< | TECHNOLOGICAL
%=/ UNIVERSITY

SINGAPORE

Smart Contract Parallel Execution with
Fine-Grained State Accesses

Xiaodong Q1, Jiao Jiao, Y1 L1
Nanyang Technological University
xiaodong.qi@ntu.edu.sg

Smart Contract Parallel Execution with Fine-Grained State Accesses

Introduction

> Blockchain

o Ledger maintained by every validators

» Smart contract

o Self-enforcing computer program

O States: persistent storage, e.g., variables
» Consensus protocols

O Proof-of-Work

Validator

Validator

I I Send transaction to Validator Smart Contract

invoke a contract
User function

Validator

EVM

State items

*c7a6bl *a3a2al ec7a6bl calalal ed1d1dl ee2e262
ealb2c3 *b3b2b1 ealb2c3 *blblbl eelelel ed2d2d2
eclb2a3 *c3c2cl eclb2a3 eclclcl of1f1f1 of2f2f2

Smart Contract Parallel Execution with Fine-Grained State Accesses

Motivation

» Serial execution
O Ensure state consistency across all validators
O No parallelism between transaction executions

O Bottleneck shifting

Smart Contract Parallel Execution with Fine-Grained State Accesses

Motivation

» Serial execution

O Ensure state consistency across all validators DAG-base Approach

O No parallelism between transaction executions _

TxS
O Bottleneck shifting \

Tx6
Tx2 Tx3 ‘

> Parallel solutions S ‘
Tx4

o Directed acyclic graph (DAG), Optimistic
Concurrency Control (OCC)

Smart Contract Parallel Execution with Fine-Grained State Accesses

Motivation

» Serial execution

O Ensure state consistency across all validators OCC-base Approach

O No parallelism between transaction executions Xl
cy e B Tx4 Intermediate
O Bottleneck shifting snapshot
— X -U — —
i —] —] %M‘ TX6 =
> Parallel solutions Current Tx3 Infermediate New snapshot
snapshot Tx5 Abort snapshot L IS Abort
O Directed acyclic graph (DAG), Optimistic 16 Paraltel execution

Parallel execution

Concurrency Control (OCC)

Smart Contract Parallel Execution with Fine-Grained State Accesses

Motivation

State of Contract

1 pragma solidity “0.6.12;

» Serial execution » contract Example {
3 mapping (address => uint) public A;

. . 4 uint[] public B;
O Ensure state consistency across all validators :
6 function UpdateB (address x, uint y) public
O No parallelism between transaction executions o ALX];
8 if (idx > 1) {
11 9 for(uint i = lidx;) i > 1; i-—-) {
O Bottleneck shifting 2 ¢ s Lz L
. 11 }
» Parallel solutions 2 Dol
13 B = 0;
. 14 assert (y <= 10);
o Directed acyclic graph (DAG), Optimistic i B[1] = B[1] + y;
16 }
Concurrency Control (OCC) o
18
O Unrealistic assumption of read/write set Fig. 1: Example contract highlighting state access dependencies.
O Low parallelism caused by coarse-grain analysis Naive solution: access entire array B exclusively

Low parallelism!

Smart Contract Parallel Execution with Fine-Grained State Accesses

Contribution

» Deterministic multi-version concurrency control (DMVCC):

O Analyze smart contract code to determine the precise read/write sets of each program

statement and enable more find-grained state accesses

o Eliminate the write-write conflicts between transactions by preserving effects of all write

operations as separate versions, which is referred to as write versioning

o Allow transactions to read uncommitted writes through early-write visibility feature.

Smart Contract Parallel Execution with Fine-Grained State Accesses

Workflow

» SAG analyzer: state access graph anaylsis
» Packer: transaction packing T
» Executor: transaction execution

Validator

State access
graph Pack Txs into
: every single block | Header
‘ [Tx Pool] ‘ Packer ‘ [Executor]#(Consensus]

1

|

Obtain read/write |
information !

¥

SN Parallel execution with
multiple threads

Smart Contract Parallel Execution with Fine-Grained State Accesses

State Access Graph

» Partial state access graph (P-SAG)
o A simplified control flow graph

O Nodes: read /write, loop, release point

: read write
Static Program Remove nodes
Analysis : read and write Release Point

other than
operations

Rolled loop

Contract

Loop

Control Flow Graph

Smart Contract Parallel Execution with Fine-Grained State Accesses

State Access Graph

» Complete state access graph (C-SAG)

o Fill nodes with concrete keys Transaction
Contract: 0x...
o Unroll IOOp Func: UpdateB

Input: 0x21, 0x45

EVM
EVMI bytecode

pC bl PUSH 4 s7
) | 2 CALLDATALOAD s7
b3 PUSH 24 s7
b4 CALLDATALOAD |[s7
s8
s9
s9

Iteration 1

f

b5 TIMESTAMP
b6 PUSH 300
nnnnnn b7 DUP2

Release Point !
pc:15

Read Set: 1,1,,13,15
Write Set: I,,1,

(|

Release Point
Snapshot of states at B;_4

Smart Contract Parallel Execution with Fine-Grained State Accesses

Access sequences

> Access sequence construction
o Record all possible conflicts between transactions

Block B;

T,
Read: I, I3 Read: I; Read: I, Read: Read: I, I3
Write: I, I3 Write: I, I3 Write: Write: I, Write: I3 Write: I3

read write read &write

Smart Contract Parallel Execution with Fine-Grained State Accesses

Schedule Generation

T,

O Qreaay: queue for ready transactions
Read: 12, 13

Write: I,, I3

Read: I Read: I,

Write: Write: I, Write: I3

Write: 14, I3

Write: I

Z

O Multiple EVM instances

e

,°
e
e

P Initialize Qready

O Read/write access sequences

T, PR
__ 1 __ 17
Read, ."3 Read. 19,13

Write: I, I3 Write: I, I3

Snapshot of states at B;_4

=~~~ Thread 1

- .
L R — o
' I
i . e T pn - -
2 |
. -

read write read &write Schedule over time

Smart Contract Parallel Execution with Fine-Grained State Accesses

Schedule Generation

O Qreaay: queue for ready transactions

Read: I Read: I,
Write: Write: I,
\

Read: I,
Write: I3

O Multiple EVM instances

O Read/write access sequences

/

Qready X

e

-

T, =T T, becomes ready

Read: I, -7
Write: I,

Snapshot of states at B;_4

,
1- _d_ ﬂ,s Thread 1 Thread 2 Thre|ad 3

- g & & -
- | |

read write read &write Schedule over time

Smart Contract Parallel Execution with Fine-Grained State Accesses

Schedule Generation

O Qreaay: queue for ready transactions

O Multiple EVM instances

O Read/write access sequences

Snapshot of states at B;_4

read write read &write

Qready

Thread 1

Thread 2

Thread 3

Ty

T,
A :
Y
Stay idle !

Smart Contract Parallel Execution with Fine-Grained State Accesses

Early Write Visibility

» Transaction- vs. statement-level synchronization

No deterministic abortable
statements: require, assert,
Iteration 1 revert...

Iteration 1

! m Transaction i ’
% Transaction

teration 2
/rera oL | /ﬁerationz
. & E£3-

K

Release Point
pc:15 Release Point

pc: 15

Release Point

|
£

5 5
........

Execute after commitment _
Execute before commitment

Transaction-level synchronization Statement-level synchronization

Smart Contract Parallel Execution with Fine-Grained State Accesses

Commutative write

» Increment same state item without reading original value
» Perform commutative writes in parallel

» Merge increments to recover a complete value

executed in parallel!
8 opu «— G —
e v Acy =10 ;02 =
8 = Ly > >

OE Read: I, 15 Read: I,
Write: I,, I3 Write: I,

read write read &write

Smart Contract Parallel Execution with Fine-Grained State Accesses

Optimized Schedule Generation

Commutative |
writes on I, |

Smart Contract Parallel Execution with Fine-Grained State Accesses

Evaluation

» Comparisons
- DAG-based approach
o OCC-based approach

> Workload

o Transactions from Ethereum Mainnet
o Jan 1, 2022 -- April 30, 2022 (769,020 blocks in total)

o 122 million transactions and 84 million transactions (69%) made contract calls

> Testbed

o Ubuntu 18.04.3 LTS desktop equipped with an Intel Core 17 16-core and 32GB memory
o Up to 32 threads per validator

Smart Contract Parallel Execution with Fine-Grained State Accesses

Evaluation

» Research questions

- RQ1: How well do the parallel execution results of DMVCC meet the deterministic
serializability criteria?

- RQ2: How much speedup can DMVCC achieve over the serial execution and how does

it compare with other existing approaches?

o> RQ3: How efficient 1is DMVCC i1n a real-world blockchain environment?

Smart Contract Parallel Execution with Fine-Grained State Accesses

Experiment

» RQ1: how well do the parallel execution results of DMVCC meet the deterministic
serializability criteria?

o Compare the execution results of DMVCC and serial execution

o Matched results for 121,210 blocks

Smart Contract Parallel Execution with Fine-Grained State Accesses

Experiment

» RQ2: How much speedup can DMVCC achieve over the serial execution and how
does it compare with other existing approaches?

o Performance of EVM execution without taking the impact of consensus into account

o 1000 transactions per block
o 21.35x (DMVCC), 11.04x (DAG), 13.86x (OCC)

o High-contention setting: 1% hot contracts, 50% hot contract access

- 13.73x (DMVCC), 3.05x (DAG), 3.48x (OCC) x| e T
[_]pmvcce DAG
S | [oac 20 RJOCC
T | R occ e
2 10} 3
«x N
Ii

8 16 32

2 4 8 16 32 2 4
of threads # of threads
(a) Low contention (b) High contention

Fig. 7: Speedup of all parallel execution approaches. The x-axis
shows the number of threads, and y-axis shows the speedup achieved.

Smart Contract Parallel Execution with Fine-Grained State Accesses

Experiment

» RQ3: How efficient is DMVCC 1n a real-world blockchain environment?
o A micro Ethereum testnet with 20 validators
o Mining cycle 12s
- Low-contention setting: 19.79x, execution is not the bottleneck

o High-contention setting: 18.35x, DAG and OCC process 60% transactions of DMVCC

22

N
[

/D\ B
A7§===—0———@ o 20 O O ——u \D

=18}
- S —O—DMVCC
i 2161 —0—DAG
“UTDMVEC | St —A—ocC A
_ —0—DAG A —
=12} ,<A
o

[
S

(=3
[

TPS speedup
= =

—A—0CC A —R —©
12} 10f é_———o ©
2 4 8 16 32 2 4 8 16 32
of threads # of threads
(a) Low contention (b) High contention
Fig. 8: Throughput speedup for blockchain of all parallel execution
approaches.

Smart Contract Parallel Execution with Fine-Grained State Accesses

Conclusion

» Introduce a novel scheduling framework, DMVCC, which improves parallelism for high-

contention transactions with more fine-grained state accesses.

» Support write versioning, which helps avoid write-write conflicts, and early write

visibility, which makes writes visible to other transactions.

Smart Contract Parallel Execution with Fine-Grained State Accesses

Thank You

Smart Contract Parallel Execution with Fine-Grained State Accesses

Q&A

Validator

- [Packer J

o I
R Y- Sy

Obtain read/write 1

. . 1
AN inf ormation 8
\
AN
N
3
S

Contract

Add block to
current ledger

Paraller ¢aczaéion Wil

multiple thre.ds

y

Iteration1 Snapshot of states at B;_;

6B

Thread 2 Thread 3

Release Point
pc:15

& &

Release Point
pc:28

read write read &write

Smart Contract Parallel Execution with Fine-Grained State Accesses

