
Identifying Multi-parameter Constraint Errors in Python
Data Science Library API Documentation

Xiufeng Xu1 Fuman Xie2 Chenguang Zhu3 Guangdong Bai2 Sarfraz Khurshid3 Yi Li1

1. Nanyang Technological University

2. University of Queensland

3. University of Texas at Austin

ISSTA ’25 – Trondheim, Norway

June 25, 2025

Code-Documentation Inconsistencies in Data
Science Libraries
• Confusion[1]: Can solver newton-cg, sag, and lbfgs work with no penalty?

• If users use the API in a biased way, it will lead to poor model training performance like

underfitting

2

Modified Doc

[1] https://github.com/scikit-learn/scikit-learn/issues/19651

Old Doc of LogisticRegression

https://github.com/scikit-learn/scikit-learn/issues/19651
https://github.com/scikit-learn/scikit-learn/issues/19651
https://github.com/scikit-learn/scikit-learn/issues/19651
https://github.com/scikit-learn/scikit-learn/issues/19651
https://github.com/scikit-learn/scikit-learn/issues/19651

Code-Documentation Inconsistencies in Data
Science Libraries

• API documentation and code evolve at different speeds.

• Lots of multi-parameter constraints in data science libraries.

• No tool do a good job of checking it !!

V1.0

V1.0

V2.0

3

Why is it challenging?

• Parameter-rich interfaces

• Numerous parameters with complex dependencies

• Silent constraint violations

• Unexpected behaviors without triggering explicit exceptions

• No fixed format for API documentation

• Ambiguous descriptions and sometimes unclear/hidden constraints

• Implicit code-doc constraint correspondence

• Hard to locate code segments and verify specific constraints

4

LLM may be a promising solution, but …

• LLM-only multi-parameter inconsistency checker? Probably not

• Unavoidable stochastic behaviors and hallucination

• Unreliable code comprehension and reasoning capability

• Our proposal: combine LLM strengths in natural language understanding with

symbolic reasoning

5

Overview of MPChecker

6

Phase I: Preprocessing

• Split code into analyzable function units

• Extract documentation texts

• Following Google or Numpy style

• Equivalent Python code transformations to support

dynamic symbolic execution

• Get rid of unnecessary complications that do not affect

path constraints

• E.g., external calls, complex data structures

• Translate exceptions to special symbols

• Focus on visible API parameters

7

Phase II-A: Code-constraint extraction

• Example code-constraint:
(sample_weight != None) ∧ (strategy = uniform) → ERROR

8

Phase II-B: Doc-constraint extraction

• Parameter list + Few-shots+ CoT

• Example doc-constraint:
(affinity = nearest_neighbors) → ignore(gamma)

9

Act as a code developer who is reading the code documentation.

Please remember this

parameter list mentioned in this documentation: {parameter list}.

{documentation}
 Document split prompt +

{documentation segment}

Document Input Prompt

Your final task is to convert textual constraints from documentation into

a specified logic format. Please think it step by step.

1. Logic Symbols: Use -> to denote implication (if...then); Use ! for
negation (NOT); Use ^ for logical AND; Use || for logical OR; Enclose

expressions in parentheses () to clarify the order of operations.

2. Keyword Placeholder Usage: If a constraint contains any of the

following keywords: "override", "specify", "have an effect", "no effect",

"significant", "ignore", use these keywords as placeholders within your
logic expression.

3. Solution Format: Present your solutions as follows:

Constraint Number: ...

Text Constraint: ...
Logical Format: ...

Constraint Extraction Prompt

Few-shot In-context Learning

Logical Format: (!(distance_threshold = 'None')) -> (n_clusters = 'None').

1. Text Constraint: "n_clusters must be None if distance_threshold is not None."

Logical Format: ((kernel = 'rbf' || kernel = 'poly') || kernel = 'sigmoid') -> significant (gamma).

2. Text Constraint: "gamma is only significant for 'rbf', 'poly', and 'sigmoid' kernels."

Logical Format: (assign_labels = 'kmeans') -> !(n_init = 'None').

3. Text Constraint: "n_init: int, default=10. The final results will be the best output of n_init

consecutive runs in terms of inertia. Only used if assign_labels = 'kmeans'."

Logical Format: (affinity = 'nearest_neighbors') -> ignore(gamma).

4. Text Constraint: "gamma : float, default=10. Kernel coefficient for rbf, poly, sigmoid,

laplacian and chi2 kernels. Ignored for affinity = 'nearest neighbors'."

short doc long doc

Please extract all parameter information with their

types and default values from the following documents:

Instructions:

 {documentation}

Implicit constraints and fuzzy words
Existence Non-existence

specify, have an effect,

exist, significant, etc.

ignore, have no effect,

unused, override, etc.

10

(affinity = nearest_neighbors) → ignore(gamma)

Phase III: Inconsistency checking

• Given a doc-constraint c and a set of code-
constraints P = {p}
• Un-satisfiability:

∀𝑝 ∈ 𝑃, ¬ 𝑐 ∧ 𝑝

• Nonequivalence:

∃𝑝 ∈ 𝑃, ¬(𝑐 ⟺ 𝑝)

11

Fuzzy constraint logic

• Hallucination ➔ Incorrect constraints ➔ fuzzy results

• LLM tends to make minor mistakes

• Look-alike names, wrong symbols (< ⟶ ≤), etc.

• Unfortunately, we can’t tell whether the extracted doc-constraints are correct or not

• We could mitigate the impact of hallucination on consistency checking

Correct

constraint

Incorrect

constraint

+ ?

12

FCL – Expression similarity

samples

𝜂 = 1 −
2

9
≈ 0.78

Normalized

Levenshtien

Distance

< features

n_samples >= n_features

𝜂 𝑠1, 𝑠2 = 𝑁𝐿𝐷 = 1 −
𝐿𝐷(𝑠1, 𝑠2)

𝑚𝑎𝑥(𝑠1 , 𝑠2)

• Constraint in doc-constraint: (samples < features) ∧ (dual = True)

• Expression in code: n_samples >= n_features, dual = True

13

FCL – Expression similarity

samples > features

n_samples <= n_features

Cosine

similarity

𝑐𝑜𝑠𝜃 = 0.41

𝛿> = (1,0,1,0,0)

𝛿≤ = (1,1,0,1,0)

Comparison, Equality, Greater than,

Less than, Negativity

• Constraint in doc-constraint: (samples < features) ∧ (dual = True)

• Expression in code: n_samples >= n_features, dual = True

14

FCL – Expression similarity

samples
Normalized

Levenshtien

Distance

< features

n_samples >= n_features

𝜂 𝑠1, 𝑠2 = 𝑁𝐿𝐷 = 1 −
𝐿𝐷(𝑠1, 𝑠2)

𝑚𝑎𝑥(𝑠1 , 𝑠2)

𝜂 = 1 −
2

10
= 0.8

• Constraint in doc-constraint: (samples < features) ∧ (dual = True)

• Expression in code: n_samples >= n_features, dual = True

15

FCL – Expression similarity

• 𝛼 and 𝛽 denotes the relative weights. Usually, we assign the same weights

samples < features

n_samples >= n_features

𝜂 = 1 −
2

10
= 0.8𝜂 = 1 −

2

9
≈ 0.78 𝑐𝑜𝑠𝜃 = 0.41

𝜎 𝑒1, 𝑒2 =
0.778 + 0.41 + 0.8

3
≈ 0.66

Expression 1:

Expression 2:

16

FCL – Constraint similarity

• Constraint in doc-constraint: (samples < features) ∧ (dual = True)

• Expression in code: n_samples >= n_features, dual = True

Constraint similarity can be evaluated with the following formula:

𝜌 = min 0.66, 1 = 0.66

17

FCL – Membership function

• Constraint similarity serves as the degree to which a given constraint
is consistent with the code.

• After replacing each expression with its closest counterpart in path, the
modified constraint is then evaluated by SMT solver to check whether the
constraint is consistent with the code logic

• To reduce false positives, we set a constraint similarity threshold of 0.85

• >0.85, discard the result

• <=0.85, accept the result

0.66 ∙ 𝑇𝑟𝑢𝑒 = 0.33 ∙ 𝐹𝑎𝑙𝑠𝑒

18

Evaluation

• Dataset[1]

• 72 Real-world constraints from 4 popular libraries

• scikit-learn, scipy, numpy, pandas

• Mutation-based extended dataset (3X constraints)

• 216 constraints (126 inconsistent + 90 consistent)

• Implementation

• GPT-4, z3 SMT Solver

• Research Questions

1. How accurate is MPChecker in extracting constraints from API

documentation?

2. How effective is MPChecker in detecting errors related to multi-parameter

constraints in API documentation?

3. How effective can MPChecker detect unknown inconsistency issues?

[1] https://doi.org/10.5281/zenodo.15202267 19

https://doi.org/10.5281/zenodo.15202267

Evaluation: RQ1

• How accurate is MPChecker in extracting constraints from API
documentation?

• Few-shot learning and CoT can help LLM in this task

• 66/72=91.7% demonstrates MPChecker is effective in extracting logical
constraints from doc

20

Evaluation: RQ2

• How effective is MPChecker in detecting errors related to multi-
parameter constraints in API documentation?

• LLM performs poorly as end-to-end inconsistency checker

• LLM Results: Correct conclusion + vague / incorrect reasons

• 117/126=92.8% shows MPChecker is effective in detecting inconsistent errors

• Fuzzy words and fuzzy constraint logic improve recall by 23.8%

raw docs + code → LLM Checker

doc-constrs + code-constrs + fuzzy words + FCL → Z3

doc-constrs + code → LLM Checker

doc-constrs + code-constrs → Z3

21

Evaluation: RQ3

• How effective can MPChecker detect unknown inconsistency issues?

• Issue report confirmation rate: 11/14 = 78.6%

• 10/11 have already been resolved. 7 fix doc / 3 fix doc+code

• MPChecker can detect unknown API documentation errors

• It works even in unseen libraries which highlights its generalization capability

22

Summary https://github.com/ParsifalXu/MPChecker

xiufeng001@e.ntu.edu.sg

23

10.5281/zenodo.15202267

yi_li@ntu.edu.sg (Supervisor)

	Slide 1: Identifying Multi-parameter Constraint Errors in Python Data Science Library API Documentation
	Slide 2: Code-Documentation Inconsistencies in Data Science Libraries
	Slide 3: Code-Documentation Inconsistencies in Data Science Libraries
	Slide 4: Why is it challenging?
	Slide 5: LLM may be a promising solution, but …
	Slide 6: Overview of MPChecker
	Slide 7: Phase I: Preprocessing
	Slide 8: Phase II-A: Code-constraint extraction
	Slide 9: Phase II-B: Doc-constraint extraction
	Slide 10: Implicit constraints and fuzzy words
	Slide 11: Phase III: Inconsistency checking
	Slide 12: Fuzzy constraint logic
	Slide 13: FCL – Expression similarity
	Slide 14: FCL – Expression similarity
	Slide 15: FCL – Expression similarity
	Slide 16: FCL – Expression similarity
	Slide 17: FCL – Constraint similarity
	Slide 18: FCL – Membership function
	Slide 19: Evaluation
	Slide 20: Evaluation: RQ1
	Slide 21: Evaluation: RQ2
	Slide 22: Evaluation: RQ3
	Slide 23: Summary

