
Defects4C: Benchmarking Large Language Model
Repair Capability with C/C++ Bugs

Jian Wang1‡, Xiaofei Xie1, Qiang Hu2†, Shangqing Liu3†, Jiongchi Yu1, Jiaolong Kong1, and Yi Li4
1Singapore Management University, Singapore

2Tianjin University, China
3State Key Laboratory for Novel Software Technology, Nanjing University, China

4Nanyang Technological University, Singapore

Abstract—Automated Program Repair (APR) plays a critical
role in enhancing the quality and reliability of software systems.
While substantial progress has been made in Java-based APR,
largely facilitated by benchmarks like Defects4J, there remains
a significant gap in research on C/C++ program repair, despite
the widespread use of C/C++ and the prevalence of associated
vulnerabilities. This gap is primarily due to the lack of high-quality,
open-source benchmarks tailored for C/C++.

To address this issue, we introduce Defects4C, a comprehensive
and executable benchmark specifically designed for C/C++
program repair. Our dataset is constructed from real-world
C/C++ repositories and includes a large collection of bug-relevant
commits (9M in total), 248 high-quality buggy functions, and 102
vulnerable functions, all paired with test cases for reproduction.
These resources enable rigorous evaluation of repair techniques
and support the retraining of learning-based approaches for
enhanced performance.

Using Defects4C, we conduct a comprehensive empirical study
evaluating the effectiveness of 24 state-of-the-art large language
models (LLMs) in repairing C/C++ faults. Our findings offer
valuable insights into the strengths and limitations of current
LLM-based APR techniques in this domain, highlighting both the
need for more robust methods and the critical role of Defects4C
in advancing future research.

I. Introduction
Software bugs pose significant security and reliability threats

to modern software systems. In safety-critical and large-scale
software, even a single defect can lead to severe consequences
such as data breaches and system crashes. Fixing such bugs
is often challenging and costly, debugging and maintenance
activities can account for up to 50% of the total software devel-
opment cost, much of which involves time-consuming manual
effort for fault localization, root cause analysis, and patch
implementation [1]. Given these challenges, automating repair
of software bugs has become a crucial research direction. Over
the past decade, this area has gained significant traction in both
academia and industry, with numerous repair techniques [2], [3]
proposed to increase software developer productivity and reduce
the debugging costs. Moreover, the advent of large language
models (LLMs) has demonstrated significant improvements
over traditional repair methods, offering superior performance
in program repair tasks [4].

Despite the extensive research on Automated Program Repair
(APR), the vast majority of existing work has primarily

‡ Also with Nanyang Technological University.
† Co-Corresponding authors: qianghu@tju.edu.cn; shangqingliu@nju.edu.cn

focused on languages such as Java and Python. This focus is
largely driven by the availability of mature and well-structured
benchmarks, such as Defects4J [5] for Java and BugsInPy [6] for
Python. These benchmarks provide standardized, reproducible
settings for evaluating APR techniques and have played a crucial
role in advancing the field.

However, C and C++ continue to serve as the foundation
for high-performance and system-level software, powering
critical infrastructures such as operating systems, embedded
devices, network services, and safety-critical applications.
Notably, C/C++ remains the language with the highest number
of reported vulnerabilities, accounting for over 50% of all
disclosed open-source vulnerabilities since 2019, according to
recent reports [7]. In fact, the annual count of vulnerabilities
in C significantly exceeds that of any other programming
language. Despite this, C/C++ program repair remains relatively
underexplored, and it is still unclear how well existing APR
techniques perform when applied to real-world C/C++ bugs
and vulnerabilities. A major bottleneck is the absence of a
comprehensive, high-quality benchmark dataset—similar to
Defects4J—that supports realistic, executable, and testable
repair scenarios in C/C++ environments.

While there have been efforts to construct C/C++ defect
benchmarks for APR evaluation [8]–[14], significant limi-
tations remain in terms of bug diversity, dataset usability,
and scale—all of which are critical for meaningful APR
research. For example, benchmarks like DeepFix [14] and
Code4Bench [15] derive bugs from student assignments or com-
petitive programming platforms, resulting in simplified buggy
functions that do not reflect the complexity of real-world appli-
cations. Other benchmarks such as DBGBench [10] include data
from only two projects, which limits their representativeness
across software ecosystems. Meanwhile, ManyBugs [12] and
Prophet [16] focus on specific C standards (e.g., C99/C11) and
suffer from limited usability—requiring lengthy compilation
processes and lacking user-friendly interfaces—making them
difficult to use in large-scale evaluations [17]. The most recent
benchmark, BUG-C++ [13], collects defect data from GitHub
commits but lacks human validation to confirm whether the
changes correspond to actual bugs. Our preliminary analysis
indicates that a non-negligible portion of the collected changes
are unrelated to bug fixes and instead reflect functionality
updates.



Therefore, there remains a pressing need for a high-quality
C/C++ bug benchmark that satisfies the key criteria of prac-
ticality, diversity, fidelity, and usability, to enable rigorous
evaluation and foster the advancement of APR techniques for
C/C++ programs.

At the same time, automated program repair techniques have
evolved significantly with the emergence of large language
models (LLMs). Recent advances in code understanding and
generation have demonstrated the remarkable capabilities of
LLMs, particularly on Java and Python datasets [4], [18], [19].
Recent studies show that LLM-based APR techniques often
surpass traditional methods in both bug-fixing accuracy and
efficiency [20]. However, these developments have primarily
focused on high-level languages, and the effectiveness of LLMs
in repairing C/C++ bugs remains largely underexplored, largely
due to the absence of a suitable benchmark.

This gap hampers a comprehensive understanding of LLM
capabilities and limitations in the context of C/C++ program
repair, which poses distinct challenges such as low-level
memory manipulation, undefined behavior, and complex control
flows. Given the prevalence of bugs and security vulnerabilities
in C/C++ software, it is essential to evaluate LLM-based repair
techniques on realistic C/C++ faults to uncover their true
potential and identify areas for improvement, thereby driving
future research and innovation in this critical domain.

To address the aforementioned challenges and gaps, we
introduce a new high-quality C/C++ fault benchmark, re-
ferred to as Defects4C, which comprises two major com-
ponents: bug-relevant commits (Defects4C_bgcommit) and
curated buggy functions, further categorized into general
bugs (Defects4C_bug) and vulnerabilities (Defects4C_vul). The
Defects4C_bgcommit dataset includes a broad collection of
commit-level changes that are potentially bug-related, making
it well-suited for training or fine-tuning data-driven models,
despite the possible presence of false positives. In contrast, the
buggy function datasets (Defects4C_bug and Defects4C_vul)
are carefully verified by human experts to ensure correctness
and quality, making them ideal for rigorous evaluation of
program repair techniques. This design balances the need
for large-scale, diverse training data with the requirement for
reliable and precise benchmarks for assessment.

Specifically, we first leveraged BigQuery to extract a large
number of buggy commits (40M) from over 110K widely
used GitHub C/C++ repositories using a set of predefined
bug-related keywords. We then filtered the commits based on
availability (resulting in 9M bug-related commits) and whether
the changes were isolated to a single function (leading to 76K
single-function buggy commits). A unit test matching method
was applied to identify corresponding test cases for each buggy
function, leaving representative 3,785 buggy commits collected
from the top 100 projects with paired tests. To ensure the quality
of the dataset for evaluation, we implemented a three-stage
human annotation process conducted by three security experts.
This process was crucial for eliminating false positives, i.e.,
cases where commit messages contain bug-related keywords,
but the code changes do not actually address bugs or security

issues. Our rigorous approach resulted in 248 confirmed bugs
(Defects4C_bug) along with their corresponding unit tests,
allowing for bug reproduction and repair validation.

In addition, we expanded the diversity of the dataset by
including a vulnerability dataset (Defects4C_vul). We first ex-
tracted C/C++-related Common Vulnerabilities and Exposures
(CVEs) from a publicly available database [21]. To isolate
vulnerable functions, we selected CVEs that provided patched
commit IDs, allowing us to retrieve the associated vulnerable
and patched functions from the commits. We then applied the
unit test matching process to identify corresponding test cases
for each vulnerability, ultimately yielding 102 vulnerabilities
with corresponding unit tests.

To understand the effectiveness of state-of-the-art LLM-based
APR techniques in fixing C/C++ bugs or vulnerabilities, we
conducted an empirical study using our Defects4C benchmark.
The study focuses on evaluating the performance of LLM-
based APR techniques, incorporating state-of-the-art LLMs.
These models are evaluated in single-round and conversation-
based program repair scenarios with various experimental
settings. Our findings reveal a significant performance gap
in LLM-based APRs when addressing C/C++ faults compared
to their success with the Defects4J benchmark (Java). This
discrepancy highlights the urgent need for APR techniques
specifically tailored for C/C++ fault repair. We further explored
the effectiveness of fine-tuning in C/C++ program repair, and
while the results show some promise, they remain below
acceptable levels. Moreover, a deeper analysis shows that bugs
span multiple lines and bugs that require external information
to fix in Defects4C, are difficult to repair with LLMs, posing
a potential direction to propose new fine-tuning methods to
handle C/C++ bugs. Our newly developed Defects4C, with
its comprehensive and high-quality dataset, is positioned to
serve as a valuable resource for future research on the repair
of C/C++ programs.

To sum up, we make the following contributions:

• We have developed and publicly released an executable
C/C++ defect benchmark namely Defects4C, comprising 9M
bug-relevant commits (Defects4C_bgcommit), 248 buggy
functions (Defects4C_bug) and 102 vulnerable functions
(Defects4C_vul), sourced from GitHub open-source projects.
It is accessible at the website1. A user-friendly command
line interface for ease of use accompanies each sample in
this dataset.

• We conduct the first large-scale empirical study focused on
assessing the capability of LLM-based APR techniques in
repairing C/C++ programs, and exploring the failure patterns
made by these techniques. We select state-of-the-art LLMs
with various settings for a comprehensive evaluation. Our
findings highlight a significant gap and limitations in the
current LLMs when fixing C/C++ bugs, especially in contrast
to their performance on Java bugs. These results underscore
the urgent need for further research and development of

1https://sites.google.com/view/anonymous-defects4c

https://sites.google.com/view/anonymous-defects4c


C/C++-specific repair techniques and the importance of our
benchmark.

II. Motivation and Related Work
Program Repair. Automated Program Repair (APR) techniques
aim to generate candidate patches based on the original code
and identified buggy locations. Each synthesized patch is
subsequently validated against a test suite. Patches that pass all
test cases are deemed plausible, whereas those that effectively
resolve the underlying bug are considered correct. In general,
APR approaches can be categorized into two paradigms:
traditional and learning-based methods.

Traditional tools can be broadly divided into three main
categories: heuristic-based [26]–[28], constraint-based [29]–
[31] and template-based [32]–[34]. However, these methods
have some limitations. For example, template-based tools
have achieved state-of-the-art performance among traditional
methods due to their best repair success rates, but their
effectiveness is constrained by a strong reliance on manually
crafted templates or domain-specific fix patterns, which limits
their generalizability across diverse types of software bugs.

Unlike conventional methods, learning-based approaches
can automatically capture semantic relations among parallel
bug-fixing pairs. This capability enables the creation of
patch solutions that are not only more effective but also
contextually aware. There has been a growing focus on learning-
based approaches, such as CURE [35], RewardRepair [36],
Recoder [37], CoCoNut [17] SelfAPR [38] and ITER [39],
which convert APR to Neural Machine Translation (NMT)
problem and have shown remarkable potential for enhancing
bug repair performance. Nevertheless, the quality and quantity
of the training datasets largely determine the performance of
the model.

Recently, Large language models have exhibited powerful
capabilities to repair program defects [2], [40]–[42], they
mainly focus on the buggy code and treat bug repair as a
one-step process, overlooking the interactive and collaborative
aspects inherent in bug resolution. Compared to single-round
repair, conversation-based program repair techniques [4], [43]
are proposed to further improve repair performance. These
techniques target interaction with LLMs by feeding error
messages as input to guide LLMs in generating more accurate
output. However, these LLM-based techniques are mainly
evaluated on Defects4J [5], and it is not clear their effectiveness
on C/C++ projects.
Existing C/C++ Defect Benchmark. Table I provides a
summary of existing C/C++ benchmarks for program repair,
including our proposed dataset, Defects4C. To date, prevailing
benchmarks for C/C++ programs have mostly centred on
student programming assignments such as DeepFix [14], C-
Pack-IPAs [8], and IntroClass [12] or online contests such
as Code4Bench [15], CodeHunt [22], Prutor/SARD [24],
SPoC [25], and CodeFlaw [9]. As the data source is from
assignments or contests, they are relatively impractical in real-
world program repair. To construct a more practical benchmark,
several works propose to collect programs from real-world

projects such as ManyBugs [12], Prophet [16], DBGBench [10],
and BUG-C++ [13]. These benchmarks also suffer from
various limitations. For instance, ManyBugs and Prophet offer
low usability and only support outdated versions of C/C++
programs. DBGBench is limited in diversity, as it is collected
from only two GitHub projects. BUG-C++ lacks rigorous
verification, as it mainly relies on bug-related keywords from
commit messages without confirming whether the collected
issues are actual bugs.

Motivation. In summary, LLM-based methods have shown
significant improvement in program repair, particularly on
benchmarks like Defects4J. To explore their generalizability,
we conducted preliminary experiments on existing C/C++
benchmarks. As shown in Table II, LLMs perform well on
these benchmarks, which often feature simplified, interview- or
contest-style programs. However, when applied to real-world
C/C++ projects (e.g., those in our dataset), their performance
drops substantially. This observation motivates two goals:
(1) to construct a realistic benchmark based on real-world
C/C++ projects, and (2) to conduct an empirical study on the
effectiveness of LLMs in repairing real-world C/C++ bugs.

III. Benchmark Construction

Figure 1 illustrates the overall workflow of our dataset
construction, encompassing raw data collection, test case
identification, and human validation. Specifically, we begin
by collecting bug-related and vulnerability-related commits
from GitHub and the CVE repository. We then apply a series
of filtering steps based on repository availability, whether the
commit affects a single function, and the presence of test cases.
Next, we develop a test case matching algorithm to identify the
specific unit test(s) that validate each fix, filtering out commits
that lack a corresponding test case. For the remaining samples,
we conduct a rigorous human verification process to confirm
the correctness and relevance of the bug fixes and associated
tests. The resulting benchmark, Defects4C, is organized into
two main components: (1) Defects4C_bgcommit, which consists
of large-scale commits suitable for fine-tuning and pretraining,
and (2) Defects4C_bug and Defects4C_vul, which contain high-
quality, human-confirmed bugs and vulnerabilities, suitable for
rigorous evaluation of APR techniques.

A. Raw Data Collection and Filtering

Commit Collection (38 million). To identify buggy func-
tions from real-world C/C++ projects, we follow established
practices in prior work [13], [45] and collect bug-related
commits from GitHub repositories. We primarily leverage
BigQuery to extract relevant commits based on the following
criteria:
• Projects are open-source, non-fork C/C++ repositories with

redistributable licenses;
• Commits are dated between January 2015 and Dec 2023,

sourced from the GH Archive [46];
• Projects must have at least 200 stars, indicating a minimum

threshold of popularity and community engagement.



TABLE I: Existing C/C++ benchmarks for program repair.

Dataset Defects Projects Source Dataset Defects Projects Source

CodeHunt [22] 195K N/A Interview/Contest ITSP [23] 661 N/A Assignment
Code4Bench [15] 25K N/A Interview/Contest C-Pack-IPAs [8] 513 N/A Assignment
Prutor/SARD [24] 23K N/A Interview/Contest Bugs-C++ [13] 209 22 Real-World
SPoC [25] 18K N/A Interview/Contest ManyBugs [12] 185 9 Real-World
CodeFlaws [9] 3.9K N/A Interview/Contest Prophet [16] 69 8 Real-World
DeepFix [14] 6.9K N/A Assignment DBGBench [10] 27 2 Real-World
IntroClass [12] 998 N/A Assignment Defects4C 350 41 Real-World

Availability 
Validation

Commit Collection
(Bugs and CVEs)

~38M ~9M

Single-Func 
and Test Suite 

Filtering

~76K ~3.8K

Unit Test 
Matching

Human 
Annotation

350

Defects4C_bug (248)

Defects4C_vul (102)

Defects4C 

Defects4C_bgcommit (9M)

Fig. 1: The pipeline of data collection and processing.

TABLE II: Repair performance (Pass@1) on existing benchmarks vs.
real-world C/C++ projects.

Benchmark (C/C++) Source GPT-3.5-Turbo GPT-4 CodeLlama-34b-Inst.

DebugBench [44] Interview/Contest (LeetCode) 59.0 74.6 16.4
CodeFlaws [9] Interview/Contest (Codeforces) 94.0 93.0 91.0
Defects4C (ours) Real-World 8.5 9.0 4.0

Using these criteria, we identified 110,441 candidate repos-
itories. Due to resource constraints and to ensure relevance,
we retained the top 500 C/C++ repositories ranked by GitHub
stars [47]. To isolate bug-related commits, we employed a
keyword-based heuristic filtering approach inspired by VRe-
pair [48]. Specifically, we considered a commit as potentially
bug-related if its message contained any of the following
keywords: fix, solve, repair, bug, issue, problem, error, fault
and vulnerability. Using this method, we extracted over 38
million commits across the selected repositories. The data
collection process, conducted via BigQuery, incurred a total
cost of approximately $5,000, reflecting the scale of our effort
in constructing a comprehensive and representative dataset.

While the 38 million bug-related commits provide a broad
foundation, it is non-trivial to determine whether these commits
correspond to actual vulnerabilities or general bugs. To specif-
ically incorporate known vulnerabilities into our benchmark,
we further curated a vulnerability-focused dataset by collecting
Common Vulnerabilities and Exposures (CVEs) related to
C/C++ programming from the CVEProject repository2, which
contains records spanning from 1999 to 2024. We selected only
those CVEs that explicitly provided a single patched commit
ID, resulting in a total of 14,488 vulnerability-related commits.

2https://github.com/CVEProject/cvelist

This selection criterion was adopted for two key reasons: (1)
CVEs with a single commit ID allow precise retrieval of the
vulnerable code changes, enabling accurate identification of
the affected functions; and (2) CVEs associated with multiple
commits introduce ambiguity, making it difficult to determine
which specific change addressed the vulnerability.

In total, our raw dataset consists of approximately 38+ mil-
lion commits, comprising 38 million bug-related commits and
14.5K vulnerability-related commits, forming the foundation
for further refinement and construction of our benchmark.

Commit Validation (9 million). We recognize that some of
the commits collected from BigQuery and the CVE repository
may become unavailable or invalid over time due to factors
such as repository ownership changes, archival, or deletion.
To ensure data integrity, we apply a rigorous filtering and
deduplication process. The criteria are as follows: (1) exclude
inaccessible or privatized repositories; (2) exclude repositories
transferred from highly starred owners to lower-ranked ones or
restricted by newly imposed licenses; (3) remove forks with
largely duplicated commit histories (e.g., apple/clang forked
from llvm/llvm-project, where commits differ only by SHA
but not by content); (4) eliminate redundancy by removing
MD5-hash duplicates in both source-code patch diffs and
corresponding test-case diffs; (5) filter files with non-C/C++
extensions; (6) exclude commit hashes not recognized in GitHub
repositories; and (7) discard commits whose buggy–patched
diffs are excessively large, as they are more indicative of general
function updates or refactoring rather than targeted bug fixes.

This results in a refined dataset of approximately 9 million
valid bug-relevant commits. From these commits, we extract
function-level code pairs—specifically, the function before and

https://github.com/CVEProject/cvelist


after the commit—which represent the potential buggy and
patched versions, respectively. These examples are particularly
valuable for fine-tuning or pretraining APR models, especially
given the absence of large-scale real-world C/C++ bug repair
datasets for learning-based approaches. However, these commits
are not suitable for rigorous evaluation due to two main
limitations: (1) they may include false positives, such as
commits unrelated to actual bug fixes (e.g., refactoring or minor
edits), and (2) some lack associated unit tests or reproducible
setups to verify the correctness of the fix. As such, they serve
primarily as training resources, rather than rigorous evaluation
benchmarks.

Single-Function Commit Filtering (76K). The initially
collected commits often involve changes across multiple files
or functions, which pose challenges for existing APR techniques
that typically focus on single-line, single-hunk, or single-
function bugs [4], [49]. Specifically, Line refers to bugs where
the fix is confined to a single line of code; Hunk represents
fixes involving multiple consecutive lines (i.e., a continuous
code block); and Function encompasses fixes that involve
non-contiguous changes within a single function. To reduce
complexity and align with the capabilities of current repair
models, we retain only those commits that modify exactly one
function. Furthermore, to ensure that the extracted functions
are executable, which is necessary for validating the correctness
of the fix, we filter out commits that lack an associated test
suite for validation.

Applying these criteria, we identify a refined set of 76K
valid single-function commits, which includes 249 commits
linked to known vulnerabilities. This curated subset offers a
more controlled and evaluable environment for function-level
program repair research.

B. Unit Test Extraction and Matching
To validate the correctness of fixes, we extract unit tests

that can be used to test whether a patch is plausible, i.e.,
whether it causes the program to pass its test cases. However,
after the commit validation and filtering process described in
Section III-A, each commit is typically associated with a test
suite containing multiple test cases, many of which are designed
to validate general functionality rather than the specific bug
fix in the commit. Therefore, we require a method to identify
the specific test cases that evaluate the targeted fix.

While simple heuristics exist in other ecosystems—for
example, in Java, where a function named abc is often tested
by a test named test_abc, such naming conventions are
infrequently used in C/C++ projects, rendering this approach
ineffective. To address this, we propose a unit test pair
verification algorithm based on a key observation: for a genuine
bug or vulnerability fix, there typically exists at least one
unit test that passes on the corrected version but fails on
the buggy version. Formally, let the test suite be denoted as
𝑇 = (𝑡1, 𝑡2, ..., 𝑡𝑛), and let a commit produce two versions of
code: 𝑉0 (pre-commit) and 𝑉1 (post-commit). For each test
case 𝑡𝑖 ∈ 𝑇 , we execute 𝑡𝑖 on both versions. If 𝑡𝑖 passes on 𝑉1
but fails on 𝑉0, we consider it a bug-revealing test case that is

directly associated with the fix. We discard test cases that do
not show this behavioral difference, as they are unlikely to be
related to the fix. The resulting subset 𝑇 ′ ⊆ 𝑇 includes only
the test cases that specifically validate the buggy function.

By applying this test verification process to the 76K candidate
commits from Section III-A, we identify a high-quality subset
consisting of 3,785 commits for Defects4C_bug and 102
commits for Defects4C_vul, both of which include executable
buggy functions and their corresponding bug-revealing test
cases.

C. Human Confirmation and Bug Classification

Given the potential presence of false positives in both the
bug-related commits and the associated unit tests, we conducted
a conservative and rigorous human annotation process to ensure
the construction of a high-quality evaluation dataset for APR
techniques. Each commit and its corresponding test cases were
manually analyzed by human experts, who reviewed the code
and commit messages, executed the unit tests, and thoroughly
understood the program logic to determine: (1) whether the
change was genuinely bug-related, (2) whether the associated
unit test was relevant, and (3) the type of bug in terms of its
root cause.

Following the methodology of prior studies [50], [51], we
applied a multi-round annotation protocol to the 3,785 general
commits and 102 vulnerability-related commits identified in
Section III-B. The dataset was first randomly divided into
two equal halves, and annotated in successive rounds. In the
first round, half of the dataset was independently labeled
by two experienced annotators, each with at least 5 years
of programming experience and over 3 years in software
testing or program analysis. The annotators then discussed
their annotations to resolve discrepancies, with final decisions
adjudicated by an independent arbitrator. In the second round,
the remaining half of the dataset was annotated using the agreed-
upon guidelines. To further ensure reliability, we performed
a third round involving a resampling and re-verification of
the entire dataset. Only commits confirmed to be genuinely
bug-related and paired with valid unit tests were retained.

To evaluate inter-annotator agreement, we used Cohen’s
Kappa (𝜅) coefficient [52], a standard measure of inter-rater
reliability. In the first round, the 𝜅 value was 0.48, indicating
moderate agreement. After refining the annotation taxonomy
and the criteria, the second round achieved a 𝜅 of 0.70.
Finally, in the third round, after additional consensus-building
discussions and verification, the 𝜅 score improved to 0.88,
which is considered almost perfect agreement [53]. At this
point, further rounds of annotation were deemed unnecessary.

During this process, we discovered that some commits,
despite containing bug-related keywords, were unrelated to
actual bugs, instead introducing new features or modifying
output formats. Others had vague messages (e.g., “fix bug”) that
were inconsistent with the code changes, or were later reverted,
further calling into question their reliability. After completing
the annotation process, we curated 248 high-confidence general



bug commits for Defects4C_bug and retained 102 vulnerability-
related commits for Defects4C_vul. Notably, no vulnerability
commits were removed, as they originated from the high-quality,
curated CVE repository. In total, we obtained 350 high-quality,
reproducible faults, each paired with a corresponding unit
test, making them well-suited for rigorous evaluation of APR
techniques.

IV. Statistics of Defects4C
Finally, Defects4C comprises a total of 9 million bug-

related commits under Defects4C_bgcommit, including 76,000
single-function commits with potential test suites and 3,887
commits with executable test cases. From this refined set,
we identified 248 confirmed general bugs for Defects4C_bug
and 102 confirmed vulnerabilities for Defects4C_vul through
rigorous human validation.Note that the 350 confirmed bugs
serve as rigorous benchmarks for evaluating APR techniques,
similar to Defects4J. These high-quality, reproducible faults,
each paired with executable test cases, are suitable for use in
empirical studies and comparative evaluations. In addition to
this evaluation subset, the remaining commits, with function-
level before-and-after pairs, offer a valuable resource for fine-
tuning or pretraining APR models. Users may further apply
customized filtering or preprocessing to tailor the data to their
specific fine-tuning objectives, such as selecting by project
domain, filtering by commit metadata, or augmenting with
different strategies.

Table III presents the taxonomy and statistical summary of
the confirmed bugs, categorized based on their error types as
determined through manual analysis. The dataset is classified
into four primary categories based on the logical location of
the fix: Signature, Sanitizer, Memory Error, and
Logic Organization. Each primary category is further
divided into subcategories, reflecting more fine-grained root
causes and bug patterns observed during annotation. Due to
space limitations, we provide a detailed description of the
full taxonomy and examples for each category on our project
website [54].

Furthermore, we classify the bug-fix patterns in Defects4C
based on the granularity of code modifications, dividing
them into three categories: Line, Hunk, and Function. This
categorization provides insights into the structural complexity
of the fixes and helps guide the design of APR models with
appropriate capabilities. A detailed breakdown of the error
distribution across these three categories for various C/C++
projects is available on our project website [54].

Usage. We recognize that usability is a critical requirement
for datasets supporting research in areas such as program
repair and vulnerability detection (e.g., Defects4J). To max-
imize usability for the research community, we developed a
stateless HTTP and command-line interface (CLI) designed to
support large-scale automated program repair evaluation. This
interface addresses three key challenges: (1) scalable end-to-
end patch extraction and verification, (2) isolated verification
environments, and (3) efficient integration with large language
models, including compatibility with their generated responses.

TABLE III: The number of bugs and vulnerabilities across categories.

Category Error Type Bugs Vulnerabilities

Signature

Incorrect Function Usage 19 3
Fault Input Type 12 2

Incorrect Function Return Value 19 3
Incorrect Variable Usage 25 3

Sanitizer Control Expression Error 66 6

Memory Error
Null Pointer Dereference 6 6

Uncontrolled Resource Consumption 9 5
Memory Overflow 5 61

Logic Organization Improper Condition Organization 67 11
Wrong Function Call Sequence 20 2

The interface exposes two primary endpoints. The
first, /extract_anchor_patch, extracts patches from
raw LLM outputs, identifies corresponding anchor points,
and integrates the patches into the source code. while
/fix_with_patch performs isolated patch verification by
applying patches within a Docker container (all bugs co-exist
in one container) and returning a Boolean success status along
with categorized error feedback for failed attempts. To support
high-throughput use, we implement dual caching strategies—a
Redis web cache and a C/C++ builder cache—to efficiently
manage millions of concurrent and repeated requests.

We also provide additional tools to enhance the debugging
and verification experience. The /reproduce endpoint resets
and reinitializes the verification environment for a given bug,
while the /error_dig interface performs structured error
analysis by classifying failures (e.g., compile, build, link, or
test), identifying root causes, and locating error positions
via stack trace parsing. The output is formatted to be LLM-
friendly, particularly under context-length constraints. Detailed
implementation guidance and usage documentation are available
on our project website [54].

V. Evaluation

A. Evaluation Workflow
Large language models (LLMs) have demonstrated signif-

icant potential in APR [2], [4], [43] with competitive or
even better performance compared to traditional techniques.
However, existing works mainly focus on evaluating the APR
effectiveness of LLMs on Java and Python projects, neglecting
their repair capability on C/C++. To bridge this gap, in this
work, we conduct a comprehensive empirical study to evaluate
the performance of LLMs on C/C++ program repair tasks using
our constructed Defects4C dataset.

In particular, our study contains two parts. First, we directly
employ pre-trained LLMs to fix bugs hidden in our evaluation
datasets Defects4C_bug and Defects4C_vul to assess their
program repair ability. Here, we consider different LLM-
based program repair strategies: i.e., single-round repair and
conversation-based repair.

Single-round repair refers to the model generating a patched
program once based on the given prompt, without receiving
feedback or undergoing multiple iterations of verification and
re-generation, which is a basic strategy for LLM-based APR.



Conversation-driven repair, as proposed by Xia et al. [4],
involves iteratively invoking the model multiple times. In each
iteration, the generated program will be executed by a provided
compiler and corresponding test cases. If the program is not
executable or pass, the error feedback will be incorporated
into the prompt and used in the next iteration as guidance
to help generate correct programs. This strategy contains two
hyperparameters, 𝑚 and 𝑛, representing the maximum number
of repair attempts and the maximum conversation length in
each attempt.

Second, the majority of LLM-based APR research relies
on pre-trained models, primarily due to the lack of datasets
capable of supporting large-scale fine-tuning for repair tasks.
However, our dataset Defects4C_bgcommit addresses this
limitation. Therefore, we further conduct a study to evaluate
the repair performance of LLMs with fine-tuning. Specifically,
we select single-function commits paired with test suites from
Defects4C_bgcommit as the fine-tuning dataset and evaluate the
performance of the fine-tuned models on Defects4C_bug and
Defects4C_vul. Following the approach used in Magicoder [55],
we perform decontamination to exclude any samples that are
identical to, or share similar buggy or patched code snippets
with, those in Defects4C_bug and Defects4C_vul to prevent
data leakage. This was achieved by employing UniXcoder [56]
to embed code snippets and filtering out samples with a
cosine similarity score higher than 0.95 when compared to
samples in Defects4C_bug and Defects4C_vul. After filtering
the input length greater than 2048, we retained 20,591 samples
from Defects4C_bgcommit across 1.1K projects for fine-tuning.
By comparing the results before and after fine-tuning, we
investigate the usefulness of our dataset to boost the program
repair capability of LLMs.

Based on the about studies, we plan to answer the following
research questions:

RQ1: How effective are pre-trained LLMs in fixing bugs in
Defects4C?

RQ2: How does LLMs perform on APR tasks after fine-
tuning with Defects4C?

RQ3: What are the characteristics of errors made by LLMs
on Defects4C?

B. Prompt Design

To interact with LLMs, we need to design appropriate input
prompts. Based on the three types of bugs/vulnerabilities,
i.e., fixed in a single line, hunk, or function, as described
in Section IV, we design corresponding prompts respectively.
Figure 2 illustrates the prompt templates. For single function
bugs, we design prompts to require the model to generate
the complete function. A concrete example is given in sub-
Figure 4. For the prompt for the single hunk and single line
bugs, as the error statements are continuous, we mask them
in the original function by the symbol >>>[INFILL]<<<
and provide these error statements by the placeholder Masked
Code Snippet for the model to generate masked statements.
An example is shown in Sub-Figure 5.

For single-round repair, we directly feed the prompts to the
model. For conversation-based repair, the designed prompts
serve as the initial input to the LLMs. After the model generates
an output, the compiler evaluates it. If the output fails to pass
the verification, the newly produced error feedback is appended
to the prompt template to construct a new prompt for the next
round of repair. For fine-tuning, we use the prompt without the
compilation error, which is the same prompt as the single-round
repair for the evaluation.

C. Experimental Setup
Subject LLMs. For the first RQ, our evaluation considers

24 types of pre-trained LLMs, covering almost all famous
LLMs such as GPT-4, CodeLlama, and DeepSeek. The detailed
LLMs used can be found in Table IV. For RQ2, due to
resource constraints, we select two popular open-source models,
CodeLlama-7B-base and DeepSeek-coder-6.7B-base, for fine-
tuning.

Evaluation Metrics. For the single-round repair evaluation,
we follow EvalPlus [19] and use unbiased pass@𝑘 [18] to
assess the repair capacity of LLM. Here, we set 𝑘 as 1, 10, and
100. For conversation-based repair, it is costly to use pass@𝑘

in this setting, since pass@𝑘 requires generating a massive
amount of model outputs. Hence, we follow Xia et al. [4] to
report the number of successful repairs in Defects4C.

Configuration. For single-round repair, we set model
temperature as 0.2 and 0.8. For greedy-search decoding, we
follow [19] to evaluate its pass rate as pass@𝑘∗ = 1. GPT-
4 is only evaluated under greedy decoding due to time and
cost constraints. For conversation-based repair, we follow [4]
to set model temperature as 1.0. In our conversation-based
repair experiments, we compare two decoding strategies distin-
guished by determinism: deterministic (greedy) greedy-search
decoding (𝑇 = 0); and non-deterministic decoding (𝑇 = 1),
which samples from the full probability distribution, introducing
stochasticity and enhancing output diversity. Our default
configuration uses up to 10 repair attempts with a conversation
length limited to 3 turns per attempt, resulting in a total budget
of 30 repair steps per buggy function; the process terminates
when an output passes all test cases or the 30-step budget
is exhausted.. For more details about the conversation repair,
please refer to our project site. For LLM fine-tuning, we apply
parameter-efficient fine-tuning using LoRA [57] with a rank
of 8. The models are fine-tuned for 3 epochs with a learning
rate of 2e-5. The batch size is 16, and the maximum input
sequence length is 2048 for all experiments.

Environments. All experiments are conducted on a server
with 8X A100-SXM4-80GB GPUs. More detailed settings on
our project website [54].

VI. Experimental Results
A. RQ1: Effectiveness of Pre-Trained LLMs on Defects4C

Single-round repair evaluation. The single-round repair
results of different LLMs on Defects4C are presented in
Table IV. First, we can conclude that LLMs with temperature
0.8 usually outperform LLMs with temperature 0.2 in this



SMU Classification: Restricted

       Single Function 

The following function contains 
bugs:
```
[Original Buggy Function] 
```
The error message from test case is:
[Error Message] 

Please fix bugs in the function and 
tell me the complete fixed function.

Single Hunk
The following function contains a buggy 
hunk that has been masked:
```
[Masked Buggy Function] 
```
This was the original buggy hunk which was 
masked by the infill location:
```
[Masked Code Snippet] 
```
The error message from test case is:
[Error Message] 
Please provide the correct hunk following 
error message at the infill location.

Single Line
The following function contains a buggy line that has 
been masked:
```
[Masked Buggy Function] 
```
This was the original buggy line which was masked by 
the infill location:
```
[Masked Code Snippet] 
```
The error message from test case is:
[Error Message] 
Please provide the correct line following error message at 
the infill location.

[Original Buggy Function] =
static inline int s_base64_get_decoded_value(char to_decode, uint8_t *value, 
int8_t allow_sentinal) {
…
return AWS_OP_ERR;}
[Error Message] = 
***FAILURE***  Expected error but no error occurred; rv=0, 
aws_last_error=0000 (expected 0007):

[Masked Buggy Function] =
>>> [ INFILL ] <<<
…
return AWS_OP_ERR;
}
[Masked Code Snippet] =  
s_base64_get_decoded_value(char to_decode, uint8_t *value, 
int8_t allow_sentinal) {

①

④

③②

⑤

Fig. 2: Prompt design for different types of defects.

APR task. This indicates that increasing the diversity of model
outputs leads to better program repair capability of LLMs.
Further analysis of different variants of the same model reveals
that increasing model size does not necessarily lead to better
repair accuracy. For instance, when the size of CodeLlama-
Python increases from 7B to 13B, pass@100 improves from
22.4 to 32.2. However, with CodeLlama-Python 34B, pass@100
drops to 29.8. Similar trends are observed in WizardCoder-
15B/33B and CodeLlama-Instruct. We conducted an in-depth
analysis to understand this counterintuitive behavior and found
that larger models tend to generate more verbose and detailed
outputs, including lengthy explanations before or alongside
the patch. While these additional explanations may reflect
stronger reasoning ability, they also lead to practical issues:
(1) In some cases, the verbose output exceeds the token limit
(2048 tokens, following EvalPlus), resulting in incomplete
patches—approximately 19% of cases for CodeLlama-Instruct-
34B failed to produce complete patched output due to such
overgeneration. (2) Furthermore, the overexplanation increases
the likelihood of hallucinations in some cases, which can
inadvertently degrade the correctness of the generated code.
Another interesting finding is that several open-source models,
such as Mixtral-8x7B-Instruct, perform poorly on Defects4C,
despite excelling on popular datasets like HumanEval [18].
Besides, the performance gap between open-source and closed-
source models on Defects4C is less pronounced compared
to their performance on other datasets [18]. This indicates
that Defects4C, collected from real-world projects, presents a
more challenging testbed, further underscoring the value of the
dataset.

Conversation-based repair evaluation. We then select the
best performing models from Table IV to perform experiments
on conversation-based repair, with the results presented in

Table V. The first conclusion we can draw is that LLMs perform
better in repairing Defects4C_bug than Defects4C_vul. The
best LLMs can successfully repair 27 bugs in Defects4C_bug,
while only 7 vulnerabilities in Defects4C_vul. We conjecture
that this difference comes from the increased complexity of
vulnerabilities, making them more difficult for LLMs to address.
However, considering the total number of bugs (248) and
vulnerabilities (102), the success repair rate for Defects4C_bug
and Defects4C_vul are only 10.88% and 6.86%, respectively.
This low performance highlights the significant room for
improvement in LLMs’ ability to repair C/C++ defects.

Additionally, since we limit the repair attempts of GPT-4
to 2 due to the budget constraints, it performs worse than
GPT-3.5 on Defects4C_bug. However, GPT-4 demonstrates
potential on Defects4C_vul, with the second-best repairing
performance. We believe that GPT-4 could achieve higher repair
accuracy with more repair attempts, which will be our future
work. Lastly, apart from GPT-4 and GPT-3.5, open-source
models perform poorly even in conversation-based repair. For
example, WizardCoder and Gemma are able to repair only 1
bug or vulnerability in both Defects4C_bug and Defects4C_vul.
This suggests that while these open-source models may excel
in certain tasks or datasets reported by existing works, their
generalizability remains limited.

Results comparison between Defects4C and Defects4J. We
further compare the difficulty between Defects4C and Defects4J
using the repair results of LLM-based methods. Specifically,
we directly report the conversation-driven repair results of
Defects4J provided by [4]. In their original setting, GPT-3.5
is used as the base model for conversation-driven repair. The
results of Defects4J and Defects4C are presented in Table VI,
where the first row presents the results for Defects4J. Compared
with the repair success rate on Defects4J, the success rate



TABLE IV: Evaluating LLMs on Defects4C for single-round repair, where 𝑘∗ = 1 marks pass@1 done with greedy-search decoding and
pass@𝑘 results with its corresponding temperature.

Model Size T=0.2 T=0.8
k*=1 𝑘 = 1 𝑘 = 10 𝑘 = 100 𝑘 = 1 𝑘 = 10 𝑘 = 100

GPT-4 N/A 9.0 - - - - - -
GPT-35-Turbo N/A 8.5 7.9 13.5 19.5 7.1 20.0 38.9

CodeLlama-Python
7B 0.0 0.1 1.2 4.5 0.8 6.2 22.5
13B 0.0 0.3 1.8 4.5 1.7 11.2 32.2
34B 0.0 0.3 2.2 6.9 1.2 8.8 29.8

CodeLlama-Base 7B 0.0 0.0 0.0 0.0 0.2 2.1 14.3

CodeLlama-Instruct
7B 2.5 3.3 11.1 24.9 4.8 20.5 45.7
13B 5.3 4.0 14.2 25.7 3.8 18.1 40.4
34B 4.0 3.6 12.1 25.7 3.2 14.7 35.9

deepseek-coder
6.7B-Inst. 1.2 2.4 10.7 25.7 2.2 13.4 33.9
6.7B 0.4 0.3 1.0 3.7 0.9 6.8 25.7
33B 0.0 0.0 0.0 0.0 0.7 5.7 26.1

Gemma
7B-Inst. 0.0 0.8 5.1 14.7 0.9 6.1 22.9
7B 0.0 0.4 3.0 11.0 0.8 6.6 26.9
Code7B 0.0 0.0 0.0 0.0 0.0 0.2 1.2

phi-2 2.7B 0.0 0.0 0.0 0.0 0.4 3.7 19.9
Magicoder-S-DS 6.7B 3.3 2.6 9.9 24.7 4.7 22.6 34.8
Mixtral-8x7B-Instruct 7B 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Phind-CodeLlama 34B 6.1 5.4 18.6 34.7 4.8 20.6 38.4

WizardCoder-Python
7B 0.0 0.2 1.1 3.7 0.4 3.4 18.8
13B 0.0 0.7 4.2 11.8 1.4 11.0 35.5
34B 4.4 5.2 13.0 21.2 5.5 23.0 45.1

WizardCoder 15B 1.0 1.1 4.9 11.3 1.7 10.4 28.9
33B 0.0 0.0 0.0 0.0 0.2 1.9 10.3

TABLE V: Evaluating LLMs on Defects4C for conversation-based repair where Pass denotes the number of bugs or vulnerabilities that the
model can successfully repair, Avg.tries denotes the average tries of the successful repair. Due to the limited budget, the maximum number of
repair attempts is set to 2 for GPT-4, and the remaining models are set to 10 by default.

Model Decoding
Defects4C_bug

Pass/Sum
Defects4C_vul

Pass/SumSignature Sanitizer Memory Error Logic Signature Sanitizer Memory Error Logic
Pass/Total Avg.tries Pass/Total Avg.tries Pass/Total Avg.tries Pass/Total Avg.tries Pass/Total Avg.tries Pass/Total Avg.tries Pass/Total Avg.tries Pass/Total Avg.tries

GPT-4 T=1.0 0/75 0.0 4/66 2.0 1/20 1.0 0/87 0.0 5/248 1/11 2.0 0/6 0 4/72 1.5 0/13 0.0 5/102
greedy 3/75 2.0 1/66 1.0 1/20 2.0 0/87 0.0 5/248 1/11 2.0 0/6 0.0 3/72 1.3 0/13 0.0 4/102

GPT-35-Turbo T=1.0 8/75 1.7 13/66 2.4 3/20 3.7 3/87 2.7 27/248 0/11 0.0 1/6 10.0 0/72 0.0 0/13 0.0 1/102
greedy 7/75 2.0 4/66 3.0 5/20 2.8 2/87 1.0 18/248 0/11 0.0 2/6 4.5 2/72 8.5 0/13 0.0 4/102

CodeLlama-Instruct-7B T=1.0 9/75 2.8 11/66 2.9 3/20 3.0 4/87 6.3 27/248 0/11 0.0 0/6 0.0 0/72 0.0 0/13 0.0 0/102
greedy 3/75 6.0 8/66 4.6 4/20 4.7 1/87 1.0 16/248 0/11 0.0 0/6 0.0 0/72 0.0 1/13 9.0 1/102

Gemma-Instruct-7B T=1.0 0/75 0.0 1/66 1.0 0/20 0.0 0/87 0.0 1/248 0/11 0.0 0/6 0.0 1/72 3.0 0/13 0.0 1/102
greedy 1/75 8.0 0/66 0.0 0/20 0.0 0/87 0.0 1/248 0/11 0.0 0/6 0.0 0/72 0.0 0/13 0.0 0/102

WizardCoder-Python-34B T=1.0 0/75 0.0 0/66 0.0 0/20 0.0 1/87 1.0 1/248 0/11 0.0 0/6 0.0 0/72 0.0 0/13 0.0 0/102
greedy 0/75 0.0 0/66 0.0 0/20 0.0 0/87 0.0 0/248 1/11 8.0 0/6 0.0 0/72 0.0 0/13 0.0 1/102

Phind-CodeLlama-34B T=1.0 9/75 4.9 4/66 6.7 1/20 8.0 4/87 4.7 18/248 0/11 0.0 2/6 1.0 5/72 4.8 0/13 0.0 7/102
greedy 0/75 0.0 2/66 1.0 4/20 1.0 1/87 8.0 7/248 0/11 0.0 1/6 1.0 1/72 1.0 0/13 0.0 2/102

deepseek-coder-33b-base T=1.0 4/75 1.5 0/66 0.0 2/20 1.0 0/87 0.0 6/248 0/11 0.0 0/6 0.0 0/72 0.0 0/13 0.0 0/102
greedy 0/75 0.0 0/66 0.0 0/20 0.0 6/87 8.2 6/248 0/11 0.0 0/6 0.0 0/72 0.0 0/13 0.0 0/102

in repairing C/C++ (Defects4C) bugs and vulnerabilities is
significantly lower, underscoring the inherent challenges in
fixing C/C++ faults and the need for more advanced and specific
repair methods.

Answer to RQ1: LLM-based APR techniques can only
fix 10.88% and 6.86% bugs in Defects4C_bug and
Defects4C_vul, respectively, which are significantly lower
than the bug fixing rate on Defects4J, showcasing the
challenges of Defects4C.

B. RQ2: Effectiveness of Fine-Tuned LLMs on Defects4C
In this RQ, we fine-tune open-sourced LLMs using De-

fects4C_bgcommit and evaluate the performance of the fine-

tuned models on Defects4C_bug and Defects4C_vul. The results
are presented in Table VII to investigate the usefulness of using
our dataset to enhance LLMs’ repair capability. The second
column, Finetune, indicates whether the model has been fine-
tuned with Defects4C_bgcommit, where ✗ represents the results
of the pre-trained model (listed here for comparison purposes)
and ✓ represents the results with LoRA-based fine-tuning.

Overall, we observe that fine-tuning is a promising way to
boost the repair performance of LLMs on C/C++ bugs. In 22
out of 28 cases, fine-tuned LLMs have higher Pass@k scores
than pre-traiend LLMs, with an average relative improvement
of 76.35%. This phenomenon is more obvious when the
temperature is set to 0.8, where only one model shows a



TABLE VI: The repair performance compared with Defects4J.
#Avg.tries represents the average number of attempts required,
calculated as the ratio of successful repairs (Pass) to the total attempts
(Total).

Model Func Hunk Line #Avg.tries#Pass/Total Rate #Pass/Total Rate #Pass/Total Rate

Defects4J [4] - 29.80 - 51.30 - 71.30 -

GPT4 T=1 1/46 2.17 2/179 1.12 7/125 5.60 2.86
greedy 0/46 0.00 7/179 3.91 2/125 1.60 2.57

GPT-3.5-Turbo T=1 0/46 0.00 11/179 6.15 17/125 13.60 8.00
greedy 0/46 0.00 9/179 5.03 13/125 10.40 6.29

CodeLlama-Instruct-7B T=1 0/46 0.00 10/179 5.59 17/125 13.60 7.71
greedy 0/46 0.00 10/179 5.59 7/125 5.60 4.86

Gemma-Instruct-7B T=1 0/46 0.00 1/179 0.56 1/125 0.80 0.57
greedy 0/46 0.00 1/179 0.56 0/125 0.00 0.29

WizardCoder-Python-34B T=1 0/46 0.00 1/179 0.56 0/125 0.00 0.29
greedy 0/46 0.00 1/179 0.56 0/125 0.00 0.29

Phind-CodeLlama-34B T=1 2/46 4.35 12/179 6.70 11/125 8.80 7.14
greedy 0/46 0.00 3/179 1.68 6/125 4.80 2.57

deepseek-coder-33b-base T=1 0/46 0.00 4/179 2.23 2/125 1.60 1.71
greedy 0/46 0.00 6/179 3.35 0/125 0.00 1.71

TABLE VII: Comparative Results With/Without Fine-Tuning.

Model Finetune Greedy T=0.2 T=0.8
𝑘 = 1 𝑘 = 10 𝑘 = 100 𝑘 = 1 𝑘 = 10 𝑘 = 100

CodeLlama-7B-Base ✗ 0.00 0.00 0.00 0.00 0.22 2.10 14.29
✓ 0.41 0.25 0.92 2.86 0.44 3.72 20.41

CodeLlama-7B-Instruct ✗ 2.45 3.31 11.07 24.90 4.81 20.51 45.71
✓ 4.08 4.26 9.30 17.14 4.92 20.99 46.94

Deepseek-Coder-6.7B-Base ✗ 0.41 0.33 0.96 3.67 0.87 6.83 25.71
✓ 2.10 1.85 4.20 12.50 2.45 15.80 31.90

Deepseek-Coder-6.7B-Instruct ✗ 1.22 2.42 10.65 25.71 2.16 13.36 33.88
✓ 3.27 3.74 10.49 20.82 3.87 18.41 41.22

performance degradation after fine-tuning. However, even
with fine-tuning, our studied LLMs still do not perform well
in repairing C/C++ bugs. The best model achieved a 4.92
pass@1 score (CodeLlama-7B-Instruct), which is far from
ideal performance. This highlights the need for more advanced
fine-tuning methods to further improve C/C++ program repair.

Answer to RQ2: Fine-tuning with Defects4C benefits
the repair capability of LLMs on C/C++ bugs, but the
improvements are limited. Proposing new, specific fine-
tuning methods for Defects4C is in need.

C. RQ3: Error Characteristics Made by LLMs on Defects4C

Finally, we investigate the bottlenecks of existing LLMs in
terms of repairing bugs in Defects4C. Specifically, we analyze
the cases in Defects4C in which LLMs cannot handle correctly
and categorize them according to error patterns. After careful
manual checking, we summarize four failure patterns that make
LLMs difficult to produce correct patches: long/multi-hunk
patches, deletion-centric fixes, missing external context, and
insufficient test feedback.

• Long/multi-hunk patches indicates that the correct patches
are long and span multiple functions or lines, but LLMs
cannot generate such complex patches.

• Deletion-centric fixes refers to correct patches that require
removing part of the code snippets, but LLMs rarely
perform code removal.

• Missing external context refers to correct patches that need
additional context (e.g., data structures or global variables)

TABLE VIII: Failure Patterns in Defects4C_vul (102 cases)

Failure Pattern Vanilla% Tuned%

Long/multi-hunk patches 52.0 52.0
Deletion-centric fixes 9.8 6.9
Missing external context 28.4 26.5
Insufficient test feedback 9.8 9.8

outside the buggy function, but LLMs are unaware of
outside information.

• Insufficient test feedback indicates that buggy code only
provides a single test case, leading to insufficient feedback.

Table VIII summarizes the distribution of these failure causes
in Defects4C_vul of CodeLlama-7B-Instruct (results of other
models can be found on our project site) before and after
fine-tuning. We can see that most faults happen to long/multi-
hunk patches and insufficient test feedback, which indicates
that current LLMs have difficulty handling complex program
repair tasks in our dataset. Fine-tuning enhances the repair
capability of LLMs in deletion-centric fixes and missing
external context patterns, but cannot handle other types of
failures. This provides potential guidance for proposing new
fine-tuning methods for Defects4C by paying more attention to
long/multi-hunk patches and insufficient test feedback patterns.
Furthermore, we observe that successful repairs also share
common patterns: 1) small correct patches confined to 1 to
2 lines, and simple modifications (e.g., variable renames or
type adjustments); 2) buggy code includes multiple test cases,
which offer richer feedback and guide the model toward the
correct fix.

Answer to RQ3: In Defects4C, bugs that span multiple
lines and bugs that require external information to fix
account for the highest proportion and are difficult to
repair using LLM.

VII. Threat to Validity

While our dataset is significantly more comprehensive than
existing C/C++ benchmarks, potential threats to the validity of
results remain due to limitations in bug and project collection.
To mitigate this, we have made extensive efforts to gather a large
volume of data—over 38+ million bug-relevant commits—from
a diverse set of real-world, representative projects, within our
resource constraints. We applied rigorous and conservative
filtering procedures to ensure a reasonable balance between
quantity and quality. Nevertheless, the current dataset only
includes projects hosted on GitHub, which may introduce
potential bias, as it does not cover other platforms or industrial
codebases. We plan to expand Defects4C in future versions by
incorporating additional sources to mitigate this limitation.

Another limitation arises from our focus on single-function
commits. While this design ensures reliable annotation quality,
it excludes multi-function or cross-file defects, such as those
involving both a function implementation and its declaration.
Although this choice simplifies validation and ensures a large
set of high-quality defects, it reduces coverage of certain bug



categories. We plan to extend the dataset to include multi-
function and cross-file bugs in future releases.

Defects4C preserves all tests from the original repositories,
including regression tests. However, our benchmark primarily
highlights a pair of tests per bug (failing and passing) for
evaluation. While unrelated regression tests are retained, they
are not invoked in the minimal setup by default. We will extend
the testing infrastructure to allow users to flexibly run trigger
tests, all regression tests, or selected cases.

Temporal and contamination biases also pose potential
threats. Given the popularity of many selected projects, there
is a possibility that similar code patterns may appear in
the pre-training corpora of LLMs, which could inadvertently
inflate performance. However, our results show that LLMs
underperform significantly on our dataset, suggesting that
memorization and contamination effects could be minimal
and would not affect our main conclusions.

Manual annotation may introduce subjective bias. To address
this, we employed two independent annotators and measured
inter-annotator agreement using Cohen’s Kappa to ensure
annotation consistency.

Lastly, the quality of training data used in RQ2 could also
affect results. Some data pairs may not be strictly bug-related,
which may impact fine-tuning effectiveness. Due to scalability
constraints, we did not manually verify each pair. We leave
the exploration of improved preprocessing and fine-tuning
techniques as future work.

VIII. Conclusion and Future Work

In this paper, we present Defects4C, a comprehensive and
high-quality benchmark for C/C++ defects that significantly ad-
vances the evaluation and fine-tuning of LLM-based automated
program repair techniques. Our dataset fills a critical gap in the
field by offering a large-scale, highly usable resource specifi-
cally tailored to C/C++ faults. Through extensive experiments
on both pre-trained and fine-tuned models, we uncover several
important findings. In particular, our evaluation of pre-trained
LLMs reveals a substantial performance gap when addressing
C/C++ defects compared to their performance on Java-based
benchmarks such as Defects4J. This highlights the need for
further research on C/C++ program repair.

IX. Acknowledgements

This work was partially supported by the National Research
Foundation, Singapore, and the Cyber Security Agency under
its National Cybersecurity R&D Programme (CRPO-GC1-NUS-
001), the CyberSG R&D Cyber Research Programme Office,
the Singapore Ministry of Education Academic Research Fund
Tier 1 (RG12/23). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of National
Research Foundation, Singapore, Cyber Security Agency of
Singapore, CyberSG R&D Programme Office as well as MOE.

References

[1] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen,
“Reversible debugging software,” Judge Bus. School, Univ. Cambridge,
Cambridge, UK, Tech. Rep, vol. 229, p. 2013, 2013.

[2] C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in the
era of large pre-trained language models,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE, 2023,
pp. 1482–1494.

[3] Q. Guo, J. Cao, X. Xie, S. Liu, X. Li, B. Chen, and X. Peng, “Exploring
the potential of chatgpt in automated code refinement: An empirical
study,” in Proceedings of the 46th IEEE/ACM International Conference
on Software Engineering, 2024, pp. 1–13.

[4] C. S. Xia and L. Zhang, “Automated program repair via conversation:
Fixing 162 out of 337 bugs for 0.42 each using chatgpt,” in Proceedings
of the 33rd ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2024, pp. 819–831.

[5] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 international symposium on software testing
and analysis, 2014, pp. 437–440.

[6] R. Widyasari, S. Q. Sim, C. Lok, H. Qi, J. Phan, Q. Tay, C. Tan, F. Wee,
J. E. Tan, Y. Yieh et al., “Bugsinpy: a database of existing bugs in
python programs to enable controlled testing and debugging studies,”
in Proceedings of the 28th ACM joint meeting on european software
engineering conference and symposium on the foundations of software
engineering, 2020, pp. 1556–1560.

[7] mend, “What are the most secure programming languages?” https://www.
mend.io/most-secure-programming-languages/, 2024, accessed: 2024.

[8] P. Orvalho, M. Janota, and V. Manquinho, “C-pack of ipas: A c90
program benchmark of introductory programming assignments,” arXiv
preprint arXiv:2206.08768, 2022.

[9] S. H. Tan, J. Yi, S. Mechtaev, A. Roychoudhury et al., “Codeflaws: a
programming competition benchmark for evaluating automated program
repair tools,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C). IEEE, 2017, pp. 180–182.

[10] M. Böhme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe, and
A. Zeller, “Where is the bug and how is it fixed? an experiment
with practitioners,” in Proceedings of the 2017 11th joint meeting on
foundations of software engineering, 2017, pp. 117–128.

[11] J. Yi, U. Z. Ahmed, A. Karkare, S. H. Tan, and A. Roychoudhury, “A
feasibility study of using automated program repair for introductory
programming assignments,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017, pp. 740–751.

[12] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu, S. Forrest,
and W. Weimer, “The manybugs and introclass benchmarks for automated
repair of c programs,” IEEE Transactions on Software Engineering,
vol. 41, no. 12, pp. 1236–1256, 2015.

[13] G. An, M. Kwon, K. Choi, J. Yi, and S. Yoo, “Bugsc++: A highly
usable real world defect benchmark for c/c++,” in 2023 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2023, pp. 2034–2037.

[14] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common c
language errors by deep learning,” in Proceedings of the aaai conference
on artificial intelligence, vol. 31, 2017.

[15] A. Majd, M. Vahidi-Asl, A. Khalilian, A. Baraani-Dastjerdi, and
B. Zamani, “Code4bench: A multidimensional benchmark of codeforces
data for different program analysis techniques,” Journal of Computer
Languages, vol. 53, pp. 38–52, 2019.

[16] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2016, pp. 298–
312.

[17] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut:
combining context-aware neural translation models using ensemble for
program repair,” in Proceedings of the 29th ACM SIGSOFT international
symposium on software testing and analysis, 2020, pp. 101–114.

[18] M. Chen and J. T. W. Zaremba, “Evaluating large language models
trained on code,” arXiv, 2021.

[19] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code
generated by chatGPT really correct? rigorous evaluation of large
language models for code generation,” in Thirty-seventh Conference
on Neural Information Processing Systems, 2023. [Online]. Available:
https://openreview.net/forum?id=1qvx610Cu7

https://www.mend.io/most-secure-programming-languages/
https://www.mend.io/most-secure-programming-languages/
https://openreview.net/forum?id=1qvx610Cu7


[20] program repair.org, “program-repair community for research,” 2021.
[Online]. Available: https://program-repair.org/

[21] CVEProject, “Cve automation working group git pilot,” 2021. [Online].
Available: https://github.com/CVEProject/cvelist

[22] N. Tillmann, J. De Halleux, T. Xie, and J. Bishop, “Code hunt: Gamifying
teaching and learning of computer science at scale,” in Proceedings of
the first ACM conference on Learning@ scale conference, 2014, pp.
221–222.

[23] E. R. Sykes and F. Franek, “A prototype for an intelligent tutoring
system for students learning to program in java (tm),” in Proceedings
of the IASTED International Conference on Computers and Advanced
Technology in Education, 2003, pp. 78–83.

[24] R. Das, U. Z. Ahmed, A. Karkare, and S. Gulwani, “Prutor: A system for
tutoring cs1 and collecting student programs for analysis,” arXiv preprint
arXiv:1608.03828, 2016.

[25] S. Kulal, P. Pasupat, K. Chandra, M. Lee, O. Padon, A. Aiken, and P. S.
Liang, “Spoc: Search-based pseudocode to code,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[26] X. B. D. Le, D. Lo, and C. Le Goues, “History driven program repair,” in
2016 IEEE 23rd international conference on software analysis, evolution,
and reengineering (SANER), vol. 1. IEEE, 2016, pp. 213–224.

[27] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A generic
method for automatic software repair,” Ieee transactions on software
engineering, vol. 38, no. 1, pp. 54–72, 2011.

[28] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
patch generation for better automated program repair,” in Proceedings
of the 40th international conference on software engineering, 2018, pp.
1–11.

[29] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: syntax-
and semantic-guided repair synthesis via programming by examples,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 593–604.

[30] F. Long and M. Rinard, “Staged program repair with condition synthesis,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 166–178.

[31] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
38th international conference on software engineering, 2016, pp. 691–
701.

[32] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Avatar: Fixing
semantic bugs with fix patterns of static analysis violations,” in 2019
IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2019, pp. 1–12.

[33] ——, “Tbar: Revisiting template-based automated program repair,” in
Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2019, pp. 31–42.

[34] M. Martinez and M. Monperrus, “Astor: A program repair library for
java,” in Proceedings of the 25th International Symposium on Software
Testing and Analysis, 2016, pp. 441–444.

[35] N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine
translation for automatic program repair,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 1161–1173.

[36] H. Ye, M. Martinez, and M. Monperrus, “Neural program repair
with execution-based backpropagation,” in Proceedings of the 44th
International Conference on Software Engineering, 2022, pp. 1506–1518.

[37] Q. Zhu, Z. Sun, Y.-a. Xiao, W. Zhang, K. Yuan, Y. Xiong, and L. Zhang,
“A syntax-guided edit decoder for neural program repair,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2021, pp. 341–353.

[38] H. Ye, M. Martinez, X. Luo, T. Zhang, and M. Monperrus, “Selfapr: Self-
supervised program repair with test execution diagnostics,” in Proceedings
of the 37th IEEE/ACM International Conference on Automated Software
Engineering, 2022, pp. 1–13.

[39] H. Ye and M. Monperrus, “Iter: Iterative neural repair for multi-location
patches,” in Proceedings of the 46th IEEE/ACM International Conference
on Software Engineering, 2024, pp. 1–13.

[40] N. Jiang, K. Liu, T. Lutellier, and L. Tan, “Impact of code language
models on automated program repair,” arXiv preprint arXiv:2302.05020,
2023.

[41] J. A. Prenner, H. Babii, and R. Robbes, “Can openai’s codex fix bugs?
an evaluation on quixbugs,” in Proceedings of the Third International
Workshop on Automated Program Repair, 2022, pp. 69–75.

[42] D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An analysis of
the automatic bug fixing performance of chatgpt,” arXiv preprint
arXiv:2301.08653, 2023.

[43] C. S. Xia and L. Zhang, “Conversational automated program repair,”
arXiv preprint arXiv:2301.13246, 2023.

[44] R. Tian, Y. Ye, Y. Qin, X. Cong, Y. Lin, Z. Liu, and M. Sun, “Debugbench:
Evaluating debugging capability of large language models,” 2024.

[45] Y. Zhou, J. K. Siow, C. Wang, S. Liu, and Y. Liu, “Spi: Automated
identification of security patches via commits,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 31, no. 1, pp.
1–27, 2021.

[46] GH Archive, “Gh archive is a project to record the public github timeline,
archive it, and make it easily accessible for further analysis.” https:
//www.gharchive.org/#bigquery, 2023.

[47] EvanLi, “Github ranking, github stars and forks ranking list. github
top100 stars list of different languages.” 2016. [Online]. Available:
https://github.com/EvanLi/Github-Ranking/tree/master

[48] Z. Chen, S. Kommrusch, and M. Monperrus, “Neural transfer learning
for repairing security vulnerabilities in c code,” IEEE Transactions on
Software Engineering, vol. 49, no. 1, pp. 147–165, 2022.

[49] J. Kong, M. Cheng, X. Xie, S. Liu, X. Du, and Q. Guo, “Contrastrepair:
Enhancing conversation-based automated program repair via contrastive
test case pairs,” arXiv preprint arXiv:2403.01971, 2024.

[50] L. Quan, Q. Guo, X. Xie, S. Chen, X. Li, and Y. Liu, “Towards
understanding the faults of javascript-based deep learning systems,”
in Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, 2022, pp. 1–13.

[51] X. Shi, X. Xie, Y. Li, Y. Zhang, S. Chen, and X. Li, “Large-scale analysis
of non-termination bugs in real-world oss projects,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2022, pp. 256–
268.

[52] L. M. Hsu and R. Field, “Interrater agreement measures: Comments
on kappan, cohen’s kappa, scott’s 𝜋, and aickin’s 𝛼,” Understanding
Statistics, vol. 2, no. 3, pp. 205–219, 2003.

[53] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159–174, 1977.

[54] “The website of defects4c, benchmarking c/c++ bugs and evaluating
large language models for their repair,” 2025. [Online]. Available:
https://sites.google.com/view/anonymous-defects4c

[55] Y. Wei, Z. Wang, J. Liu, Y. Ding, and L. Zhang, “Magicoder: Source
code is all you need,” arXiv preprint arXiv:2312.02120, 2023.

[56] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “Unixcoder:
Unified cross-modal pre-training for code representation,” arXiv preprint
arXiv:2203.03850, 2022.

[57] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,”
arXiv preprint arXiv:2106.09685, 2021.

https://program-repair.org/
https://github.com/CVEProject/cvelist
https://www.gharchive.org/#bigquery
https://www.gharchive.org/#bigquery
https://github.com/EvanLi/Github-Ranking/tree/master
https://sites.google.com/view/anonymous-defects4c

	Introduction
	Motivation and Related Work
	Benchmark Construction
	Raw Data Collection and Filtering
	Unit Test Extraction and Matching
	Human Confirmation and Bug Classification

	Statistics of Defects4C
	Evaluation
	Evaluation Workflow
	Prompt Design
	Experimental Setup

	Experimental Results
	RQ1: Effectiveness of Pre-Trained LLMs on Defects4C
	RQ2: Effectiveness of Fine-Tuned LLMs on Defects4C
	RQ3: Error Characteristics Made by LLMs on Defects4C

	Threat to Validity
	Conclusion and Future Work
	Acknowledgements
	References

