III-C2.

Strategy SV-COMP
SpecGenBench

Total
Sequential Branched Single-path Multi-path Nested

Random 9.41 2.70 2.32 32.62 55.16 41.97 18.44
Heuristic 8.91 2.59 2.16 24.21 43.58 34.99 15.51

experiment to compare with the random selection strategy.
Specifically, when a candidate specification is refuted by the
verifier, we randomly select another specification from Ef for
replacement. To compare with different strategies, for each
program that successfully generates verifiable specifications
by SpecGen, we run SpecGen 5 times to obtain the average
number of verifier calls as the evaluation metric.
Performance on SV-COMP. Using the random selection
strategy makes 9.41 verifier calls on average while the heuristic
selection strategy takes 8.91 calls, resulting in an improvement
of 5.30%. The improvement is relatively modest and the values
denote that only less than 10 verifier calls on average are
used to generate verifiable specifications for programs in SV-
COMP. The main reason is that the number of rounds for
conversation is set to 10 in SpecGen, the specifications for
these programs tend to be successfully generated within the
conversation module (Section III-B). It is before the selection
strategy used in the mutation-based specification generation
(Section III-C) comes into effect.
Performance on SpecGenBench. Using the random selec-
tion strategy takes 36.20 verifier calls on average while the
heuristic selection strategy takes 28.51 calls in terms of five
categories in SpecGenBench. Hence, the heuristic selection
strategy achieves an improvement of 21.23%. Furthermore,
we can observe that the improvements in different categories
of programs vary significantly. The improvements in the loop
categories including single-path, multi-path, and nested loop
are more significant than sequential and branched. The main
reason is that generating specifications for loop-containing
programs is challenging, and usually requires more iterations
to obtain verifiable specifications. In this case, a good selection
strategy often highlights advantages more effectively. How-
ever, the improvements in sequential and branched categories
are fewer. The reason is similar to SV-COMP, where the
high efficiency of conversational generation on sequential
and branched programs makes the selection strategies invalid.
Nevertheless, loop structures are common in programs, thus a
heuristic selection strategy to improve the validation efficiency
is still helpful and necessary.

RQ3: The heuristic selection strategy effectively im-
proves the efficiency of SpecGen. It is especially useful
when generating specifications for programs with more
complex structures such as loops.

D. RQ4: User Study on the Quality of Specifications

A user study is conducted to evaluate the semantic quality
of the generated specifications. 15 Ph.D. students are invited

TABLE V: Average rating scores on the generated specifica-
tions by different approaches.

Test case Houdini Daikon SpecGen Oracle

Absolute 3.50 3.36 4.85 5.00
AddLoop 2.40 1.33 4.57 5.00

Conjunction 4.50 3.50 5.00 5.00
ConvertTemperature 2.33 2.50 5.00 5.00

Disjunction 2.50 3.50 5.00 5.00
FizzBuzz 2.63 2.86 5.00 5.00

IsCommonFactor 2.00 4.13 4.14 4.71
IsPalindrome 1.83 1.17 4.75 5.00

IsSubsequence 2.43 1.13 4.14 4.00
IsSuffix 2.20 1.50 4.33 4.63

MulLoop 1.88 1.25 3.33 5.00
MySqrt 2.00 2.80 3.75 4.25

Perimeter 1.00 2.80 4.78 5.00
SmallestEvenMul 2.57 1.00 4.50 5.00

Swap 1.00 2.00 5.00 4.88

Average 2.32 2.32 4.54 4.83

to rate the specifications generated by different approaches.
A detailed description of the rating process is given in Sec-
tion IV-D. We selected the 15 programs from the dataset of
SpecGenBench that can be handled by all of Houdini, Daikon,
and SpecGen. Apart from the specifications generated by these
approaches, we also add the ground truth as a reference. The
specifications are kept anonymous to the students, disclosing
no information about the sources of the specifications. The
rating scores are presented in Table V, where the score for
full marks is 5.

We can observe that the ground truth specifications (oracle)
receive an average rating score of 4.83, indicating that the
semantics of these programs can be described comprehensively
through JML specifications. Furthermore, the specifications
generated by SpecGen received a rating score of 4.54, which is
close to the oracle, indicating that the generated specifications
by SpecGen can also describe the real behaviors of the input
program more fully. Among the 15 programs, all rating scores
given to SpecGen are above 3, with the lowest rating being
3.33, meaning that in the worst case, SpecGen can still
generate non-trivial specifications about the properties of the
input program. In comparison, the specifications generated
by Houdini and Daikon received an average rating score of
2.32, reflecting the semantic weakness in these specifications.
Houdini and Daikon rely on pre-defined templates, which are
in fact independent from the input program and can only cover
a limited number of specification patterns. Consequently, the
specifications produced are often simplistic and trivial, involv-
ing only a narrow range of variables and operators, making
it difficult to capture the actual behavior and functionality of
the input program precisely. Unlike traditional approaches that
rely on a fixed set of templates, SpecGen utilizes the code
comprehension capabilities of LLMs, which can cover a larger
range of scenarios and generate targeted specifications that
more closely match the semantics of the input program.

RQ4: SpecGen received an average rating score of
4.54, which is close to the 4.83 of the oracle speci-
fications, demonstrating the ability to accurately char-
acterize the real program behaviors and generate spec-
ifications with comprehensive program semantics.

VI. DISCUSSION

A. Performance on Real-world Programs

To further evaluate the performance of SpecGen on
real-world programs, we collect programs involved in De-
fects4J [50], a well-known dataset of reproducible bugs within
open-source repositories. During the collection process, we
only consider individual files with no dependency on third-
party libraries or other files in the repository. This ensures
that all the collected files can be properly executed and verified
outside the repository. Eventually, 50 Java source files from
9 repositories are collected. The average line of code and
cyclomatic complexity of the collected programs are 374.78
and 18.29, respectively. We follow the same experimental
settings in Section IV-A for experiments. Note that we only
aim to evaluate the verifiability of the generated specifications
in the same way Section V-A does, so the ground truth
specifications of the programs are not prepared.

Table VI shows the performance of SpecGen and other
baseline methods on the programs extracted from Defects4J.
Although Daikon underperforms the LLM-based approaches,
it still exhibits certain abilities in processing real-world pro-
grams. This is due to the existence of some simplistic methods
within real-world class definitions, such as those retrieving the
value of a certain class member without doing anything else,
which Daikon is capable of handling. Compared to Daikon,
the LLM-based approach with the simplest setting, i.e. 4-
shot, achieved 5 more programs handled. Based on the few-
shot learning technique, the conversational approach further
achieved 28 programs handled. Lastly, SpecGen succeeds
in handling 38 out of the 50 programs, with an average
success probability of 55.20%, displaying decent capabilities
in handling real-world programs.

B. Threats to Validity

Internal Validity. First, the prompts we used to communicate
with the LLM may affect our results. To mitigate it, we refer to
Xia et al. [15] to design the prompt. We plan to investigate the
effect of different prompts in the future. Second, a potential
threat lies in the risk of data leakage. Our constructed dataset
SpecGenBench consists of 100 programs with expert-written
specifications and 20 programs with their corresponding spec-
ifications from Nilizadeh et al. [43]. The former does not
have the issue of data leakage as the specifications are written
by experts in our research. However, since gpt-3.5 does
not release its model as well as the training data, the latter
20 programs from the existing dataset may have the risk.
The used dataset SV-COMP also has this risk. Nevertheless,
through our observation of SpecGen on these programs, we
have never spotted a situation where the output of SpecGen is
the same as the existing oracle. Hence, we believe this threat is
limited. Furthermore, even if we remove these potentially risky
programs, SpecGen still successfully handles 87 programs in
the remaining 100 programs, which is also the best.
External Validity. One of the external threats lies in the ac-
curacy of the verifier (OpenJML). Due to the implementation
flaws in OpenJML, there may be cases where some correct

TABLE VI: Performance on programs collected from 9 repositories in Defects4J.

Approaches
chart
(7)

cli
(5)

codec
(4)

compress
(6)

jackson
(7)

jxpath
(6)

lang
(7)

math
(4)

time
(4)

Total
(50)

Num. Prob. Num. Prob. Num. Prob. Num. Prob. Num. Prob. Num. Prob. Num. Prob. Num. Prob. Num. Prob. Num. Prob.

Daikon 3 - 3 - 0 - 1 - 3 - 2 - 2 - 1 - 0 - 15 -

4-shot LLM 1 7.14% 2 7.33% 2 9.71% 3 11.67% 3 9.52% 1 2.78% 4 11.67% 3 17.50% 1 5.00% 20 8.97%

Conversational 4 47.62% 4 60.00% 3 41.67% 1 11.11% 2 19.05% 5 55.56% 3 28.57% 3 66.67% 3 41.67% 28 39.33%

SpecGen 6 68.57% 4 68.00% 4 65.00% 4 36.67% 4 42.86% 5 63.33% 5 65.71% 3 45.00% 3 35.00% 38 55.20%

specifications fail to pass verification. This is an inevitable
problem that other verifiers [51] have to face as well. The
reason lies in the undecidability of automatic software veri-
fication [52, 53]. Even in such a situation, SpecGen achieves
impressive performance with the majority of testcases success-
fully generated verifiable specifications. Another threat is the
potential bias of the hand-written specifications by experts. To
mitigate this, we follow the procedure in Nilizadeh et al. [43].
First, the selected experts should have rich experience in writ-
ing specifications. Second, the initially chosen specifications
should be verifiable by the verifier. Last, if multiple experts
have written the specifications that pass the verifier, another
expert is responsible for selecting one.

VII. RELATED WORK

Large Language Models. With the advancement of gen-
erative AI, Large Language Models (LLMs) have emerged
as a formidable force and have quickly found widespread
applications. LLMs are characterized by their immense pa-
rameter scale and training dataset size [54]. An important
feature of LLMs is their ability for in-context learning [37],
which enhances the coherence between the context and the
output of LLMs. The learning ability gives rise to a unique
usage of LLMs known as prompting [55], where a natural
language description of the intended downstream task is pro-
vided to the LLM before assigning it the task. LLMs initially
demonstrated remarkable capabilities in the field of Natural
Language Processing (NLP) [56], excelling in tasks such as
document classification [57], text summarization [58], and
machine translation [59]. They are also widely deployed in
various software engineering tasks [14, 18], including software
testing [30, 31], code generation [17, 33] and code summariza-
tion [16]. Compared with these works, our goal is to employ
LLMs for the automated generation of program specifications,
which is important in formal methods.
Program Specification Generation. The research on pro-
gram specification generation can be categorized into two
types: natural language specification generation and formal
specification generation. Natural language specification gen-
eration primarily manifests as code summarization [60], a
process of automatically generating accurate, human-readable
descriptions of code functionality. Numerous efforts have been
made to utilize machine learning methods for code summariza-
tion [61, 62, 63, 64]. Formal specification generation primarily
takes the form of the generation of program invariants, the
formal language representations of properties that a program
is guaranteed to satisfy at a certain program point. In invariant
generation, a large amount of research focuses on the genera-
tion of loop invariants [65, 66, 67, 68, 69, 70, 71], while the rest

of the works attempt to generate invariants of other forms, e.g.
pre-conditions [48, 72], post-conditions [10, 13, 41, 73, 74],
assertion-based invariants [75] and finite automata [76, 77, 78].
With the development of Large Language Models, there have
also been efforts employing LLMs to generate program spec-
ifications. Wen et al. [21] combine LLMs with static analysis
techniques, including code decomposition, to generate verifi-
able program specifications. Pei et al. [79] utilize fine-tuning to
enhance the performance of LLMs on specification generation
tasks. Concerning the difficulty of selecting correct specifica-
tions from the massive LLM-generated results, Chakraborty
et al. [69] propose a ranking algorithm that can distinguish
correct inductive invariants from incorrect attempts based on
the problem definition. Among these works, artifacts of Ghosal
et al. [48] and Pei et al. [79] are not publicly available, the
artifact of Alshnakat et al. [41] is built for C code and Frama-
C contracts, and the grammar for specifications of Molina et
al. [10, 74] involves specific features, which cannot be trivially
translated into equivalent JML, thus we cannot include them
for comparison. Compared to these works, SpecGen utilizes
the code comprehension capability of LLMs for program
specification generation in a conversational manner, further
followed by the mutation-based approach for enhancement.

VIII. CONCLUSION

In this paper, we introduced SpecGen, a novel approach
that utilizes the Large Language Model for formal program
specification generation. Leveraging the code comprehension
ability of LLMs as well as the well-designed mutation-based
specification generation component, our approach is capable
of accurately capturing the behaviour and functionality of
input programs to generate accurate specifications. A com-
prehensive evaluation between SpecGen and other baselines
is conducted on two different datasets, the benchmark for the
Java category of SV-COMP, and a more diverse and manually
constructed dataset containing 120 programs. The extensive
experimental results haver demonstrated that our approach
significantly outperforms the baseline approaches, with the
ability to effectively articulate program behaviors.

ACKNOWLEDGMENT

We are grateful for the constructive feedback of all the
anonymous reviewers to improve this manuscript. The authors
from Nanjing University are supported in part by the Leading-
edge Technology Program of Jiangsu Natural Science Founda-
tion (No. BK20202001), the National Natural Science Founda-
tion of China (No. 62232008, 62172200), and the Postgraduate
Research & Practice Innovation Program of Jiangsu Province
(No. KYCX24 0237).

REFERENCES

[1] A. Mesbah, A. van Deursen, and D. Roest, “Invariant-based automatic
testing of modern web applications,” IEEE Transactions on Software
Engineering, vol. 38, no. 1, pp. 35–53, 2012.

[2] T.-H. Nguyen and D.-H. Dang, “Tc4mt: A specification-driven testing
framework for model transformations,” International Journal of Software
Engineering and Knowledge Engineering, pp. 1–39, 2023.

[3] G. Cabodi, S. Nocco, and S. Quer, “Strengthening model checking
techniques with inductive invariants,” IEEE transactions on computer-
aided design of integrated circuits and systems, vol. 28, no. 1, pp. 154–
158, 2008.

[4] D. Beyer, M. Dangl, and P. Wendler, “Boosting k-induction with
continuously-refined invariants,” in International Conference on Com-
puter Aided Verification. Springer, 2015, pp. 622–640.

[5] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata, “Extended static checking for java,” in Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language design and
implementation, 2002, pp. 234–245.

[6] E. Rodrı́guez-Carbonell and D. Kapur, “Program verification using
automatic generation of invariants,” in International Colloquium on
Theoretical Aspects of Computing. Springer, 2004, pp. 325–340.

[7] C. Flanagan and K. R. M. Leino, “Houdini, an annotation assistant
for esc/java,” in International Symposium of Formal Methods Europe.
Springer, 2001, pp. 500–517.

[8] J. W. Nimmer and M. D. Ernst, “Automatic generation of program
specifications,” ACM SIGSOFT Software Engineering Notes, vol. 27,
no. 4, pp. 229–239, 2002.

[9] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection of
likely invariants,” Science of computer programming, vol. 69, no. 1-3,
pp. 35–45, 2007.

[10] F. Molina, M. d’Amorim, and N. Aguirre, “Fuzzing class specifications,”
in Proceedings of the 44th International Conference on Software Engi-
neering, 2022, pp. 1008–1020.

[11] Z. Y. Ding, Y. Lyu, C. Timperley, and C. Le Goues, “Leveraging program
invariants to promote population diversity in search-based automatic
program repair,” in 2019 IEEE/ACM International Workshop on Genetic
Improvement (GI). IEEE, 2019, pp. 2–9.

[12] F. Rahman and Y. Labiche, “A comparative study of invariants generated
by daikon and user-defined design contracts,” in 2014 14th International
Conference on Quality Software. IEEE, 2014, pp. 174–183.

[13] Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer, “Inferring better
contracts,” in Proceedings of the 33rd International Conference on
Software Engineering, 2011, pp. 191–200.

[14] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large language models for software engineer-
ing: A systematic literature review,” arXiv preprint arXiv:2308.10620,
2023.

[15] C. S. Xia and L. Zhang, “Conversational automated program repair,”
arXiv preprint arXiv:2301.13246, 2023.

[16] T. Ahmed and P. Devanbu, “Few-shot training llms for project-specific
code-summarization,” in Proceedings of the 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, 2022, pp. 1–5.

[17] Z. Zeng, H. Tan, H. Zhang, J. Li, Y. Zhang, and L. Zhang, “An extensive
study on pre-trained models for program understanding and generation,”
in Proceedings of the 31st ACM SIGSOFT international symposium on
software testing and analysis, 2022, pp. 39–51.

[18] W. Ma, S. Liu, W. Wang, Q. Hu, Y. Liu, C. Zhang, L. Nie, and
Y. Liu, “The scope of chatgpt in software engineering: A thorough
investigation,” arXiv preprint arXiv:2305.12138, 2023.

[19] Z. Yuan, J. Liu, Q. Zi, M. Liu, X. Peng, and Y. Lou, “Evaluating
instruction-tuned large language models on code comprehension and
generation,” arXiv preprint arXiv:2308.01240, 2023.

[20] sosy lab, “Sv-comp - international competition on software verification,”
2024, https://sites.google.com/view/specgen.

[21] C. Wen, J. Cao, J. Su, Z. Xu, S. Qin, M. He, H. Li, S.-C. Cheung, and
C. Tian, “Enchanting program specification synthesis by large language
models using static analysis and program verification,” arXiv preprint
arXiv:2404.00762, 2024.

[22] Github, “Specgen-artifact,” 2024, https://github.com/Lezhi-Ma/
SpecGen-Artifact.

[23] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens,
K. R. M. Leino, and E. Poll, “An overview of jml tools and applications,”
International journal on software tools for technology transfer, vol. 7,
pp. 212–232, 2005.

[24] E. I. Leonard and C. L. Heitmeyer, “Automatic program generation from
formal specifications using apts,” Automatic Program Development: A
Tribute to Robert Paige, pp. 93–113, 2008.

[25] M. Pradel and T. R. Gross, “Automatic generation of object usage spec-
ifications from large method traces,” in 2009 IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 2009, pp. 371–
382.

[26] D. R. Cok, “Openjml: Jml for java 7 by extending openjdk,” in NASA
Formal Methods: Third International Symposium, NFM 2011, Pasadena,
CA, USA, April 18-20, 2011. Proceedings 3. Springer, 2011, pp. 472–
479.

[27] C. Barrett and C. Tinelli, Satisfiability modulo theories. Springer, 2018.
[28] OpenAI, “Gpt-3.5,” 2023, https://platform.openai.com/docs/models/

gpt-3-5.
[29] ——, “Chatgpt,” 2023, https://chat.openai.com/.
[30] Y. Deng, C. S. Xia, C. Yang, S. D. Zhang, S. Yang, and L. Zhang,

“Large language models are edge-case generators: Crafting unusual
programs for fuzzing deep learning libraries,” in 2024 IEEE/ACM 46th
International Conference on Software Engineering (ICSE). IEEE
Computer Society, 2023, pp. 830–842.

[31] C. S. Xia, M. Paltenghi, J. L. Tian, M. Pradel, and L. Zhang, “Universal
fuzzing via large language models,” arXiv preprint arXiv:2308.04748,
2023.

[32] X. Jiang, Y. Dong, L. Wang, Q. Shang, and G. Li, “Self-
planning code generation with large language model,” arXiv preprint
arXiv:2303.06689, 2023.

[33] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for
code generation,” arXiv preprint arXiv:2305.01210, 2023.

[34] Y. Wei, C. S. Xia, and L. Zhang, “Copiloting the copilots: Fusing
large language models with completion engines for automated program
repair,” in Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2023, pp. 172–184.

[35] Y. Zhang, Y. Li, L. Cui, D. Cai, L. Liu, T. Fu, X. Huang, E. Zhao,
Y. Zhang, Y. Chen et al., “Siren’s song in the ai ocean: A survey on hal-
lucination in large language models,” arXiv preprint arXiv:2309.01219,
2023.

[36] C. S. Xia and L. Zhang, “Keep the conversation going: Fixing
162 out of 337 bugs for $0.42 each using chatgpt,” arXiv preprint
arXiv:2304.00385, 2023.

[37] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[38] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[39] OpenAI, “Gpt-4 technical report,” 2023.
[40] ——, “Api reference - openai api,” 2023, https://platform.openai.com/

docs/api-reference.
[41] A. Alshnakat, D. Gurov, C. Lidström, and P. Rümmer, “Constraint-

based contract inference for deductive verification,” Deductive Software
Verification: Future Perspectives: Reflections on the Occasion of 20
Years of KeY, pp. 149–176, 2020.

[42] EclEmma, “Eclemma - jacoco java code coverage library,” 2024, https:
//www.eclemma.org/jacoco/.

[43] A. Nilizadeh, G. T. Leavens, X.-B. Le, C. S. Pasareanu, and D. Cok,
“Exploring true test overfitting in dynamic automated program repair
using formal methods (in press),” in 2021 14th IEEE Conference on
Software Testing, Validation and Verification (ICST). IEEE, 2021.

[44] LeetCode, “The world’s leading online programming learning platform,”
2023, https://leetcode.com/.

[45] X. Xie, B. Chen, L. Zou, Y. Liu, W. Le, and X. Li, “Automatic loop
summarization via path dependency analysis,” IEEE Transactions on
Software Engineering, vol. 45, no. 6, pp. 537–557, 2017.

[46] Parasoft, “Ai-powered java testing tool,” 2023, https://www.parasoft.
com/products/parasoft-jtest/.

https://sites.google.com/view/specgen
https://github.com/Lezhi-Ma/SpecGen-Artifact
https://github.com/Lezhi-Ma/SpecGen-Artifact
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://chat.openai.com/
https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/api-reference
https://www.eclemma.org/jacoco/
https://www.eclemma.org/jacoco/
https://leetcode.com/
https://www.parasoft.com/products/parasoft-jtest/
https://www.parasoft.com/products/parasoft-jtest/

[47] Microsoft, “Code contracts - microsoft research,” 2023, https://www.
microsoft.com/en-us/research/project/code-contracts/.

[48] S. Ghosal, B. Jonsson, and P. Rümmer, “An active learning approach
to synthesizing program contracts,” in International Conference on
Software Engineering and Formal Methods. Springer, 2023, pp. 126–
144.

[49] T. Nemoto and D. Beglar, “Likert-scale questionnaires,” in JALT 2013
conference proceedings, 2014, pp. 1–8.

[50] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 international symposium on software testing and
analysis, 2014, pp. 437–440.

[51] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle,
W. Menzel, W. Mostowski, A. Roth, S. Schlager et al., “The key tool:
integrating object oriented design and formal verification,” Software &
Systems Modeling, vol. 4, pp. 32–54, 2005.

[52] P. A. Abdulla and B. Jonsson, “Undecidable verification problems for
programs with unreliable channels,” Information and Computation, vol.
130, no. 1, pp. 71–90, 1996.

[53] U. Mathur, P. Madhusudan, and M. Viswanathan, “What’s decidable
about program verification modulo axioms?” in International Confer-
ence on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2020, pp. 158–177.

[54] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong et al., “A survey of large language models,” arXiv
preprint arXiv:2303.18223, 2023.

[55] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: A systematic survey of prompting methods
in natural language processing,” ACM Computing Surveys, vol. 55, no. 9,
pp. 1–35, 2023.

[56] B. Min, H. Ross, E. Sulem, A. P. B. Veyseh, T. H. Nguyen, O. Sainz,
E. Agirre, I. Heintz, and D. Roth, “Recent advances in natural language
processing via large pre-trained language models: A survey,” ACM
Computing Surveys, vol. 56, no. 2, pp. 1–40, 2023.

[57] S. Hegselmann, A. Buendia, H. Lang, M. Agrawal, X. Jiang, and
D. Sontag, “Tabllm: Few-shot classification of tabular data with large
language models,” in Proceedings of The 26th International Conference
on Artificial Intelligence and Statistics, ser. Proceedings of Machine
Learning Research, F. Ruiz, J. Dy, and J.-W. van de Meent, Eds., vol.
206. PMLR, 25–27 Apr 2023, pp. 5549–5581. [Online]. Available:
https://proceedings.mlr.press/v206/hegselmann23a.html

[58] X. Yang, Y. Li, X. Zhang, H. Chen, and W. Cheng, “Exploring the limits
of chatgpt for query or aspect-based text summarization,” arXiv preprint
arXiv:2302.08081, 2023.

[59] B. Zhang, B. Haddow, and A. Birch, “Prompting large language model
for machine translation: A case study,” arXiv preprint arXiv:2301.07069,
2023.

[60] Y. Zhu and M. Pan, “Automatic code summarization: A systematic
literature review,” arXiv preprint arXiv:1909.04352, 2019.

[61] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
source code using a neural attention model,” in 54th Annual Meeting
of the Association for Computational Linguistics 2016. Association for
Computational Linguistics, 2016, pp. 2073–2083.

[62] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A
transformer-based approach for source code summarization,” arXiv
preprint arXiv:2005.00653, 2020.

[63] S. Liu, Y. Chen, X. Xie, J. Siow, and Y. Liu, “Retrieval-augmented
generation for code summarization via hybrid gnn,” arXiv preprint
arXiv:2006.05405, 2020.

[64] P. Fernandes, M. Allamanis, and M. Brockschmidt, “Structured neural
summarization,” arXiv preprint arXiv:1811.01824, 2018.

[65] P. Garg, D. Neider, P. Madhusudan, and D. Roth, “Learning invariants
using decision trees and implication counterexamples,” ACM Sigplan
Notices, vol. 51, no. 1, pp. 499–512, 2016.

[66] G. Ryan, J. Wong, J. Yao, R. Gu, and S. Jana, “Cln2inv: learn-
ing loop invariants with continuous logic networks,” arXiv preprint
arXiv:1909.11542, 2019.

[67] X. Si, H. Dai, M. Raghothaman, M. Naik, and L. Song, “Learning loop
invariants for program verification,” Advances in Neural Information
Processing Systems, vol. 31, 2018.

[68] C. Janßen, C. Richter, and H. Wehrheim, “Can chatgpt support software
verification?” arXiv preprint arXiv:2311.02433, 2023.

[69] S. Chakraborty, S. K. Lahiri, S. Fakhoury, M. Musuvathi, A. Lal,
A. Rastogi, A. Senthilnathan, R. Sharma, and N. Swamy, “Ranking

llm-generated loop invariants for program verification,” arXiv preprint
arXiv:2310.09342, 2023.

[70] A. Kamath, A. Senthilnathan, S. Chakraborty, P. Deligiannis, S. K.
Lahiri, A. Lal, A. Rastogi, S. Roy, and R. Sharma, “Finding in-
ductive loop invariants using large language models,” arXiv preprint
arXiv:2311.07948, 2023.

[71] V. J. Hellendoorn, P. T. Devanbu, O. Polozov, and M. Marron, “Are my
invariants valid? a learning approach,” arXiv preprint arXiv:1903.06089,
2019.

[72] P. Cousot, R. Cousot, M. Fähndrich, and F. Logozzo, “Automatic
inference of necessary preconditions,” in International Workshop on
Verification, Model Checking, and Abstract Interpretation. Springer,
2013, pp. 128–148.

[73] Y. Moy and C. Marché, “Modular inference of subprogram contracts for
safety checking,” Journal of Symbolic Computation, vol. 45, no. 11, pp.
1184–1211, 2010.

[74] F. Molina, P. Ponzio, N. Aguirre, and M. Frias, “Evospex: An evolu-
tionary algorithm for learning postconditions,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 1223–1235.

[75] V. Terragni, G. Jahangirova, P. Tonella, and M. Pezzè, “Evolutionary
improvement of assertion oracles,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 1178–1189.

[76] M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications of
malicious behavior,” in Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, 2007, pp. 5–14.

[77] F. Aarts, F. Heidarian, H. Kuppens, P. Olsen, and F. Vaandrager, “Au-
tomata learning through counterexample guided abstraction refinement,”
in FM 2012: Formal Methods: 18th International Symposium, Paris,
France, August 27-31, 2012. Proceedings 18. Springer, 2012, pp. 10–
27.

[78] V. Murali, S. Chaudhuri, and C. Jermaine, “Bayesian specification
learning for finding api usage errors,” in Proceedings of the 2017 11th
joint meeting on foundations of software engineering, 2017, pp. 151–
162.

[79] K. Pei, D. Bieber, K. Shi, C. Sutton, and P. Yin, “Can large language
models reason about program invariants?” in International Conference
on Machine Learning. PMLR, 2023, pp. 27 496–27 520.

https://www.microsoft.com/en-us/research/project/code-contracts/
https://www.microsoft.com/en-us/research/project/code-contracts/
https://proceedings.mlr.press/v206/hegselmann23a.html

	Introduction
	Background and Motivation
	Specification Generation and Verification
	Motivation

	Approach
	Overview
	Conversation-Driven Specification Generation
	Initial Prompt Construction
	Conversational Specification Generation

	Mutation-based Specification Generation
	Template Specification Mutation
	Mutated Specification Selection

	Experimental Setup
	Implementation
	Dataset
	Baselines
	Evaluation Metrics

	Experimental Results
	RQ1: Comparison with Baselines
	RQ2: Ablation Study on Mutation Types
	RQ3: Effectiveness of Selection Strategy
	RQ4: User Study on the Quality of Specifications

	Discussion
	Performance on Real-world Programs
	Threats to Validity

	Related Work
	Conclusion
	References

