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Code-Documentation Inconsistencies in Data 
Science Libraries
• Confusion[1]: Can solver newton-cg, sag, and lbfgs work with no penalty?

• If users use the API in a biased way, it will lead to poor model training performance like 

underfitting
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Modified Doc

[1] https://github.com/scikit-learn/scikit-learn/issues/19651

Old Doc of LogisticRegression
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Code-Documentation Inconsistencies in Data 
Science Libraries

• API documentation and code evolve at different speeds.

• Lots of multi-parameter constraints in data science libraries. 

• No tool do a good job of checking it !!

V1.0

V1.0

V2.0
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Why is it challenging?

• Parameter-rich interfaces

• Numerous parameters with complex dependencies

• Silent constraint violations

• Unexpected behaviors without triggering explicit exceptions

• No fixed format for API documentation

• Ambiguous descriptions and sometimes unclear/hidden constraints

• Implicit code-doc constraint correspondence

• Hard to locate code segments and verify specific constraints
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LLM may be a promising solution, but …

• LLM-only multi-parameter inconsistency checker? Probably not

• Unavoidable stochastic behaviors and hallucination

• Unreliable code comprehension and reasoning capability

• Our proposal: combine LLM strengths in natural language understanding with 

symbolic reasoning

5



Overview of MPChecker
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Phase I: Preprocessing

• Split code into analyzable function units

• Extract documentation texts

• Following Google or Numpy style

• Equivalent Python code transformations to support

dynamic symbolic execution

• Get rid of unnecessary complications that do not affect 

path constraints

• E.g., external calls, complex data structures

• Translate exceptions to special symbols

• Focus on visible API parameters
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Phase II-A: Code-constraint extraction

• Example code-constraint:
(sample_weight != None) ∧ (strategy = uniform) → ERROR
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Phase II-B: Doc-constraint extraction

• Parameter list + Few-shots+ CoT

• Example doc-constraint:
(affinity = nearest_neighbors) → ignore(gamma)
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Act as a code developer who is reading the code documentation. 

Please remember this

parameter list mentioned in this documentation: {parameter list}. 

{documentation}
 Document split prompt +

{documentation segment}

Document Input Prompt

Your final task is to convert textual constraints from documentation into

a specified logic format. Please think it step by step.

1. Logic Symbols: Use -> to denote implication (if...then); Use ! for 
negation (NOT); Use ^ for logical AND; Use || for logical OR; Enclose 

expressions in parentheses () to clarify the order of operations.

2. Keyword Placeholder Usage: If a constraint contains any of the 

following keywords: "override", "specify", "have an effect", "no effect", 

"significant", "ignore", use these keywords as placeholders within your 
logic expression.

3. Solution Format: Present your solutions as follows:

Constraint Number: ...

Text Constraint: ...
Logical Format: ...

Constraint Extraction Prompt

Few-shot In-context Learning

Logical Format: (!(distance_threshold = 'None')) -> (n_clusters = 'None').

1. Text Constraint: "n_clusters must be None if distance_threshold is not None."

Logical Format: ((kernel = 'rbf' || kernel = 'poly') || kernel = 'sigmoid') -> significant (gamma).

2. Text Constraint: "gamma is only significant for 'rbf', 'poly', and 'sigmoid' kernels."

Logical Format: (assign_labels = 'kmeans') -> !(n_init = 'None').

3. Text Constraint: "n_init: int, default=10. The final results will be the best output of n_init

consecutive runs in terms of inertia. Only used if assign_labels = 'kmeans'."

Logical Format: (affinity = 'nearest_neighbors') -> ignore(gamma).

4. Text Constraint: "gamma : float, default=10. Kernel coefficient for rbf, poly, sigmoid,

laplacian and chi2 kernels. Ignored for affinity = 'nearest neighbors'."

short doc long doc

Please extract all parameter information with their

types and default values from the following documents: 

Instructions:

 {documentation}



Implicit constraints and fuzzy words
Existence Non-existence

specify, have an effect, 

exist, significant, etc.

ignore, have no effect, 

unused, override, etc.
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(affinity = nearest_neighbors) → ignore(gamma)



Phase III: Inconsistency checking

• Given a doc-constraint c and a set of code-
constraints P = {p}
• Un-satisfiability: 

∀𝑝 ∈ 𝑃, ¬ 𝑐 ∧ 𝑝

• Nonequivalence:

∃𝑝 ∈ 𝑃, ¬(𝑐 ⟺ 𝑝)
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Fuzzy constraint logic

• Hallucination ➔ Incorrect constraints ➔ fuzzy results

• LLM tends to make minor mistakes

• Look-alike names, wrong symbols ( < ⟶ ≤ ), etc.

• Unfortunately, we can’t tell whether the extracted doc-constraints are correct or not

• We could mitigate the impact of hallucination on consistency checking

Correct 

constraint

Incorrect 

constraint

+ ?
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FCL – Expression similarity

samples

𝜂 = 1 −
2

9
≈ 0.78

Normalized 

Levenshtien 

Distance

< features

n_samples >= n_features

𝜂 𝑠1, 𝑠2 = 𝑁𝐿𝐷 = 1 −
𝐿𝐷(𝑠1, 𝑠2)

𝑚𝑎𝑥( 𝑠1 , 𝑠2 )

• Constraint in doc-constraint: (samples < features) ∧ (dual = True)

• Expression in code: n_samples >= n_features, dual = True
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FCL – Expression similarity

samples > features

n_samples <= n_features

Cosine 

similarity

𝑐𝑜𝑠𝜃 = 0.41

𝛿> = (1,0,1,0,0)

𝛿≤ = (1,1,0,1,0)

Comparison, Equality, Greater than, 

Less than, Negativity

• Constraint in doc-constraint: (samples < features) ∧ (dual = True)

• Expression in code: n_samples >= n_features, dual = True
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FCL – Expression similarity

samples
Normalized 

Levenshtien 

Distance

< features

n_samples >= n_features

𝜂 𝑠1, 𝑠2 = 𝑁𝐿𝐷 = 1 −
𝐿𝐷(𝑠1, 𝑠2)

𝑚𝑎𝑥( 𝑠1 , 𝑠2 )

𝜂 = 1 −
2

10
= 0.8

• Constraint in doc-constraint: (samples < features) ∧ (dual = True)

• Expression in code: n_samples >= n_features, dual = True
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FCL – Expression similarity

• 𝛼 and 𝛽 denotes the relative weights. Usually, we assign the same weights

samples < features

n_samples >= n_features

𝜂 = 1 −
2

10
= 0.8𝜂 = 1 −

2

9
≈ 0.78 𝑐𝑜𝑠𝜃 = 0.41

𝜎 𝑒1, 𝑒2 =
0.778 + 0.41 + 0.8

3
≈ 0.66

Expression 1:

Expression 2:
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FCL – Constraint similarity

• Constraint in doc-constraint: (samples < features) ∧ (dual = True)

• Expression in code: n_samples >= n_features, dual = True

Constraint similarity can be evaluated with the following formula:

𝜌 = min 0.66, 1 = 0.66
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FCL – Membership function

• Constraint similarity serves as the degree to which a given constraint 
is consistent with the code.

• After replacing each expression with its closest counterpart in path, the 
modified constraint is then evaluated by SMT solver to check whether the 
constraint is consistent with the code logic

• To reduce false positives, we set a constraint similarity threshold of 0.85

• >0.85, discard the result

• <=0.85, accept the result

0.66 ∙ 𝑇𝑟𝑢𝑒 = 0.33 ∙ 𝐹𝑎𝑙𝑠𝑒
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Evaluation

• Dataset[1] 

• 72 Real-world constraints from 4 popular libraries

• scikit-learn, scipy, numpy, pandas

• Mutation-based extended dataset (3X constraints)

• 216 constraints (126 inconsistent + 90 consistent)

• Implementation

• GPT-4, z3 SMT Solver

• Research Questions

1. How accurate is MPChecker in extracting constraints from API 

documentation?

2. How effective is MPChecker in detecting errors related to multi-parameter 

constraints in API documentation?

3. How effective can MPChecker detect unknown inconsistency issues?

[1] https://doi.org/10.5281/zenodo.15202267 19

https://doi.org/10.5281/zenodo.15202267


Evaluation: RQ1

• How accurate is MPChecker in extracting constraints from API 
documentation?

• Few-shot learning and CoT can help LLM in this task

• 66/72=91.7% demonstrates MPChecker is effective in extracting logical 
constraints from doc
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Evaluation: RQ2

• How effective is MPChecker in detecting errors related to multi-
parameter constraints in API documentation?

• LLM performs poorly as end-to-end inconsistency checker

• LLM Results: Correct conclusion + vague / incorrect reasons

• 117/126=92.8% shows MPChecker is effective in detecting inconsistent errors

• Fuzzy words and fuzzy constraint logic improve recall by 23.8%

raw docs + code → LLM Checker

doc-constrs + code-constrs + fuzzy words + FCL → Z3

doc-constrs + code → LLM Checker

doc-constrs + code-constrs → Z3
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Evaluation: RQ3

• How effective can MPChecker detect unknown inconsistency issues?

• Issue report confirmation rate: 11/14 = 78.6% 

• 10/11 have already been resolved. 7 fix doc / 3 fix doc+code 

• MPChecker can detect unknown API documentation errors

• It works even in unseen libraries which highlights its generalization capability
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Summary https://github.com/ParsifalXu/MPChecker

xiufeng001@e.ntu.edu.sg

23

10.5281/zenodo.15202267

yi_li@ntu.edu.sg (Supervisor)
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