

An Empirical Study to Evaluate AIGC Detectors on Code Content

Jian Wang^[1,2], Shangqing Liu^[1], Xiaofei Xie^[2], <u>Yi Li^[1]</u>

1. Nanyang Technological University2. Singapore Management University

ASE'24 – Sacramento, California Oct 29, 2024

"AND I PROMISE THESE TERM PAPERS WON'T BE DETECTED AS AI"

All use of generative AI (e.g., <u>ChatGPT</u>¹ and other LLMs) is banned when posting content on Stack Overflow.

This includes "asking" the question to an AI generator then copypasting its output *as well as* using an AI generator to "reword" your answers.

Please see the Help Center article: <u>What is this site's policy on content</u> generated by generative artificial intelligence tools?

Overall, because the average rate of getting *correct* answers from ChatGPT and other generative AI technologies is too low, the posting of content created by ChatGPT and other generative AI technologies is *substantially harmful* to the site and to users who are asking questions and looking for *correct* answers.

scikit-learn is one of the sample projects featured in SWE-bench <u>https://openai.com/index/introducing-swe-bench-verified/</u>

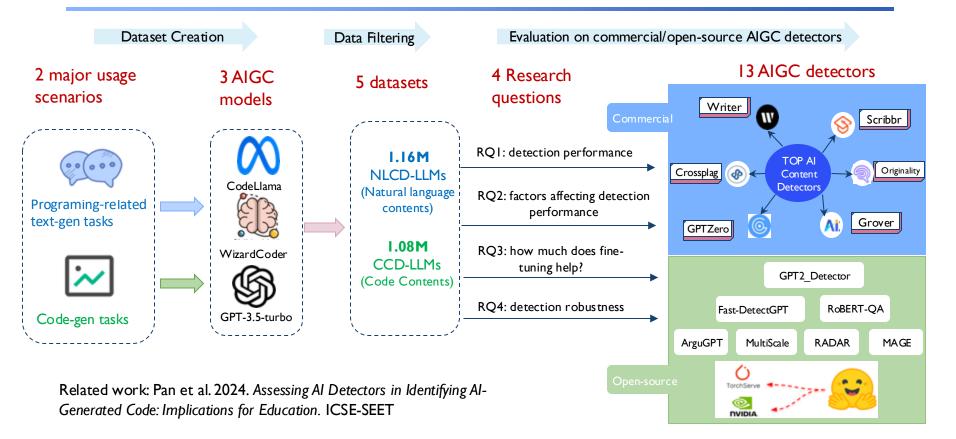
adrinjalali commented on Jul 10

@DocInspector 's bio on GH says:

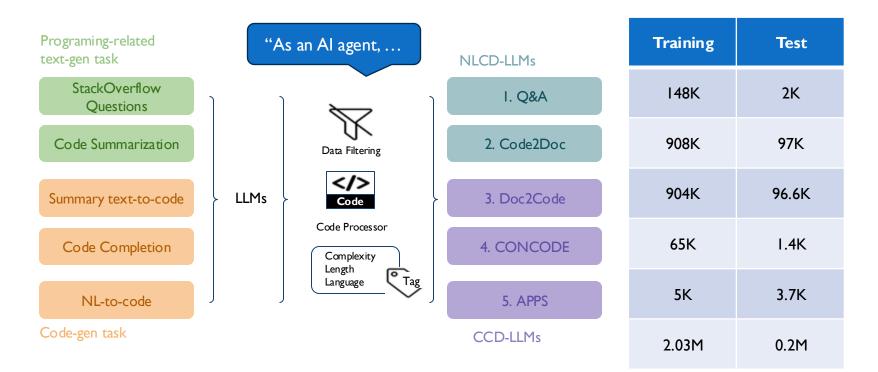
We prefer to remain anonymous for double-blind paper review.

I'd say we prefer to talk to humans and we don't appreciate robots and fully automated tools. We also don't appreciate being used as validation to tools being developed out there. We're not free data collection agents for your automated tools.

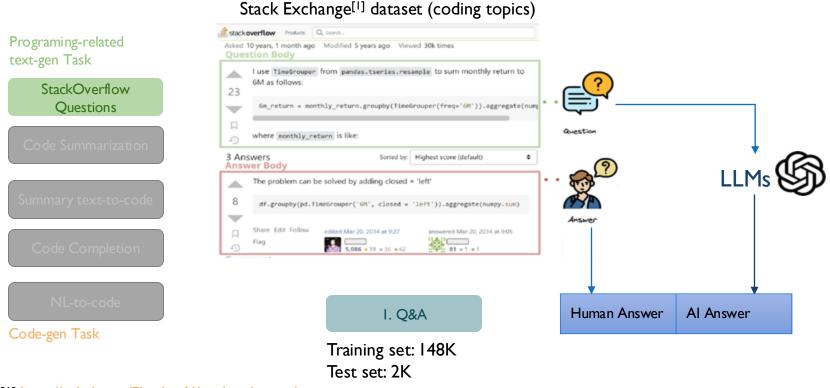
I'm going to close this issue and mark it as spam, and will block the user since it's clearly not a known human. Feel free to open a PR fixing issues if you find any, using a normal human backed account.


 \odot

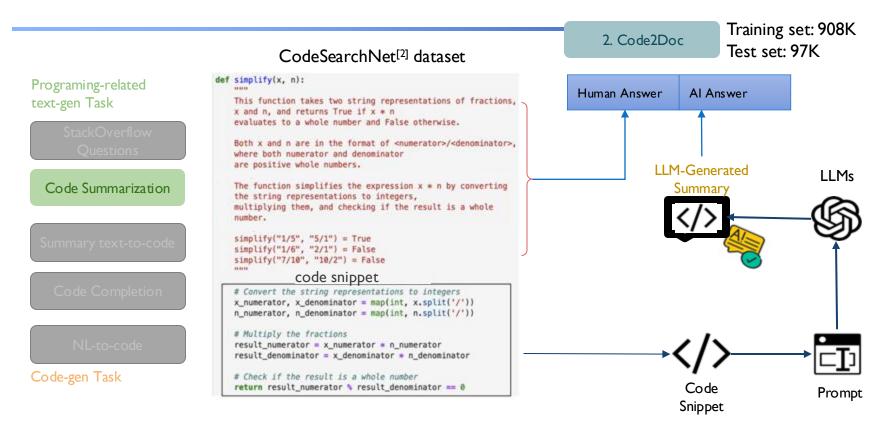
🕼 adrinjalali closed this as not planned on Jul 10



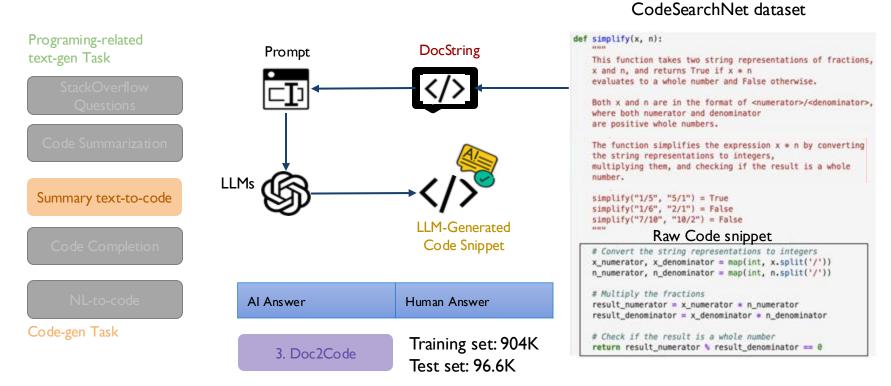
Source: https://github.com/scikit-learn/scikit-learn/issues/29440


An Empirical Study to Evaluate AIGC Detectors on Code Content

Dataset Creation



Dataset Creation: Programming-Related Q&A

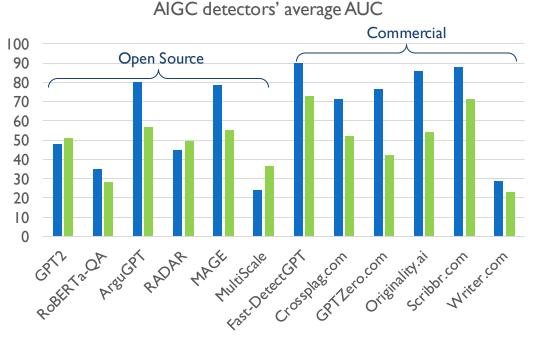


[1] https://github.com/EleutherAl/stackexchange-dataset

Dataset Creation: Code-to-Text

Dataset Creation: Text-to-Code

RQI: performance of existing detectors


Detection accuracy for text-gen :

- Open-source tools (Avg. 57.26%) perform worse than commercial tools (Avg. 66.31%)
- Most commercial tools have good performance

Detection accuracy for code-gen:

- Open-source tools (Avg. 50.25%) are slightly better than commercial tools (Avg. 48.90%)
- Most tools do not detect Al-gen code well, close to random guesses

Overview, average AUC for codegen is 11.82% lower than text-gen

NLCD CCD

RQ2: factors affecting detection performance

Table 4: The AUC performance of different detectors on the Doc2Code-LLM testset in terms of code complexity.

Complexity	Model	Avg.	GPT2_Detector	RoBETa-QA	ArguGPT	MAGE	RADAR	MultiScale	Fast-DetectGPT	GPTZero.me	Writer.com	Scribbe.com	Crossplag.com	Originality.ai
	GPT-3.5-Turbo	50.82	50.36	48.58	45.69	51.36	44.01	40.55	57.91	50.77	47.39	64.52	50.26	58.40
Easy	WizardCoder-15B	50.74	50.27	48.06	45.77	51.33	43.75	40.20	58.21	50.68	47,42	64.63	50.27	58.30
	CodeLlama-34B-Instruct	50.74	50.37	48.00	46.12	51.55	43.63	40.30	58.13	50.60	47.19	64.62	50.22	58.10
	GPT-3.5-Turbo	49.12	49.83	33.34	54.19	49.01	48.76	40.14	56.02	49.66	45.37	56.35	50.40	56.35
Medium	WizardCoder-15B	49.13	49.60	33.78	54.11	48.72	48.97	39.22	56.09	49.76	45.54	56.66	50.59	56.48
	CodeLlama-34B-Instruct	49.15	49.66	34.33	53.66	48.42	48.11	38.21	56.77	49.87	45.83	57.15	50.77	57.04
	GPT-3.5-Turbo	48.45	48.77	35.42	53.63	47.37	43.19	35.06	59.00	49.65	47.44	50.34	52.73	58.76
Hard	WizardCoder-15B	48.70	48.94	35.67	53.35	47.61	44.67	36.51	58.19	49.88	47.38	51.36	52.31	58.53
	CodeLlama-34B-Instruct	48.80	48.94	35.74	53.27	47.14	44.39	36.62	58.68	49.93	47.71	50.85	52.71	59.57
	Avg.		49.64	39.22	51.09	49.17	45.50	38.53	\$7.67	50.09	46.81	57.39	51.14	\$7.95


Table 5: The AUC performance of different detectors on the Doc2Code-LLM testset in terms of code length.

Length	Model	Avg.	GPT2_Detector	RoBETa-QA	ArguGPT	MAGE	RADAR	MultiScale	Fast-DetectGPT	GPTZero.me	Writer.com	Scribbe.com	Crossplag.com	Originality.ai
	GPT-3.5-Turbo	33.69	33.46	36.26	33.41	34.12	36.09	36.55	31.40	33.33	32.92	32.33	32.90	31.56
Short[0-72]]	WizardCoder-15B	50.89	50.87	50.08	49.49	52.90	45.42	46.70	\$3.50	49.84	45.21	60.04	49.81	53.82
	CodeLlama-34B-Instruct	50.68	51.08	49.36	49.91	52.87	47.94	46.17	\$3.56	49.78	44.64	59.20	49.81	53.85
	GPT-3.5-Turbo	32.87	33.39	32.08	32.81	33.02	31.80	32.16	33.13	33.32	32.88	33.49	33.09	33.25
Medium[72-197]	WizardCoder-15B	49.66	49.87	41.77	49.54	49.64	42.82	37.64	57.87	50.40	46.87	60.75	50.44	58.69
	CodeLlama-34B-Instruct	49.60	49.81	41.47	48.69	49.40	43.06	37.86	57.39	50.44	46.70	61.04	50.41	58.89
	GPT-3.5-Turbo	33.44	33.15	31.66	33.78	32.86	32.11	31.29	35.47	33.36	34.21	34.18	34.01	35.19
Long[197+]	WizardCoder-15B	50.39	49.03	37.54	49.40	47.73	41.59	33.90	63.23	50.85	50.15	62.80	52.82	65.65
	CodeLlama-34B-Instruct	49.96	49.15	38.40	49.69	48.41	41.97	34.59	61.48	50.51	49.02	61.17	52.14	62.94
	Avg.		44.42	39.85	44.04	44.55	40.64	37.43	49.67	44.65	42.51	51.67	45.05	50.43

Table 6: The AUC performance of different detectors on the Doc2Code-LLM testset on 6 programming languages.

Language	Avg.	GPT2_Detector	RoBETa-QA	ArguGPT	MAGE	RADAR	MultiScale	Fast-DetectGPT	GPTZero.me	Writer.com	Scribbr.com	Crossplag.com	Originality.ai
Go	47.95	46.60	17.50	39.93	48.86	58.61	48.76	59.82	50.06	48.21	53.24	52.32	51.51
Java	51.75	50.31	33.78	59.94	52.37	47.12	36.36	63.55	51.82	47.96	67.58	50.42	59.80
Javascript	51.56	48.56	53.30	51.58	45.73	40.47	27.23	55.17	49.61	47.67	80.91	51.21	67.29
PHP	50.74	49.36	53.29	38.00	50.75	40.48	38.21	59.58	50.79	49.80	68.13	50.55	59.99
Python	47.88	52.83	45.54	58.17	49.52	41.79	39.91	57.38	48.17	41.70	37.03	50.76	51.80
Ruby	49.98	49.80	87.28	45.23	48.04	27.59	33.14	50.06	50.47	40.45	61.95	44.88	60.87
Avg.		49.58	48.45	48.81	49.21	42.68	37.27	57.59	50.15	45.96	61.47	50.02	58.54

RQ2: factors affecting detection performance

TL;DR:

- More complex code seems more challenging to detect, especially for opensource detectors
- Longer code is easier to detect
- Most tools are stable across different languages, some tools struggle on one/two languages

RQ3: how much does fine-tuning help?

Fine-tuning can significantly improve detection performance

Table 7: Results of fine-tuned models on different NLCD-Train datasets. Table 8: Results of fine-tuned models on different *CCD-Train* datasets.

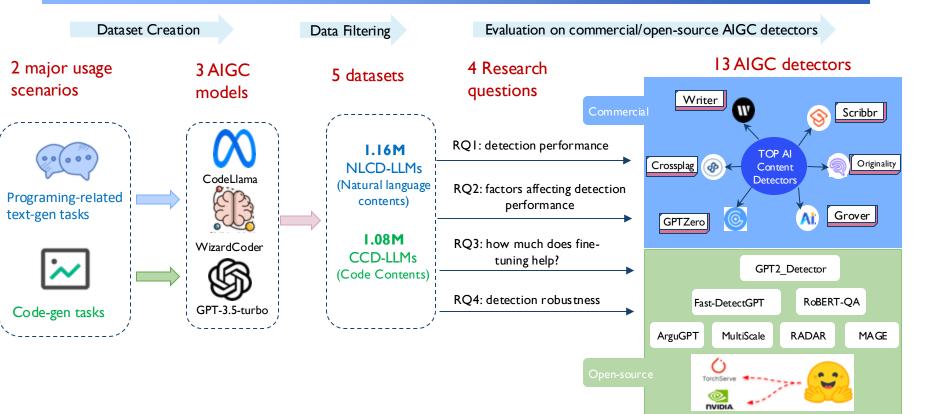
				NLCI	O-Test															
De	Detector		Q&A-LLM Code2Doc-LLM				LLM													
		AUC	FPR	FNR	AUC	FPR	FNR	-		D	etector	CONCODE-LLM			Doc2Code-LLM			APPS-LLM		M
Unfined-tune	d RoBERTa-QA	0.37	0.07	0.91	0.34	0.37	0.71		AUC after fine-				FPR	FNR	AUC	FPR	FNR	AUC	FPR	FNR
Onmed-tune	~								tuning		Unfined-tuned RoBERTa-QA			0.04	0.43	0.56	0.53	0.38	0.62	0.51
	Q&A-LLM	1.00	0.00	0.00	0.69	0.99	0.00		tuning		APPS-LLM		0.00	1.00	0.61	0.39	0.43	0.94	0.49	0.00
RoBERTa-QA	Code2Doc-LLM	0.84	0.08	0.41	1.00	0.00	0.00				CONCODE-LLM	1.00	0.00	0.00	0.53	0.99	0.00	0.52	1.00	0.00
nonnu žu	Composite-NL	1.00	0.00	0.00	1.00	0.00	0.00		+	RoBERTa-QA	Doc2Code-LLM	0.94	0.00	0.94	1.00	0.04	0.01	0.56	0.80	0.06
	Avg.	0.95	0.03	0.14	0.90	0.33	0.00	- Tex	Code 🚽	ł	Composite-Code	1.00	0.00	0.00	1.00	0.04	0.01	0.84	0.53	0.01
	Q&A-LLM	0.89	0.21	0.18	0.42	0.34	0.74		eoue		Avg.	0.86	0.00	0.49	0.78	0.37	0.11	0.71	0.70	0.02
	Code2Doc-LLM	0.43	0.52	0.65	1.00	0.00	0.01	<mark>92.5</mark> 9	<mark>6 78.3%</mark>		APPS-LLM		0.00	1.00	0.51	0.13	0.83	0.73	0.38	0.29
MLP	Composite-NL	1.00	0.01	0.01	0.78	0.34	0.24	52.5	• <mark>/0.3/</mark> 0		CONCODE-LLM	0.99	0.02	0.08	0.44	0.98	0.02	0.43	0.68	0.40
										MLP	Doc2Code-LLM	0.66	0.48	0.34	0.89	0.22	0.17	0.56	0.45	0.47
	Avg.	0.77	0.25	0.28	0.73	0.23	0.33				Composite-Code	0.98	0.06	0.13	0.89	0.24	0.16	0.68	0.41	0.32
											Avg.	0.73	0.14	0.38	0.68	0.40	0.30	0.60	0.48	0.37

TL;DR: Fine-tuning can significantly improve the performance of the detectors for detecting code contents

RQ4: detection robustness under mutations

Mutations	Descriptions	Example before transformation	Example after transformation
FuncAddLine	Equivalent transformation between a constant or a newline assigned by same constant.	f(a, b, c)	f(a, b, c)
For2While	Equivalent transformation among for structure and while structure.	For (i in range(9)) : Body;	i=0; while i<9 : Body;
AugAssign	Equivalent numerical calculation transformation, e.g., ++,, +=, &=, =	a += 1	a = a + 1
AddDeadCode	Insert some dead code fragments, unused statements or repeated statements in the code.	class work: pass	class Foo: # noqa: DC03 pass class work: pass
VarRename	Rename the function names and variable names with all their occurrence with newly generated names such as F0, V1, V2	def func1(var1): pass	<pre>def func_new1(var_new1): pass</pre>

TL;DR: the mutation operators make it harder to detect AI-generated code, but they do not have significant impact on detecting human-written contents


Summary

yi_li@ntu.edu.sg

灯 @liyistc

 \square

