An Empirical Study to Evaluate AIGC Detectors on Code Content

Jian Wang’
Singapore Management University
Singapore
jwang@smu.edu.sg

Xiaofei Xie
Singapore Management University
Singapore
xfxie@smu.edu.sg

ABSTRACT

Artificial Intelligence Generated Content (AIGC) has garnered con-
siderable attention for its impressive performance, with Large Lan-
guage Models (LLMs), like ChatGPT, emerging as a leading AIGC
model that produces high-quality responses across various applica-
tions, including software development and maintenance. Despite
its potential, the misuse of LLMs, especially in security and safety-
critical domains, such as academic integrity and answering ques-
tions on Stack Overflow, poses significant concerns. Numerous
AIGC detectors have been developed and evaluated on natural lan-
guage data. However, their performance on code-related content
generated by LLMs remains unexplored.

To fill this gap, in this paper, we present an empirical study
evaluating existing AIGC detectors in the software domain. We
select three state-of-the-art LLMs, i.e., GPT-3.5, WizardCoder and
CodeLlama, for machine-content generation. We further created a
comprehensive dataset including 2.23M samples comprising code-
related content for each model, encompassing popular software
activities like Q&A (150K), code summarization (1M), and code
generation (1.1M). We evaluated thirteen AIGC detectors, com-
prising six commercial and seven open-source solutions, assessing
their performance on this dataset. Our results indicate that AIGC
detectors perform less on code-related data than natural language
data. Fine-tuning can enhance detector performance, especially
for content within the same domain; but generalization remains a
challenge.

CCS CONCEPTS

« General and reference — Empirical studies; « Security and
privacy — Social aspects of security and privacy; - Computing
methodologies — Natural language generation.

*Also with Nanyang Technological University.
1LShangqing Liu is the corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASE °24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1248-7/24/10.

https://doi.org/10.1145/3691620.3695468

Shangqing Liu"
Nanyang Technological University
Singapore

liu.shangqing@ntu.edu.sg
Yi Li

Nanyang Technological University
Singapore
yi_li@ntu.edu.sg

KEYWORDS
AIGC Detection, Code Generation, Large Language Model

ACM Reference Format:

Jian Wang, Shanggqing Liu, Xiaofei Xie, and Yi Li. 2024. An Empirical Study
to Evaluate AIGC Detectors on Code Content. In 39th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE °24), October
27-November 1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3691620.3695468

1 INTRODUCTION

In recent years, Artificial Intelligence Generated Content (AIGC)
has attracted significant attention and interest from academia and
industry. AIGC refers to content that is generated by advanced
generative Al techniques. With Al techniques becoming more ad-
vanced, the generated content shows significantly better quality
and is being used in a wide range of tasks. ChatGPT [5], released
by OpenAl, has become one of the most attention-grabbing ap-
proaches. Followed by ChatGPT, a series of large language models
have been proposed, such as Llama2 [66], GPT-4 [20].

Large language models have demonstrated remarkable profi-
ciency in generating content across a diverse range of domains.
Their abilities to comprehend context, adhere to instructions, and
produce coherent content make them particularly well-suited for
tasks such as drafting emails, generating articles, composing poetry,
crafting stories, and producing social media content. Furthermore,
they have confirmed their capabilities in software development
and have been widely used in software development tasks such
as writing documentation, creating user manuals, generating code
snippets, reviewing code and repairing code.

Although LLMs offer numerous benefits for users, it is impor-
tant to consider the potential for abuse. In the educational domain,
for instance, there is a risk that students may use LLMs to cheat
on exams or plagiarize assignments, which violates academic in-
tegrity. To avoid abuses, some universities have restricted the use of
LLMs, as shown in the recent reportl. Similarly, in the industry, the
source of content generated by LLMs must be carefully considered,
especially in security and safety-critical scenarios. Al-generated
content may have low quality or contain errors (e.g., toxic content
or bugs) that could lead to serious consequences [23]. For example,
to prevent malicious use of the contents generated by ChatGPT
when answering questions, Stack Overflow has announced that the

Uhttps://www.universityworldnews.com/post.php?story=20230222132357841

https://doi.org/10.1145/3691620.3695468
https://doi.org/10.1145/3691620.3695468
https://www.universityworldnews.com/post.php?story=20230222132357841

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

ChatGPT-generated content is temporarily banned,? because “the
average rate of getting correct answers from ChatGPT is too low, the
posting of answers created by ChatGPT is substantially harmful to
the site and to users who are asking and looking for correct answers”.

With the increasing use of LLMs in a wide range of domains,
including software development, it becomes more crucial to develop
effective tools to detect Al-generated content. For example, many
AIGC detectors [1, 2, 4, 6, 9, 11, 12, 16, 18, 19, 31, 56] from both
academia and industry has been developed to detect the generated
contents from GPT-series models, including GPT-2 [60], GPT-3 [25],
and ChatGPT. While these tools have been proposed to detect LLM-
generated content, it remains unclear how effective these tools are,
particularly in the context of the software development domains.
Most existing detection tools are evaluated on natural language
inputs, but it is still unknown whether they can also detect LLM-
generated code effectively.

To fill this gap, in this paper, we take a further step and conduct
a comprehensive empirical study to evaluate the existing detec-
tors, including both the open-source and commercial ones, on their
capacities of detecting the code-related content (e.g., code and doc-
uments) generated by LLMs. Specifically, the study aims to answer
crucial questions as follows: How accurate are the current tools for
detecting code-related content generated by LLMs? What are the dif-
ferences in performance between detecting natural language content
and code-related content generated by LLMs? Can fine-tuning the de-
tection tools enhance their capability to identify ChatGPT-generated
content? How robust are the detection tools in detecting content that
has been modified based on LLM-generated content?

To conduct this study and answer this question, We use three
state-of-the-art LLMs, namely GPT-3.5-Turbo, WizardCoder-15B,
and CodeLlama-34B-Instruct 3 for machine-content generation. For
each model, we constructed two datasets, namely the Code-Related
Content Dataset (CCD) and the Natural Language-Related Content
Dataset (NLCD), by generating related content using LLMs in the
domains of programming and natural language, respectively. CCD
consists of 1.08M samples across text-to-code scenario including
three code generation datasets APPS, CONCODE and Doc2Code-
LLM. NLCD consists of 1.16M samples across Q&A from stack
overflow and code-to-text generation [39]. Note that each sample
in CCD and NLCD is a pair, including the human-generated data
and LLM-generated data.

Based on this dataset, we design comprehensive experiments
to evaluate the capabilities of existing detection tools, including
seven open-source detectors and six commercial detectors. We
evaluate the performance of selected tools in detecting program
contents generated by LLMs with those generated by human. Ex-
tensive experiments have revealed that current AIGC detectors
struggle to detect code-related data compared to natural language
data. Although fine-tuning is able to improve performance, how-
ever, the generalization capacities are limited. Overall, the main
contributions of our paper are summarized as follows:

Zhttps://meta.stackoverflow.com/questions/421831/temporary-policy-chatgpt-is-
banned

3Note that these models have confirmed their superiority over other LLMs during our
project. We cannot include GPT-4 for experiments due to the limited budget.

Jian Wang, Shangqing Liu, Xiaofei Xie, and Yi Li

e We conducted a comprehensive empirical study to evaluate the
performance of thirteen AIGC detectors, including seven open-
source detectors and six commercial detectors, on detecting code-
related content generated by GPT-3.5, WizardCoder and CodeL-
lama.

e We construct two large-scale datasets namely CCD and NLCD,
consisting of 1.08M code-related samples and 1.16M natural
language-related samples. We have made our code and data pub-
lic* to facilitate the following research.

o The extensive experiments have indicated that AIGC detectors
perform worse on code-related data. Fine-tuning can enhance
the detector performance but is still limited to generalization.

2 EXISTING DETECTORS

To ensure the responsible and ethical use of Al-generated content,
various detectors have been developed to identify whether a given
piece of content was generated by an Al model. We have collected
multiple detectors [1, 2, 4, 6, 9, 11, 12, 16, 18, 19, 31, 56] as up to
2024, and their detailed information is presented in Table 1. The
“Detectable Models” column lists the types of models supported
by the detectors, where “Unknown” means the supported model
is unclear from the official documentation. Column “Interfaces”
indicates the supported interfaces through which the detection
tools may be accessed from. For example, “Website” denotes that
the detector can only be accessed from its official website, and “API”
means it supports access from standard programming interfaces. It
is worth noting that some commercial detectors that support API
access may not be free or may only allow a limited number of visits
per day. For instance, Sapling [16] provides API access at a cost of
25 dollars per month and Writefull [18] restricts access when the
daily quota is reached. For instance, GPTZero.me [12] provides API
access at a cost of 35 dollars per month and restricts access when
the daily quota is reached. Our collaborators manually registered
dozens of accounts for supporting our experiments. Finally, as is
shown in the “Input Length” column, each detector may have a
different requirement on the length of the input texts. For example,
the open-source detectors can only process input texts up to 512
tokens. The input lengths for the commercial detectors are also
different, which are presented in Table 1.

3 STUDY DESIGN

In this section, we give details on our study design. Our study is
centered around typical scenarios where LLMs have been used to
support software development activities. We collected data from
both LLMs and human experts in each usage scenario and then
compared the performance of different detectors.

3.1 Scenarios and Data Collection

LLMs have been widely used in software development activities.
For example, they can be used to answer programming-related
questions, summarize code snippets with natural languages, and
generate code based on natural language descriptions. In this study,
we select three state-of-the-art large language models, including
GPT-3.5-Turbo, WizardCoder-15B and CodeLlama-34B-Instruct, for
study. The selected models have shown their superiority over other

“https://sites.google.com/view/nlccd

https://meta.stackoverflow.com/questions/421831/temporary-policy-chatgpt-is-banned
https://meta.stackoverflow.com/questions/421831/temporary-policy-chatgpt-is-banned

An Empirical Study to Evaluate AIGC Detectors on Code Content

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 1: The details of the existing AIGC detectors.

Detector Detectable Models Interfaces Input Length
GPT-2 GPT-3 ChatGPT Llama Unknown Website API
GPT2-Detector [1] v v <512 tokens
DetectGPT [56] v v v <512 tokens
RoBERTa-QA [32] v v v <512 tokens
Open-source ArguGPT [53] v v v v v <512 tokens
MAGE [45] v N N v v <2048 tokens
RADAR [38] v v v v v <512 tokens
FastDetectGPT [24] v v v v <512 tokens
Multiscale [65] v v v v v <512 tokens
Grover.Allenai [13] v v v/ | 100 chars to 100k chars
Compilatio.net [6] v v v 200 chars to 2k chars
Contentatscale.ai [2] v v v 25 words to 25k chars
CopyLeaks.com [4] v v v v/ | 150 chars to 25k chars
Crossplag.com [14] v v v <3k words
Commercial ~GPTZero.me [12] v v v v v v 250 chars to 5k chars
Originality.ai [15] v v v 50 words to 300words
Sapling.ai [16] v v v v v 50 words to 2k chars
Scribbr.com [11] v v v v V' | 25 words to 500 words
Writefull.com [18] v v v v 50 words to 2k words
Writer.com [19] v v v <1.5k chars

LLMs. We exclude GPT-4 as its expensive cost. Furthermore, we
focus on three of the most common scenarios in software develop-
ment: (1) Q&A on programming topics, (2) code-to-text generation,
and (3) text-to-code generation. To conduct our study, we first col-
lect relevant data from both humans and LLMs. Then, we evaluate
the capacity of different detectors to detect LLM-generated contents
in these scenarios.

Data Filtering. Through our careful inspection of the generated
LLMs’ results from the preliminary experiments, we find that some
of them have identifiable symbols or phrases indicating that they
are generated by LLM. For example, some examples may have evi-
dent clues such as “As a language model..” to indicate it is generated
by LLM. Thus, we need to remove these samples to ensure the con-
structed dataset is non-trivial. Formally, we defined the following
rules for filtering. Firstly, if we find the generated content has the
keywords ‘ai model’, ‘artificial intelligence’, or ‘language model’
(case-insensitive), we remove these samples. Secondly, we filter
out samples that come with sentences such as, T apologize for the
confusion, but I am unable to ...". More such responses are provided
on our website.’4 Thirdly, for the code generated by LLMs, we
extract the code block marked by three backticks from LLM and
then remove the comments from the code block to only keep the
code contents. With these steps, we try to enhance the quality of
the constructed dataset and apply these steps to the subsequent
data collection process.

3.1.1 Q&A. ltis a common practice for programmers to search the
Internet for answers when they have questions on certain program-
ming tasks. Q&A websites, such as Stack Overflow, are designed
for this purpose. Stack Overflow collects and organizes relevant
answers, which become an essential resource for software devel-
opers today. Stack Overflow expects high-quality answers from
genuine experts to build a healthy and sustainable community (as
indicated in its current policy). Therefore, effective detection of
Al-generated contents with high accuracy is necessary to support a
sustainable Q&A service. Our first scenario focuses on studying the

effectiveness of AIGC detectors in identifying programming-related
answers generated by LLMs.

Data Collection. To evaluate the effectiveness of AIGC detectors
in the Q&A scenario, we used the Stack Overflow dataset from
Stack Exchange [7] which includes questions and answers posted
on the Stack Overflow platform from September 2021 to November
2022. We select the questions from SE-related domains, such as code
reviews, competitive programming challenges, data science and
machine learning questions, web development, and applications,
etc. For each question, we follow the standard process [3] to select
the answer that is accepted by the author as the human-generated
answer and use LLM to generate another answer in response to the
same question. We follow the following instructions [10] for the
design of the prompt:

I want you to act as a Stackoverflow post. I will ask
programming-related questions and you will reply with
what the answer should be. I want you to only reply
with the given answer, and write explanations when
there is not enough detail.

<Question>

where <Question> is the question we would like LLMs to answer.
In total, after the data filtering step, for each selected model, we
obtained 150K pairs of human-generated and LLM-generated an-
swers for the 150K questions. This dataset (denoted as Q&A-LLM)
provides a comprehensive benchmark for evaluating the perfor-
mance of detectors in identifying LLM-generated content in the
context of programming-related questions and answers.

3.1.2 Code-to-Text Generation. Generating natural language de-
scriptions of a given code snippet has been a long-standing research
challenge widely studied in academia [21, 40, 50]. Accurate descrip-
tions of code can help programmers better understand its func-
tionality and improve software development efficiency. However,
writing accurate code descriptions is a time-consuming and labori-
ous task. LLM has demonstrated excellent capabilities in generating

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

natural language descriptions of code, making it a promising solu-
tion for automating this task. Yet, it is still not advisable to replace
human-written code descriptions with machine-generated code de-
scriptions, for the lack of quality guarantees. Therefore, detectors
that are capable of identifying code descriptions generated by LLM
are necessary to discover massive use of machine-generated code
descriptions.

Data Collection. Specifically, we adopted the widely used bench-
mark CodeSearchNet [39], where each sample is a pair (code, descrip-
tion), across six programming languages including Ruby, Javascript,
Go, Python, Java, and PHP. Each sample has a docstring field which
contains the descriptions of the code produced by human experts.
To obtain code descriptions from LLMs, after several attempts to ver-
ify the quality of the generated content through different prompts,
we select a better prompt and ask LLMs to generate the summary
of the given code. The prompt is as follows:

You will be given a <LANG> function code and your
task is to generate a detailed summary of its behavior
and functionality. Your summary should clearly explain
what the function does, how it works, and what input
parameters and output values it expects. You should
write your explanation in clear and concise language.
<CODE>

where <LANG> is one of the six programming languages, and
<CODE-> is the target code we would like to summarize its de-
scription. In total, for each model, we obtain 1M samples from
CodeSearchNet and generate the answers using LLM, denoted as
Code2Doc-LLM. Each programming language accounts for a dif-
ferent number of samples. The number of Go, Java, Javascript,
PHP, Python, and Ruby is 182K, 181K, 65K, 268K, 281K and 27K
respectively. This dataset provides a comprehensive benchmark
for evaluating the performance of detectors in identifying natural
language descriptions of code generated by LLM across a range of
programming languages.

In the NL generation, we generated a total of 1.15M pairs of natu-
ral language samples, where each pair consists of human-generated
and LLM-generated natural language content.

3.1.3 Text-to-code Generation. With the advancements in Al tech-
nology, particularly the development of large language models,
there has been a surge of interest in automatically generating code
from natural language descriptions. Recent works [26, 58] have
revealed that LLMs are powerful at writing programs following hu-
man instructions. The use of Al-generated code may be prohibited
in some contexts, for example, due to policies on academic integrity.
Our third scenario studies the effectiveness of the existing detectors,
to better understand the technical feasibility of distinguishing code
generated by LLM from those written by human.

Data Collection. Specifically, we collected the LLM-generated code
based on three different code generation datasets, i.e., APPS [36],
CONCODE [41], and the Code2Doc-LLM dataset described in Sec-
tion 3.1.2.

e The APPS dataset [36] is a Python dataset consisting of coding
problems gathered from various public websites. Each problem
in the dataset is accompanied by its description, ground-truth so-
lutions, and test cases used to validate the implemented solutions.

Jian Wang, Shangqing Liu, Xiaofei Xie, and Yi Li

We regard the ground-truth solutions as the answers provided
by human experts. To obtain solutions from LLM, we design the
prompt as follows:
Please complete the Python code generation for the following
question, there may be some example test cases, and you can
use them to evaluate the generated code. Do not provide any
explanations, comments, test cases, or additional text, only
output the completed Python code in a markdown style and
nothing else.
<Question>
where <Question> is the placeholder of the problem description
and the function name provided in APPS. We finally collected
8.7K samples for each model, denoted as APPS-LLM dataset.
CONCODE [41] is a Java dataset included in the CodeXGLUE [54]
collection. Its goal is to generate class member functions for a Java
class based on natural language descriptions and the program-
matic context provided by the class environment, which includes
member variables and other member functions in the class. To
obtain answers from LLM, the prompt is designed following the
task description from CodeXGLUE:
Generate the source code of class member functions in Java,
given natural language description and class environment.
The class environment is the programmatic context provided
by the rest of the class, including other member variables
and member functions in the class. Please only reply with a
code block and avoid providing any explanations, comments,
imports, or additional text.
The nature language description is <Description>, the member
variables and member functions is <Class>.
where <Description> and <Class> are the placeholders of the
description and the programmatic context provided by the rest
of the class, including other member variables and member func-
tions in the class. The ground truth code provided in CONCODE
is considered the answer from human experts. We collected a
total of 66K samples for each selected model, which we refer to
as CONCODE-LLM dataset.
The Code2Doc-LLM dataset constructed in Section 3.1.2 consists
of detailed descriptions of given code generated by LLM. We can
naturally ask LLM to generate code based on the code descrip-
tions generated by LLM in the Code2Doc-LLM dataset. To do so,
we designed a prompt for generating code, as shown follows:
You will be provided with a detailed description of a func-
tion, and your task is to generate a function that implements
the program’s behavior based on that description. You should
write the function code as accurately as possible based on the
description, without providing any additional explanations
or assumptions. Your implementation should conform to the
standard of syntax and coding conventions.,
The original code in the Code2Doc-LLM dataset is considered
to be the data from human experts. Additionally, we collected a
total of 1M code samples generated by LLMs, which we refer to
as the Doc2Code-LLM dataset.

In the code generation, for each model, we generated a total of
1.08M pairs of code samples, where each pair consists of human-
generated and LLM-generated code.

An Empirical Study to Evaluate AIGC Detectors on Code Content

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 2: The statistics of the collected data for each selected large language model.

Split NLCD CCD

P Q&A-LLM Code2Doc-LLM | Doc2Code-LLM CONCODE-LLM APPS-LLM
Train 148K 908K 904K 65K 5K
Test 2K 97K 96.6K 1.4K 3.7K
Total 150K M 1M 66K 8.7K

In summary, we collected 2.23M samples for each selected large
language model. As the original CodeSearchNet provides the train-
valid-test split, we can directly use it to get the data split for the
LLM-generated dataset. We combine the validation and test sets
of Doc2Code-LLM, and Code2Doc-LLM respectively to expand
the scale of the testing for detectors. In addition, CONCODE does
not provide the groud-truth for the testset, hence we just use the
validation set for testing. Furthermore, as the data split of Q&A
dataset has not been provided, we randomly select 2k samples for
testing and the remaining 148k samples for training. The detailed
statistics of the NLCD and CCD are present in Table 2.

3.2 Selected Detectors

In this section, we introduce the AIGC detectors selected for this
study. The detectors are divided into two categories: commer-
cial and open-source. We chose six commercial detectors, namely
Grover, Crossplag.com, Originality.ai, GPTZero.me, Scribbr.com,
and Writer.com, as recommended by [17], due to their ability to
perform large-scale testing efficiently in terms of time and cost. Ad-
ditionally, to the best of our knowledge, there are currently seven
open-source detectors, each utilizing different detection algorithms.

3.2.1 Commercial Detectors. We divide the selected commercial
detectors into two sub-categories: free&unlimited quota and limited
quota or pre-paid.

o Free & Unlimited Quota: (1) Writer.com [19] is a free tool, though
the technical details have not been revealed on its official web-
site. However a small-scale study® indicated that it successfully
detects 40% of human-written content and 80% of Al-written
content. (2) Scribbr.com [11] is a free Al detector, which is able
to detect contents generated by GPT-2, GPT-3, ChatGPT, and
GPT4. (3) Grover [13] was released by allenai.org in May 2019,
focusing on defense against neural fake news. It employs a dual-
modal system of generator and discriminator. They reported
that Grover had achieved over 92% accuracy in distinguishing
human-generated samples from those written by machines.

Limited Quota or Pre-Paid : (1) GPTZero.me [12], according to its
official website, is an ensemble model that combines classification
models with statistical approaches, providing predictions at the
sentence, paragraph, and document levels. (2) Crossplag.com [14]
provides a variety of plagiarism detection tools and services
aimed at helping educators and publishers uphold academic in-
tegrity and ensure the originality of their content. Their technical
report mentions using strategies such as identifying inconsisten-
cies, analyzing language patterns, and employing Al detectors
to provide valuable insights. (3) Originality.ai [15], is trained on
Al-generated content using a popular NLP model that includes
data from GPT-4, ChatGPT, Claude-3, Gemini Pro 1.5, Llama, Al

Shttps://www.bloggersgoto.com/writer-com-ai-content- detector-review

Paraphrase, and Humanizer. Notably, their new model, testing
on GPT-4-Turbo, claims an accuracy of approximately 99% [8]

3.2.2 Open-source Detectors. Similarly, we categorize the open-
source detectors into two sub-categories: supervised training on
domain data and perturbation based training.

e Supervised Training on Domain Data: (1) GPT2-Detector [1] is
a fine-tuned detector from RoBERTa [52] released by OpenAl,
with a training dataset derived from the outputs of the 1.5B-
parameter GPT-2 model. (2) RoBERTa-QA [31]. proposed by Guo
et al,, is trained on the Human ChatGPT Comparison Corpus
(HC3) dataset, which includes 37K questions across financial,
medical, legal, psychological, and open domains to detect con-
tent generated by ChatGPT. (3) ArguGPT [53] is a fine-tuned
RoBERTa model designed to detect machine-generated argumen-
tative essays. The training data is collected from essays such
as TOEFL and GRE writing tasks, including 8k human-machine
comparison essays (4k human vs. 4k machine). (4) MAGE [45]
utilizes a wild dataset, collecting human-written texts from seven
distinct writing tasks, including story generation, news writing,
and scientific writing. It further utilizes 27 LLMs to generate
Al-generated content for training their detection model.
Perturbation-Based training: (1) RADAR [38], aims to jointly
train a robust Al-text detector via adversarial learning by si-
multaneously training a paraphraser and detector. Its perfor-
mance significantly improves from 0.892 to 0.920 compared to
DetectGPT [56] on the unseen dataset. (2) MultiScale [65] intro-
duces a length-sensitive Multiscale PU Loss for training, avoid-
ing the need to truncate data forcefully by treating the training
phase in multiple parts, cascaded with different scale factors. (3)
FastDetectGPT [24] is an upgrade version for DetectGPT [56],
substitutes DetectGPT’s perturbation step with a more efficient
method, the conditional probability function. This method offers
not only substantial performance benefits over DetectGPT but is
also much less compute intensive, their method accordingly uses
a new criteria, the conditional probability curvature, which they
find is more positive for LLM output than human. They report
performance boosting with an average of 28%, and inference
speedup 340 times.

3.3 Experimental Design and Research
Questions

In this section, we will present the designed research questions and
the experimental setup for each research question.

3.3.1 RQI: How effective are existing detectors in detecting LLM-
generated content? We will evaluate the performance of thirteen
detectors on dataset CCD-Test and NLCD-Test.

Evaluation Setup: Specifically, if the input length of an answer
exceeds the maximum sequence length required by the selected

https://www.bloggersgoto.com/writer-com-ai-content-detector-review

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

detector, we truncate it to meet the requirement. For some detectors,
a threshold is needed to distinguish between LLM-generated data
and human-generated data. An output probability greater than
the defined threshold indicates that the content is generated by
LLMs, such as ChatGPT. We adhere to the default settings of these
detectors, where GPTZero is set to 0.8 and the other detectors are
set to 0.5.

3.3.2 RQ 2: What factor of the generated content affects the detec-
tion performance? The first research question aims to explore the
detection performance of current detectors across different code
scenarios. We further want to explore the factor of the generated
content that affects the detection performance. We investigate three
crucial potential factors that might impact the detection perfor-
mance, including code complexity, code length, and programming
languages.

Due to the black-box nature of language models, it is unclear
whether a given model will tend to generate simple or complex
solutions, especially in coding scenarios where a problem may have
multiple implementation solutions. Intuitively, the longer the con-
tent generated by the model, the more likely it is to expose certain
latent features, enabling the detector to identify them. Additionally,
since code can be implemented in different programming languages,
the choice of programming language can also be a potential factor
affecting detection performance.

Experimental Setup: We investigate the impact of code complex-
ity, generated code length and different programming languages
on the test set of Doc2Code-LLM.

For the code complexity analysis, We follow the previous
work [62] to use the cyclomatic complexity algorithm, which mea-
sures the number of linearly independent paths through a program
module and a lower cyclomatic complexity is easier to understand this
code , to categorize each program into three types: Easy, Medium,
and Hard. The criteria are based on the ratio between the number
of linearly independent paths and the line of the code.

For the content length analysis, we first calculate the cut-off
points to divide the entire dataset, which combines outputs from
three LLMs, into three equal parts based on their tokenized length.
The cut-off points are [0-72], [72-192], and [192+] in the entire
Doc2Code-LLM-Test, noted Short, Medium, and Long, respectively.

Lastly, for the analysis of the effect of programming language,
as Doc2Code-LLM consists of six programming data: Go, Java,
Javascript, PHP, Python and Ruby. We directly use them for the
analysis.

3.3.3 RQ3: To what extent can fine-tuning improve detection perfor-
mance? Since the detectors we compared were primarily designed
for detecting natural language content, they may not perform op-
timally on our code-related dataset. Therefore, in this question,
we aim to investigate whether fine-tuning can enhance the perfor-
mance of the detectors.

Experimental Setup: We selected the open-source detector
RoBERTa-QA [31] for fine-tuning. Specifically, we fine-tuned seven
detectors with the dataset NLCD-Train and CCD-Train in Table 2.
The first three detectors fine-tuned with the training dataset of
Q&A-LLM, Code2Doc-LLM and the composite of Q&A-LLM and
Code2Doc-LLM, which are more related to detecting natural lan-
guage data, while the remaining detectors fine-tuned on APPS-LLM,

Jian Wang, Shangqing Liu, Xiaofei Xie, and Yi Li

CONCODE-LLM, Doc2Code-LLM and the composite of APPS-LLM,
CONCODE-LLM and Doc2Code-LLM, which are more related to
code data. The fine-tuned detectors are evaluated on the same test
dataset, i.e., NLCD-Test and CCD-Test.

3.34 RQ4: How robust are these detectors when the LLM-generated
data is slightly modified? In real-world scenarios, the content gen-
erated by ChatGPT may not be used directly, and some of the
generated content can be modified for customization to avoid detec-
tion. Similarly, for the human content that detectors can correctly
identify, it is necessary to investigate whether this content can still
be detected as human-written content after the modification. In
summary, we aimed to investigate the robustness of detectors.
Experimental Setup: We use the detector that can correctly iden-
tify the human code and LLM-generated code from APPS-GPT
for evaluation. We define five mutation operations to modify the
Python code as follows:

e FuncAddLine. It aims to modify the function invocation to a
different format. Specifically, the syntax for a function invocation
in Python is f{a, b, c) where the parameter a, b, c is the formal
parameter of the function f We define the mutation operator to
add the line breaks in the function for separation, for example
changing fa, b, ¢) to f{ \\a, \\b, \\c).

e For2While. It replaces for loops with while loops in Python. To
achieve this, we can traverse the AST to identify the initialization,
the condition, and the afterthought of for loop statement and
then add the initialization statement before the while loop.

o AugAssign. It operates to unfold some binary assignments e.g.,

+=, -=, "=, to the regular expressions for example the expression

a +=1can be mutatedtoa=a + 1.

AddDeadCode. It is designed to insert some dead code fragments

such as unused statements or repeated statements in the code. To

achieve this, we can repeatedly add the assignment statements
after the original statements. For example, there is an assignment

..var = ‘abc’..., we can further add the same statement after this

assignment i.e., ..var = ‘abc’, var = ‘abc’...

e VarRename. It aims to rename the function name or variable
names in the code. Following Roziere et al. [61], we rename the
function names and variable names with all their occurrence
with newly generated names such as F0, V1, V2,... in the code for
the implementation.

The defined mutation operations are common in practical scenarios.
Developers can easily apply the above simple transformations to the
code to meet their requirements. We want to explore whether the
detector can still correctly detect the modified content. Investigating
whether the detection tools can identify manually modified content
is crucial.

3.3.5 Evaluation Metrics. To evaluate the performance of our de-
tectors, we used their AUC scores, FPR and FNR as the evaluation
metrics.

AUC score. The AUC score of a detector is interpreted as the
probability that the model’s ability to accurately classify classes on
a scale from 0 to 1, where 1 is best and 0.5 is as good as a random
choice. For example, an AUC score of 0.5 implies that the model is
only as good as the random choice when assigning probabilities
to samples. The higher the AUC score of a classifier, the better its

An Empirical Study to Evaluate AIGC Detectors on Code Content

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 3: Comparison results of thirteen detectors.

NLCD-Test CCD-Test
Detector Model Q&A-LLM Code2Doc-LLM ‘ CONCODE-LLM Doc2Code-LLM APPS-LLM

Avg.(AUC) AUC FPR FNR AUC FPR FNR = Avg.(AUC) AUC FPR FNR AUC FPR FNR AUC FPR FNR

GPT-3.5-Turbo 26.94 0.00 99.95 71.82 3570 30.32 5490 31.30 59.90 49.97 7743 22.01 4994 79.05 19.16

GPT2_Detector [1] ~ WizardCoder-15B 47.98 578 100.00 2745 77.57 27.10 30.18 51.63 62.11 27.89 52.59 4433 0.00 100.00 48.26 76.35 22.22

CodeLlama-34B-Instruct 30.95 0.00 99.41 7482 30.96 30.30 62,61 2910 5039 47.06 53.74 49.27 4550 96.53 3.36

GPT-3.5-Turbo 37.19 7.14 91.17 3413 37.40 70.73 0.31 100.00 3.90 4292 56.21 53.40 3831 6147 50.82

RoBERTa-QA [32] WizardCoder-15B 34.80 13.85 89.84 3413 39.89 19.65 76.35 28.58 0.13 100.00 0.00 42.67 99.98 0.01 48.19 70.03 24.31

CodeLlama-34B-Instruct 56.61 22.55 60.66 27.13 51.02 71.42 0.05 100.00 2.84 38.06 52.51 65.49 46.55 90.42 8.05

GPT-3.5-Turbo 82.45 12.85 29.55 94.77 5.93 20.15 79.52 5.75 3038 49.53 29.69 65.62 47.46 9.33 87.21

ArguGPT [53] WizardCoder-15B 80.36 2546 7379 3971 93.66 6.03 24.10 57.02 76.91 2.34 34.14 4787 31.71 68.04 4455 99.90 0.00
CodeLlama-34B-Instruct 88.69 7.55 2457 97.12 3.05 11.80 69.29 2.34 4038 51.31 27.58 63.67 46.77 17.69 77.68

GPT-3.5-Turbo 73.99 25.21 36.23 17.83 9334 2294 4531 80.41 1143 4472 99.90 0.08 58.22 52.04 34.00

RADAR ([38] WizardCoder-15B 44.81 42.80 43.69 46.52 21.84 91.00 28.19 49.46 33.69 84.24 9.23 50.03 73.30 20.51 6793 47.20 23.60
CodeLlama-34B-Instruct 81.55 27.26 18.39 30.86 95.04 3.20 29.21 95.46 3.19 4533 85.90 12.00 70.70 36.39 30.07

GPT-3.5-Turbo 74.53 7.32 45.56 89.70 10.73 21.55 60.50 41.23 4045 50.02 71.55 2747 4980 47.04 51.02

MAGE [45] WizardCoder-15B 78.68 3321 2612 7758 92.11 9.55 18.69 55.64 62.52 2541 52.24 5036 70.87 2791 5842 2630 6091
CodeLlama-34B-Instruct 91.38 6.36 1569 91.15 10.63 18.71 6230 22.07 5493 50.06 67.17 3149 5679 35.83 50.51

GPT-3.5-Turbo 19.37 95.15 26.26 18.02 97.82 14.78 1.06 0.00 99.93 39.39 99.99 0.01 48.55 67.99 30.12

MultiScale [65] WizardCoder-15B 24.13 24.89 63.63 58.10 29.63 41.24 7470 36.51 0.30 100.00 0.28 50.54 55.96 3541 7625 1391 36.85
CodeLlama-34B-Instruct 29.75 63.17 57.64 2313 64.94 7272 0.29 0.00 99.93 39.07 97.89 1.79 73.10 27.57 32.87

GPT-3.5-Turbo 9222 1272 17.70 97.89 5.92 8.63 5436 68.13 1540 57.65 57.07 3049 5991 63.30 19.62

Fast-DetectGPT [24] WizardCoder-15B 90.02 55.90 3.84 76.44 96.73 6.91 11.51 72.88 92.21 13.20 1732 83.03 27.22 24.03 71.01 4485 24.16
CodeLlama-34B-Instruct 98.61 3.48 5.44 98.78 2.00 5.44 81.65 20.72 3130 78.84 3045 28.11 77.26 36.09 22.73

GPT-3.5-Turbo 76.00 37.88 9.19 6543 57.21 2.11 51.14 97.02 0.64 50.79 95.24 3.21 50.90 95.06 3.16

Crossplag.com [14] ~ WizardCoder-15B 71.42 66.49 39.43 25.11 6639 57.23 3.83 51.99 50.22 97.02 2.48 53.70 87.54 4.97 52.01 90.47 5.40
CodeLlama-34B-Instruct 85.92 29.46 4.03 68.26 57.21 0.48 51.27 96.95 0.50 54.76 87.54 2.95 5312 90.47 3.36

GPT-3.5-Turbo 73.74 21.09 3144 9379 5.88 6.54 31.37 48.83 88.43 50.33 7.62 91.72 49.97 3.11 96.94

GPTZero.me [12] WizardCoder-15B 76.41 35.09 38.11 91.72 86.13 589 2186 42.84 25.62 4883 9993 46.81 6.51 99.87 51.20 2.96 94.65
CodeLlama-34B-Instruct 76.83 21.09 25.25 92.88 5.88 8.37 26.44 48.83 98.30 50.72 6.51 92.06 53.11 3.01 90.77

GPT-3.5-Turbo 49.77 100.00 0.23 50.00 100.00 0.00 50.00 100.00 0.00 50.00 100.00 0.00 50.00 100.00 0.00

Grover [13] WizardCoder-15B 46.83 31.21 100.00 21.00 49.98 100.00 0.02 49.99 50.00 100.00 0.00 50.00 100.00 0.00 50.00 100.00 0.00
CodeLlama-34B-Instruct 50.00 100.00 0.00 50.00 100.00 0.00 50.00 100.00 0.00 50.00 100.00 0.00 49.95 100.00 0.05

GPT-3.5-Turbo 9431 13.59 8.46 87.21 20.16 1091 45.45 3.48 86.59 57.76 6032 28.78 58.09 40.88 46.38

Originality.ai [15] WizardCoder-15B 86.15 57.01 37.33 25.57 8842 19.65 8.57 54.42 26.08 3.48 94.61 57.39 7842 7.41 59.31 68.25 14.58
CodeLlama-34B-Instruct 98.55 3.89 5.12 91.40 13.02 5.57 48.11 3.48 90.84 66.88 51.66 23.69 7074 43.07 24.46

GPT-3.5-Turbo 88.67 10.21 21.71 98.66 1.80 3.35 99.42 3.26 3.69 60.19 53.05 29.85 2697 80.53 1.89

Scribbr.com [11] WizardCoder-15B 88.10 46.42 41.99 43.46 99.06 1.68 1.48 71.20 98.67 1.77 1.99 64.69 39.62 38.44 5810 38.99 45.01
CodeLlama-34B-Instruct 96.72 4.21 4.57 99.07 1.63 1.25 99.13 1.14 1.42 67.99 39.61 3448 65.68 41.18 31.09

GPT-3.5-Turbo 78.08 2855 2833 62.10 486 58.12 39.56 3.76 90.35 46.93 0.90 98.97 4839 16.00 82.87
Writer.com [19] WizardCoder-15B 28.97 0.00 24.06 100.00 6.12 75.66 82.72 22.94 0.00 4.80 100.00 6.02 100.00 0.00 0.00 5.20 100.00
CodeLlama-34B-Instruct 0.12 93.60 99.18 2740 43.08 67.85 1127 64.73 83.25 19.78 78.38 57.45 3452 55.66 54.38

ability to distinguish between positive and negative classes. We
refer to the data generated by LLM as the positive class and the
human-generated content as the negative class.
FPR. It refers to the false positive rate, calculated as FPR = %
where FP is the number of false positives (i.e., samples incorrectly
classified as LLM-generated), TN is the number of true negatives
(i.e., samples correctly classified as human experts) and N = FP+TN
is the total number of ground truth negatives (i.e., samples labeled
as human experts).
FNR.It refers to the false negative rate, calculated as FNR = %
where FN is the number of false negatives (i.e., samples incorrectly
classified as human experts), TP is the number of true positives (i.e.,
samples correctly classified as LLM-generated) and P = FN + TP is
the total number of ground truth positives (i.e., samples are labeled
as LLM-generated).

A lower FPR indicates that the model is less likely to mislabel
human contents as machine generated, while a lower FNR indicates
the reverse. Hence, lower FPR and FNR indicate better performance.

3.3.6 Experiments configuration. All experiments related to GPT
were conducted using the OpenAlI official API, i.e., the GPT-3.5-
turbo-0125 version. For experiments involving open-source models
such as WizardCoder-15B and CodeLlama-34B-Instruct, the open-
source framework vLLM [43] was utilized. These models were
deployed on an NVIDIA DGX system equipped with eight A100
GPUs. A temperature of 0.2 was applied for the generation of data.

4 STUDY RESULTS

In this section, we present the experimental results along with our
analysis in an attempt to answer each research question.

4.1 ROQ1: Effectiveness of Existing Detectors

The performance of the thirteen detectors on different datasets
is shown in Table 3 where the column Avg.(AUC) denotes the
average AUC across three different models, and the row Avg.(model-
wise) denotes the average value on a specific LLM across different
detectors.

In general, the results indicate that detecting LLM-generated
content is challenging. On NLCD-Test, the average AUC, FPR, and
FNR are 61.44, 36.58, and 31.82, respectively. On CCD-Test, these
values are 49.62, 53.08, and 36.74, respectively. Additionally, the
AUC on NLCD-Test is higher than on CCD-Test, while FPR and
FNR are lower. This suggests that detecting LLM-generated code is
even more difficult than detecting natural language content, poten-
tially because most existing detectors are trained with more natural
language data than code data.

We calculate the average AUC, FPR, and FNR for open-source
detectors in the upper part of Table 3 and commercial detectors
separately. For open-source detectors, the average values are 53.05,
45.26, and 36.20, respectively, while for commercial detectors, these
values are 55.86, 47.89, and 33.10, respectively. These results confirm

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Jian Wang, Shangqing Liu, Xiaofei Xie, and Yi Li

Table 4: The AUC performance of different detectors on the Doc2Code-LLM testset in terms of code complexity.

Complexity Model Avg. GPT2 Detector RoBETa-QA ArguGPT MAGE RADAR MultiScale Fast-DetectGPT = GPTZero.me Writer.com Scribbr.com Crossplag.com Originality.ai
GPT-3.5-Turbo 50.82 50.36 48.58 45.69 51.36 44.01 40.55 57.91 50.77 47.39 64.52 50.26 58.40
Easy WizardCoder-15B 50.74 50.27 48.06 45.77 51.33 43.75 40.20 58.21 50.68 47.42 64.63 50.27 58.30
CodeLlama-34B-Instruct 50.74 50.37 48.00 46.12 51.55 43.63 40.30 58.13 50.60 47.19 64.62 50.22 58.10
GPT-3.5-Turbo 49.12 49.83 33.34 54.19 49.01 48.76 40.14 56.02 49.66 45.37 56.35 50.40 56.35
Medium WizardCoder-15B 49.13 49.60 33.78 54.11 48.72 48.97 39.22 56.09 49.76 45.54 56.66 50.59 56.48
CodeLlama-34B-Instruct ~ 49.15 49.66 34.33 53.66 48.42 48.11 38.21 56.77 49.87 45.83 57.15 50.77 57.04
GPT-3.5-Turbo 48.45 48.77 35.42 53.63 47.37 43.19 35.06 59.00 49.65 47.44 50.34 52.73 58.76
Hard WizardCoder-15B 48.70 48.94 35.67 53.35 47.61 44.67 36.51 58.19 49.88 47.38 51.36 52.31 58.53
CodeLlama-34B-Instruct ~ 48.80 48.94 35.74 53.27 47.14 44.39 36.62 58.68 49.93 47.71 50.85 52.71 59.57
Avg. 49.64 39.22 51.09 49.17 45.50 38.53 57.67 50.09 46.81 57.39 51.14 57.95

Table 5: The AUC performance of different detectors on the Doc2Code-LLM testset in terms of code length.

Length Model Avg. GPT2 Detector RoBETa-QA ArguGPT MAGE RADAR MultiScale Fast-DetectGPT ~GPTZerome Writercom Scribbrcom Crossplag.com Originality.ai
GPT-3.5-Turbo 33.69 33.46 36.26 33.41 34.12 36.09 36.55 31.40 33.33 32.92 3233 32.90 31.56
Short[0-72]] WizardCoder-15B 50.89 50.87 50.08 49.49 52.90 48.42 46.70 53.50 49.84 45.21 60.04 49.81 53.82
CodeLlama-34B-Instruct 50.68 51.08 49.36 49.91 52.87 47.94 46.17 53.56 49.78 44.64 59.20 49.81 53.85
GPT-3.5-Turbo 32.87 33.39 32.08 32.81 33.02 31.80 32.16 33.13 33.32 32.88 33.49 33.09 33.25
Medium[72-197] WizardCoder-15B 49.66 49.87 41.77 49.14 49.64 42.82 37.64 57.87 50.40 46.87 60.75 50.44 58.69
CodeLlama-34B-Instruct ~ 49.60 49.81 4147 48.69 49.40 43.06 37.86 57.39 50.44 46.70 61.04 50.41 58.89
GPT-3.5-Turbo 33.44 33.15 31.66 33.78 32.86 32.11 31.29 35.47 33.36 34.21 34.18 34.01 35.19
Long[197+] WizardCoder-15B 50.39 49.03 37.54 49.40 47.73 41.59 33.90 63.23 50.85 50.15 62.80 52.82 65.65
CodeLlama-34B-Instruct 49.96 49.15 38.40 49.69 48.41 41.97 34.59 61.48 50.51 49.02 61.17 52.14 62.94
Avg. 44.42 39.85 44.04 44.55 40.64 37.43 49.67 44.65 42,51 51.67 45.05 50.43

Table 6: The AUC performance of different detectors on the Doc2Code-LLM testset on 6 programming languages.

Language Avg. GPT2_Detector RoBETa-QA ArguGPT MAGE RADAR MultiScale Fast-DetectGPT ~GPTZero.me Writer.com Scribbr.com Crossplag.com Originality.ai
Go 47.95 46.60 17.50 39.93 48.86 58.61 48.76 59.82 50.06 48.21 53.24 52.32 51.51
Java 51.75 50.31 33.78 59.94 52.37 47.12 36.36 63.55 51.82 47.96 67.58 50.42 59.80
Javascript 51.56 48.56 53.30 51.58 45.73 40.47 27.23 55.17 49.61 47.67 80.91 51.21 67.29
PHP 50.74 49.36 53.29 38.00 50.75 40.48 38.21 59.58 50.79 49.80 68.13 50.55 59.99
Python 47.88 52.83 45.54 58.17 49.52 41.79 39.91 57.38 48.17 41.70 37.03 50.76 51.80
Ruby 49.98 49.80 87.28 45.23 48.04 27.59 33.14 50.06 50.47 40.45 61.95 44.88 60.87
Avg. 49.58 48.45 48.81 49.21 42.68 37.27 57.59 50.15 45.96 61.47 50.02 58.54

that commercial detectors perform better than open-source detec-
tors. Furthermore, within each category, we observe variations in
performance. For open-source detectors, Fast-DetectGPT performs
the best, while for commercial detectors, Scribbr.com performs
better than others.

Further analysis of these detectors reveals that some are ineffec-
tive. For example, Grover’s FPR value is 100 on the test set, indicat-
ing that it classifies all human content as machine-generated con-
tent. Similarly, GPTZero.me’s FNR value is nearly 100 on the CCD
test, meaning that GPTZero.me classifies all machine-generated
content as human content, resulting in blind judgments. This com-
prehensive evaluation across different detectors on different content
ensures a thorough understanding of detection performance.

Answers to RQ1: Existing AIGC detectors generally exhibit
better performance on natural language data compared to code
data, indicating that detecting LLM-generated code is a more
challenging task. Despite the superiority of commercial detec-
tors over open-source ones, both still encounter difficulties in
accurately detecting LLM-generated code.

4.2 RQ2: Ablation Study of Different Factors

We first investigate the effect of code complexity on detection per-
formance across different detectors. Specifically, we divide the code
into easy, medium, and hard categories for testing. The experimental
results are presented in Table 4. We observe that as the complexity
of the code increases, the AUC also decreases correspondingly, al-
though the extent of the decrease is not very large. Hence, we can

conclude that hard code with more complex logic is more challeng-
ing for detectors to identify. Furthermore, comparing the detection
performance between open-source and commercial detectors across
the easy, medium, and hard categories, we find that the average
AUC for open-source detectors in terms of easy, medium, and hard
codes is 48.29, 47.19, and 46.29, respectively, while for commercial
tools, these values are 54.22, 51.85, and 51.94. We can observe that
commercial tools have better detection performance on codes of
different difficulty levels.

We further investigate the effect of code length on detection
performance, and the experimental results are presented in Table
5. We find an interesting phenomenon: for commercial detectors,
as the length of the LLM-generated content increases, the detec-
tor finds it easier to make the correct judgment. For example, for
Originality.ai on the test set of GPT-3.5-Turbo, when the content
length increases from short to medium, the AUC increases from
31.56 to 33.25, and finally reaches 35.19 when the content length is
long. Similar phenomena also exist in other commercial detectors
across different LLM-generated content. However, for open-source
detectors, this phenomenon is not as obvious. Intuitively, the longer
the model output, the easier it is for the detector to identify that the
result is generated by the model. Commercial detectors follow this
intuition, while open-source detectors do not. This demonstrates
that commercial tools are more reliable than open-source tools.

Finally, we investigate the detection performance of the detectors
across different programming languages. The experimental results
are presented in Table 6. We observe that some detectors are stable
in detecting code written in different programming languages. For

An Empirical Study to Evaluate AIGC Detectors on Code Content

Table 7: Results of fine-tuned models on different NLCD-
Train datasets.

NLCD-Test
Q&A-LLM Code2Doc-LLM
AUC FPR FNR | AUC FPR FNR

Unfined-tuned RoBERTa-QA 037 007 091 | 034 037 071

Q&A-LLM 1.00 0.00 0.00 | 0.69 0.99 0.00
Code2Doc-LLM | 0.84 0.08 0.41 | 1.00 0.00 0.00

Detector

ROBERTa-QA | " bosite-NL | 1.00 0.00 0.00 | 100 0.00 0.00
|~ Avg. | 0.95 003 014 | 090 033 0.00

Q&A-LLM | 089 021 018 | 042 034 074

MLP Code2Doc-LLM | 043 052 065 | 1.00 0.00 0.01

Composite-NL 1.00 0.01 0.01 | 0.78 034 0.24

Table 8: Results of fine-tuned models on different CCD-Train
datasets.

CCD-Test
Detector CONCODE-LLM Doc2Code-LLM APPS-LLM
AUC FPR FNR | AUC FPR FNR | AUC FPR FNR

Unfined-tuned RoBERTa-QA [0.03 1.00 0.04 [043 056 0.53 [038 0.62 051
APPS-LLM 050 000 1.00 | 0.61 039 043 | 094 049 0.00
CONCODE-LLM | 1.00 0.00 0.0 | 0.53 099 0.00 [0.52 1.00 0.00
RoBERTa-QA | Doc2Code-LLM | 0.94 0.00 094 | 1.00 004 001 | 056 080 0.6
Composite-Code | 1.00 0.00 0.00 | 1.00 0.04 001 | 0.84 053 0.01
~ Avg.] 086 000 049 | 078 037 011 | 071 070 0.02
APPS-LLM 029 000 1.00 | 051 013 083] 073 038 0.29
CONCODE-LLM | 0.99 002 0.08 | 0.44 098 002 [043 068 0.40

MLP Doc2Code-LLM | 0.66 048 0.34 | 0.89 0.22 0.17 | 0.56 0.45 0.47
Composite-Code | 0.98 0.06 0.13 | 0.89 0.24 0.16 | 0.68 041 0.32
Avg 0.73 0.14 038 | 0.68 040 030 | 0.60 048 0.37

example, except for Scribbr.com, the remaining commercial detec-
tors demonstrate stability across different programming languages.
Some open-source detection tools also exhibit consistent results,
such as RoOBERTa-QA. However, we notice that the AUC value for
Ruby/Go is extremely high/low compared to other programming
languages in some cases. Similarly, the AUC value for JavaScript is
lower than that of others for MultiScale. We speculate that this im-
balance in the data used for training these detectors may contribute
to these variations in performance across different programming
languages.

Answers to RQ2: An ablation study from a different perspec-
tive confirms that commercial tools are indeed more reliable
than open-source tools in detection. Generally, the shorter and
less complex the generated code, the more challenging it is for
detection tools to identify.

4.3 ROQ3: Performance of Fine-tuning

Considering that existing detectors primarily focus on natural lan-
guage content, we further investigate whether fine-tuning code
datasets can enhance detection performance for code data. We
fine-tuned RoBERTa-QA with different training samples. Since
RoBERTa-QA’s detection performance in RQ1 is inferior to oth-
ers, we aim to explore to what extent and how fine-tuning can
improve RoBERTa-QA’s detection performance in this experiment.

Table 7 presents the results of fine-tuning RoBERTa-QA using
various training datasets from NLCD-Train. We then evaluate this

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

model on different test sets from NLCD-Test. The second row dis-
plays the performance of the original detector in Table 3 as a ref-
erence for comparison with the three newly fine-tuned detectors.
The "Composite-NL" row refers to combining both training sets
(i.e., Q&A-LLM and Code2Doc-LLM from NLCD-Train). Similarly,
Table 8 presents the results of fine-tuning using training datasets
from CCD-Train.

The results show that fine-tuning can significantly enhance the
performance of existing detectors, both for natural language and
code in the domain data, i.e., fine-tuning on a training set and then
testing on the corresponding test set. It indicates that some underly-
ing patterns still exist in the ChatGPT-generated content, although
we have applied some rules for filtering (See Section 3.1). We try to
figure out what are the patterns by manually investigating the gen-
erated content by ChatGPT, however, we find that it is challenging
and we cannot summarize it. We infer that these features might
exist in a high-dimensional space and cannot be easily summarized
in a low-dimensional space. To confirm this finding, we further
design a supplementary experiment to determine whether these
patterns can be identified through a simple classifier rather than
a deep neural network such as RoBERTa. Specifically, We train a
single-layer fully connected neural network (i.e., MLP) as the clas-
sifier on the corresponding training set and further test it across
different test sets. The experimental results are presented in the
last row of Table 7 and Table 8. We can observe that the average
AUC score of MLP on NLCD-Test and CCD-Test is 0.75 and 0.67,
respectively, which is lower than RoBERTa-QA 0.93 and 0.78. By
comparing the performance of MLP and RoBERTa, we can find that
shallow neural networks with fewer parameters are worse than
deep neural networks, which indicates that the hidden patterns
may exist in a high-dimensional space, which is difficult for shallow
neural networks to learn.

Furthermore, we observed that fine-tuned models trained on
one dataset demonstrate certain generalization capabilities to other
datasets. For instance, a model fine-tuned on Q&A-LLM performs
better on Code2Doc-LLM compared to its original detector, with
the AUC improving from 0.34 to 0.69. Similarly, models trained with
CCD-Train show similar improvements. This suggests that fine-
tuned models can learn common patterns across different scenarios
in LLM-generated content. However, with the increasing value of
AUC, FPR also increased accordingly. For example, a model fine-
tuned on Q&A-LLM has an FPR (0.99), higher than the unfine-tuned
model (0.37) on Code2Doc-LLM. Similar issues also exist on CCD-
Test. Thus, we can conclude the generalization capabilities are still
limited.

Answers to RQ3: Fine-tuning on the collected ChatGPT-
generated content can significantly improve the detection per-
formance of the detectors. We infer that there are some hidden
patterns in the high-dimensional space to indicate the content
is generated by ChatGPT, however, these patterns are not easily
discernible by the naked eye.

4.4 RQ4: Robustness Analysis

In this section, we select the ROBERTa-QA detector that is fine-
tuned on the Composite-Code to evaluate the robustness. The re-
sults are presented in Table 9, where the row Composite-Code

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

defines the number of samples that the detector can correctly iden-
tify in the APPS-LLM test set of GPT-3.5 Turbo. We can observe
that the detector can identify 3729 GPT-3.5-generated codes and
1442 Human codes in the APPS-LLM test set. Furthermore, Crgte
refers to the proportion of the 3729 originally detectable code gen-
erated by GPT-3.5 that cannot be detected as the GPT-3.5 generated
content after mutation, and Hy4;e refers to the proportion of 1442
originally detectable human-write code that cannot be detected as
the human-write content after mutation. The Hybrid refers to ran-
domly selecting one mutation operation from the defined mutation
set to modify the code and repeat this process five times.

From Table 9, we can find that in the GPT-3.5-generated code
data, the defined mutation operations are able to effectively evade
detection by the detector i.e., the detector cannot correctly detect
that this is the content generated by GPT-3.5 after the mutation. For
example, there are 2096 samples that the detector cannot correctly
detect that this content is generated by GPT-3.5 through FuncAd-
dLine mutation to modify the original code. In the defined five
mutation operations, we find that VarRename is relatively less ef-
fective than others in evading detection in GPT-3.5-generated data.
There are only 636 GPT-3.5-generated codes that the detector fails
to detect as the GPT-3.5-generated content after the VarRename
mutation. We infer that the detector’s recognition of whether the
content was generated by GPT-3.5 may not be based on variable
names. Thus, modifying the variable names has less effectiveness
in changing the detector prediction results. Furthermore, We also
find that randomly mixing these mutation operators can change
the detector’s predictions more than using a single operator alone.
There are 2704 GPT-3.5-generated codes that the detector fails to
predict as the GPT-3.5-generated content. It indicates that mixing
multiple mutations are more likely to successfully evade detection.

When referring to the detection performance of the mutation
of the human-write content, in the right column of Table 9, we
can observe that the defined mutation operators have almost no
effect on changing the detector prediction results. For example,
there is only one human-write code to be detected as the ChatGPT-
generated content by the mutation of AugAssign and For2While. By
comparing the mutation performance on the ChatGPT-generated
content, we infer that the ChatGPT-generated content is more
sensitive than human-write content and it is more susceptible to
the influence of mutations.

Answers to RQ4: The mutation operators can effectively
change the detection results of content generated by ChatGPT,
but they may fail to change the results of human write content.
This might be caused by the content generated by ChatGPT is
more sensitive.

5 DISCUSSION

5.1 Threats to Validity

Internal Validity. First, the prompts we used to generate the LLM-
based content may affect our results. We designed our prompts
to mimic what an average user may provide to LLMs under the
corresponding usage scenarios. These may not always be the most
representative ones. We plan to investigate the effects of different
prompts in the future. Furthermore, the answers generated by LLMs
are non-deterministic. Different answers may be generated even for

Jian Wang, Shangqing Liu, Xiaofei Xie, and Yi Li

Table 9: Robustness analysis of the fine-tuned models.

GPT-3.5-Turbo Human

Detect

crector Num Crgre | Num Hpgre

Composite-Code | 3729 - 1442 -
FuncAddLine 2096 0.56 101 0.07
AugAssign 1219 0.33 1 0.00
For2While 693 0.19 1 0.00
AddDeadCode 1926 0.52 7 0.00
VarRename 636 0.17 54 0.04
Hybrid 2704 0.73 173 0.12

the same prompt. But for the purpose of constructing datasets to
evaluate AIGC detectors, the impact of non-determinism is limited.

Second, we could not always verify the source of human-
provided data in our dataset. For instance, we considered the an-
swers in the Stack Overflow dataset to be provided by human users,
but this may not always be true. Some answers could be gener-
ated by other tools. Similarly, treating the code snippets in APPS,
CONCODE, and Code2Doc as human-written may not always be
reliable. But since these datasets were mostly populated with data
generated before LLMs became mainstream, we estimate the impact
to be limited. Similarly, it is not always possible to verify whether
the data from an LLM output is genuinely generated by the model
or simply replicates training data from humans. This distinction is
particularly challenging when we do not have access to the training
data. For the purposes of this paper, all content from LLM outputs
is treated as Al-generated data.

Finally, the detectors we studied require detection thresholds to
be set, and any threshold chosen may not always work the best
in different settings. We acknowledge this potential threat and
used the recommended values for each detector to mitigate this
issue. Lastly, the filter algorithm may not perform "perfectly”, there
are still some implicit patterns that exist in LLMs-generated even
after filtering, we have found it challenging to definitively pinpoint
patterns belonging to Al-generated code. One observed potential
pattern that could skip the filter algorithm, which was contributed
by our collaborator taking 50 human hours, is that LLMs often
format assignment statements with spaces (e.g., a = b), whereas
human-written code may not consistently use such spacing (e.g.,
a=b). Yet, this is not a definitive marker, as formatting can also
vary among human coders. We acknowledge some patterns that
are obscure to humans, such as lead finetune, which easily reaches
saturation.

External Validity. The results obtained on the datasets we used and
the detectors we studied may not be generalizable to other data
and tools. To mitigate this threat, we collected data from differ-
ent software development scenarios and contexts to make it more
representative of real-world development practice. We selected
both commercial and open-source detectors, which we believe rep-
resent the state-of-the-art. Lastly, with the rapid development of
LLMs, detecting Al-generated content is becoming increasingly
difficult. Continuous efforts are needed to improve detection meth-
ods. Even if technical detection becomes impossible, governance

An Empirical Study to Evaluate AIGC Detectors on Code Content

policies should mandate identification in cases where misuse is a
concern.

5.2 Implication

The implications of this study vary across stakeholders. Software
developers may increasingly rely on Al-assisted code generation
to replace buggy code, with a focus on ethical integration into
their workflows. Managers concerned with code quality will face
challenges in ensuring Al-generated code meets security, perfor-
mance, and compliance standards. In education, academic institu-
tions must balance the use of Al tools with concerns over originality,
intellectual property, and maintaining academic integrity. Policy-
makers and regulatory bodies may push for clear guidelines on
Al-generated content, including issues related to copyright and ac-
countability. For LLM developers, watermarking techniques could
be explored to trace Al outputs, while researchers working on Al
content detection may pursue new directions, such as refining detec-
tion algorithms and establishing benchmarks for validation [35, 68].

6 RELATED WORK

6.1 Al in Software Engineering

In the early stages of this field, some smaller neural networks with
fewer parameters were used to solve the problems in software engi-
neering such as source code summarization [21, 50], vulnerability
detection [48, 73] and code search [30, 51]. Different neural net-
work architectures are used, such as LSTMs [37], Transformer [67],
and Graph Neural Networks [47]. With the development of this
field [35, 71, 72], some more advanced techniques are adopted to
achieve higher performance, such as pre-training. The early works
for code pre-trained models such as CodeBERT [28], GraphCode-
BERT [33] take encoder-only Transformer as the architecture to
pre-train a general model on the code-related data and then fine-
tune this pre-trained model to downstream tasks to achieve superior
performance. The subsequent work has made further improvements
such as PLBART [22] and CodeT5 [70], which use encoder-decoder
Transformer as the model architecture to improve the model capac-
ity.

Although these pre-trained models have shown significant im-
provements in different software engineering tasks compared with
previous works, they still cannot be applied in a real scenario. Ope-
nAl took a further step and released CodeX model [26], which is
trained from the GPT model on publicly available code from GitHub.
Furthermore, a distinct production version of CodeX powers GitHub
Copilot. ChatGPT released by OpenAl is another representative
code, which is fine-tuned from GPT-3.5 series with RLHF for the
alignment. The massive knowledge in the GPT-3.5 series and the
powerful conversation ability enable ChatGPT to generate accu-
rate answers in different domains. Hence, it can also be applied to
software engineering, such as code generation [57], code refine-
ment [34], program repair [42, 63, 64] and program specification
generation [55]. For example, Sobania et al. [63] utilized ChatGPT to
fix bugs on the standard bug-fixing benchmark QuixBugs [49] and
outperformed the state of the art, managing to fix 31 out of 40 bugs.
It is precise because ChatGPT has been widely used in software en-
gineering, in this work, we explore whether the ChatGPT-generated
code can be detected by existing detectors.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

6.2 DeepFake Detection

DeepFake refers to the creation or manipulation of facial appear-
ance through deep generative approaches and deepfake detection
aims to identify whether an image or video is synthesized with
AT or produced naturally with a camera, which is similar to an
AIGC content detector. Based on the extracted features, they can
be mainly categorized into spatial-based, frequency-based, and bio-
logical signal-based. Detecting deepfake on the spatial domain is
the most popular technique in the existing studies [44, 69], and it
aims to observe various visible or invisible artifacts on the spatial
domain for distinguishing real and fake. Apart from the spatial
domain, because the differences between real and synthesized fake
faces can also be revealed in the frequency domain, there are also
some studies [29, 59] exploiting the differences from the frequency
domain. Furthermore, as real facial images and videos produced
with cameras are natural compared to synthesized fake faces, bio-
logical signals can be used for distinguishing [27, 46, 68]. Compared
with deepFake, where the detected objects are images or videos, we
aim to identify the text content synthesized by LLMs.

7 CONCLUSION

In this paper, to the best of our knowledge, we are the first to present
an empirical study evaluating the performance of existing AIGC
detectors in the software domain. We curated a comprehensive
dataset of code-related content generated by three state-of-the-
art LLMs: GPT-3.5, WizardCoder and CodeLlama. The results of
the study indicate that current AIGC detectors struggle with code-
related data compared to natural language data. While fine-tuning
can improve performance, the generalization of the model still
remains a challenge. The findings highlight the need for further
research in this area, specifically the development of robust and
generalized AIGC detectors.

8 ACKNOWLEDGMENTS

This work is partially supported by the National Research Foun-
dation, Singapore, and the Cyber Security Agency under its Na-
tional Cybersecurity R&D Programme (NCRP25-P04-TAICeN), the
Singapore Ministry of Education Academic Research Fund Tier 1
(RG12/23), RIE2025 Industry Alignment Fund - Industry Collab-
oration Projects (IAF-ICP) (Award 12301E0026), administered by
A*STAR, as well as supported by Alibaba Group and NTU Singa-
pore. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not
reflect the views of National Research Foundation, Singapore and
Cyber Security Agency of Singapore.

ASE

’24, October 27-November 1, 2024, Sacramento, CA, USA

REFERENCES

(1]

[15]
[17]
[18]

[19]
[20

[21]

[22

[23

[24]

[25]

[26]

[27

[28]

[29]

[30

[31]

(32

[33

2019. Openai: GPT-2 Detector. https://github.com/openai/gpt-2-output-dataset/
tree/master/detector

2020. Contentatscale: AI DETECTOR. https://contentatscale.ai/ai-content-
detector
2020. Stackexchange Dataset. (2020). https://github.com/EleutherAl/

stackexchange-dataset/blob/master/pairer.py

2021. Copyleaks: AI Content Detector. https://copyleaks.com/ai-content-detector
2022. Chatgpt: Optimizing language models for dialogue. https://chat.openai.com
2022. Compilatio: AI Detector Evaluation. https://ai-detector.compilatio.net
2022-11. Stack Exchange (2021-2022): Stack Exchange Data Dump. Archive.org.
Dataset. https://ia800107.us.archive.org/27/items/stackexchange/

2023. AI Content Detector Accuracy Review. (2023). https://originality.ai/blog/ai-
content-detection-accuracy

2023. Al Text Classifier. https://beta.openai.com/ai-textclassifier

2023. Awesome Chatgpt Prompts. (2023). https://github.com/f/awesome-chatgpt-
prompts

2023. Free Al Detector. (2023). https://www.scribbr.com/ai-detector

2023. GPTZero, experiments on july-19 version. https://gptzero.me

2023. grover A State-of-the-Art Defense against Neural Fake News. (2023).
https://grover.allenai.org/detect

2023. The most advanced affordable similarity checking tool. (2023). https:
//crossplag.com/

2023. Originality Al Plagiarism and Fact Checker. (2023). https://originality.ai/
2023. Sapling: AI-Content-Detector. https://sapling.ai/ai-content-detector

2023. Unmasking the Wordsmith: How to Tell If a Blog Article Was Written by
Al or Human. (2023). https://www.scribbr.com/ai-tools/best-ai-detector/

2023. Writefull: GPT Detector. https://x.writefull.com/gpt-detector

2023. Writer: AI Content Detector. https://writer.com/ai-content-detector

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020.
A transformer-based approach for source code summarization. arXiv preprint
arXiv:2005.00653 (2020).

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Unified pre-training for program understanding and generation. arXiv
preprint arXiv:2103.06333 (2021).

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan
Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multitask,
multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and
interactivity. arXiv preprint arXiv:2302.04023 (2023).

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, and Yue Zhang. 2023.
Fast-DetectGPT: Efficient Zero-Shot Detection of Machine-Generated Text via
Conditional Probability Curvature. In The Twelfth International Conference on
Learning Representations.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou,
and Weizhu Chen. 2022. Codet: Code generation with generated tests. arXiv
preprint arXiv:2207.10397 (2022).

Umur Aybars Ciftci, Ilke Demir, and Lijun Yin. 2020. Fakecatcher: Detection of
synthetic portrait videos using biological signals. IEEE transactions on pattern
analysis and machine intelligence (2020).

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

Joel Frank, Thorsten Eisenhofer, Lea Schonherr, Asja Fischer, Dorothea Kolossa,
and Thorsten Holz. 2020. Leveraging frequency analysis for deep fake image
recognition. In International conference on machine learning. PMLR, 3247-3258.
Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In
Proceedings of the 40th International Conference on Software Engineering. 933-944.
Biyang Guo, Xin Zhang, Ziyuan Wang, Mingi Jiang, Jinran Nie, Yuxuan Ding,
Jianwei Yue, and Yupeng Wu. 2023. How Close is ChatGPT to Human Experts?
Comparison Corpus, Evaluation, and Detection. arXiv preprint arXiv:2301.07597
(2023).

Biyang Guo, Xin Zhang, Ziyuan Wang, Mingi Jiang, Jinran Nie, Yuxuan Ding,
Jianwei Yue, and Yupeng Wu. 2023. How close is chatgpt to human experts?
comparison corpus, evaluation, and detection. arXiv preprint arXiv:2301.07597
(2023).

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcodebert:
Pre-training code representations with data flow. arXiv preprint arXiv:2009.08366

(34]

[35

[36

@
=)

[38

(39]

[40

N
fury

[42

[43

[44

N
)

o
=

[51

[52

[53

[54

[55

Jian Wang, Shangqing Liu, Xiaofei Xie, and Yi Li

(2020).

Qi Guo, Junming Cao, Xiaofei Xie, Shangqing Liu, Xiaohong Li, Bihuan Chen, and
Xin Peng. 2024. Exploring the potential of chatgpt in automated code refinement:
An empirical study. In Proceedings of the 46th IEEE/ACM International Conference
on Software Engineering. 1-13.

Qing Guo, Felix Juefei-Xu, Xiaofei Xie, Lei Ma, Jian Wang, Bing Yu, Wei Feng,
and Yang Liu. 2020. Watch out! motion is blurring the vision of your deep neural
networks. Advances in Neural Information Processing Systems 33 (2020), 975-985.
Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora,
Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring Coding Challenge Competence With APPS. NeurIPS
(2021).

Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. 2023. RADAR: Robust AI-Text
Detection via Adversarial Learning. In Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurlIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Codesearchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). 2073-2083.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2018. Map-
ping language to code in programmatic context. arXiv preprint arXiv:1808.09588
(2018).

Jiaolong Kong, Mingfei Cheng, Xiaofei Xie, Shangqing Liu, Xiaoning Du, and Qi
Guo. 2024. Contrastrepair: Enhancing conversation-based automated program
repair via contrastive test case pairs. arXiv preprint arXiv:2403.01971 (2024).
Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient Mem-
ory Management for Large Language Model Serving with PagedAttention. In
Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles.
Haodong Li, Bin Li, Shunquan Tan, and Jiwu Huang. 2020. Identification of
deep network generated images using disparities in color components. Signal
Processing 174 (2020), 107616.

Yafu Li, Qintong Li, Leyang Cui, Wei Bi, Longyue Wang, Linyi Yang, Shuming
Shi, and Yue Zhang. 2023. Deepfake text detection in the wild. arXiv preprint
arXiv:2305.13242 (2023).

Yuezun Li and Siwei Lyu. 2018. Exposing deepfake videos by detecting face
warping artifacts. arXiv preprint arXiv:1811.00656 (2018).

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015).

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. Vuldeepecker: A deep learning-based system for
vulnerability detection. arXiv preprint arXiv:1801.01681 (2018).

Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.
QuixBugs: A multi-lingual program repair benchmark set based on the Quixey
Challenge. In Proceedings Companion of the 2017 ACM SIGPLAN international
conference on systems, programming, languages, and applications: software for
humanity. 55-56.

Shangging Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow, and Yang Liu. 2021. Retrieval-
Augmented Generation for Code Summarization via Hybrid GNN. In International
Conference on Learning Representations. https://openreview.net/forum?id=zv-
typ1gPxA

Shangging Liu, Xiaofei Xie, Jingkai Siow, Lei Ma, Guozhu Meng, and Yang Liu.
2023. GraphSearchNet: Enhancing GNNs via Capturing Global Dependencies for
Semantic Code Search. IEEE Transactions on Software Engineering (2023).
Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

Yikang Liu, Ziyin Zhang, Wanyang Zhang, Shisen Yue, Xiaojing Zhao, Xinyuan
Cheng, Yiwen Zhang, and Hai Hu. 2023. Argugpt: evaluating, understanding
and identifying argumentative essays generated by gpt models. arXiv preprint
arXiv:2304.07666 (2023).

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. CoRR abs/2102.04664 (2021).

Lezhi Ma, Shanggqing Liu, Yi Li, Xiaofei Xie, and Lei Bu. 2024. SpecGen: Automated
Generation of Formal Program Specifications via Large Language Models. arXiv
preprint arXiv:2401.08807 (2024).

https://github.com/openai/gpt-2-output-dataset/tree/master/detector
https://github.com/openai/gpt-2-output-dataset/tree/master/detector
https://contentatscale.ai/ai-content-detector
https://contentatscale.ai/ai-content-detector
https://github.com/EleutherAI/stackexchange-dataset/blob/master/pairer.py
https://github.com/EleutherAI/stackexchange-dataset/blob/master/pairer.py
https://copyleaks.com/ai-content-detector
https://chat.openai.com
https://ai-detector.compilatio.net
https://ia800107.us.archive.org/27/items/stackexchange/
https://originality.ai/blog/ai-content-detection-accuracy
https://originality.ai/blog/ai-content-detection-accuracy
https://beta.openai.com/ai-text classifier
https://github.com/f/awesome-chatgpt-prompts
https://github.com/f/awesome-chatgpt-prompts
https://www.scribbr.com/ai-detector
https://gptzero.me
https://grover.allenai.org/detect
https://crossplag.com/
https://crossplag.com/
https://originality.ai/
https://sapling.ai/ai-content-detector
https://www.scribbr.com/ai-tools/best-ai-detector/
https://x.writefull.com/gpt-detector
https://writer.com/ai-content-detector
https://openreview.net/forum?id=zv-typ1gPxA
https://openreview.net/forum?id=zv-typ1gPxA

An Empirical Study to Evaluate AIGC Detectors on Code Content

(56

[57]

[58]
[59

[60]

[61

[62

[63

[64

[65]

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and
Chelsea Finn. 2023. DetectGPT: Zero-Shot Machine-Generated Text Detection
using Probability Curvature. arXiv preprint arXiv:2301.11305 (2023).

Madhav Nair, Rajat Sadhukhan, and Debdeep Mukhopadhyay. 2023. Generating
Secure Hardware using ChatGPT Resistant to CWEs. Cryptology ePrint Archive
(2023).

OpenAl 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

Yuyang Qian, Guojun Yin, Lu Sheng, Zixuan Chen, and Jing Shao. 2020. Thinking
in frequency: Face forgery detection by mining frequency-aware clues. In Com-
puter Vision—ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part XII. Springer, 86—-103.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAlI blog
1,8 (2019), 9.

Baptiste Roziere, Marie-Anne Lachaux, Marc Szafraniec, and Guillaume Lample.
2021. Dobf: A deobfuscation pre-training objective for programming languages.
arXiv preprint arXiv:2102.07492 (2021).

Martin Shepperd. 1988. A critique of cyclomatic complexity as a software metric.
Software Engineering Journal 3, 2 (1988), 30-36.

Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023. An
analysis of the automatic bug fixing performance of chatgpt. arXiv preprint
arXiv:2301.08653 (2023).

Nigar M Shafiq Surameery and Mohammed Y Shakor. 2023. Use Chat GPT to
Solve Programming Bugs. International Journal of Information Technology and
Computer Engineering (IJITC) ISSN: 2455-5290 3, 01 (2023), 17-22.

Yuchuan Tian, Hanting Chen, Xutao Wang, Zheyuan Bai, Qinghua Zhang,
Ruifeng Li, Chao Xu, and Yunhe Wang. 2023. Multiscale Positive-Unlabeled
Detection of AI-Generated Texts. arXiv:2305.18149 [cs.CL]

[66

[67

[68

[70

[71

[72

[73

]

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

Run Wang, Felix Juefei-Xu, Lei Ma, Xiaofei Xie, Yihao Huang, Jian Wang, and Yang
Liu. 2019. Fakespotter: A simple yet robust baseline for spotting ai-synthesized
fake faces. arXiv preprint arXiv:1909.06122 (2019).

Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A
Efros. 2020. CNN-generated images are surprisingly easy to spot... for now. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
8695-8704.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859 (2021).

Xiaofei Xie, Wenbo Guo, Lei Ma, Wei Le, Jian Wang, Lingjun Zhou, Yang Liu,
and Xinyu Xing. 2021. RNNRepair: Automatic RNN Repair via Model-based
Analysis. In Proceedings of the 38th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 139), Marina Meila and Tong Zhang
(Eds.). PMLR, 11383-11392. https://proceedings.mlr.press/v139/xie21b.html
Xiaofei Xie, Tianlin Li, Jian Wang, Lei Ma, Qing Guo, Felix Juefei-Xu, and Yang
Liu. 2022. NPC: Neuron Path Coverage via Characterizing Decision Logic of
Deep Neural Networks. ACM Trans. Softw. Eng. Methodol. 31, 3, Article 47 (apr
2022), 27 pages. https://doi.org/10.1145/3490489

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. Advances in neural information processing
systems 32 (2019).

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2305.18149
https://proceedings.mlr.press/v139/xie21b.html
https://doi.org/10.1145/3490489

	Abstract
	1 Introduction
	2 Existing Detectors
	3 Study Design
	3.1 Scenarios and Data Collection
	3.2 Selected Detectors
	3.3 Experimental Design and Research Questions

	4 Study Results
	4.1 RQ1: Effectiveness of Existing Detectors
	4.2 RQ2: Ablation Study of Different Factors
	4.3 RQ3: Performance of Fine-tuning
	4.4 RQ4: Robustness Analysis

	5 Discussion
	5.1 Threats to Validity
	5.2 Implication

	6 Related Work
	6.1 AI in Software Engineering
	6.2 DeepFake Detection

	7 Conclusion
	8 Acknowledgments
	References

