
Precfix: Large-Scale Patch Recommendation by Mining
Defect-Patch Pairs

Xindong Zhang
zxd139922@alibaba-inc.com

Alibaba Group

Chenguang Zhu∗
cgzhu@utexas.edu

University of Texas at Austin

Yi Li
yi_li@ntu.edu.sg

Nanyang Technological University

Jianmei Guo
jianmei.gjm@alibaba-inc.com

Alibaba Group

Lihua Liu
lihua.llh@alibaba-inc.com

Alibaba Group

Haobo Gu
haobo.haobogu@alibaba-inc.com

Alibaba Group

ABSTRACT

Patch recommendation is the process of identifying errors in soft-
ware systems and suggesting suitable fixes for them. Patch recom-
mendation can significantly improve developer productivity by re-
ducing both the debugging and repairing time. Existing techniques
usually rely on complete test suites and detailed debugging reports,
which are often absent in practical industrial settings. In this paper,
we propose Precfix, a pragmatic approach targeting large-scale
industrial codebase and making recommendations based on previ-
ously observed debugging activities. Precfix collects defect-patch
pairs from development histories, performs clustering, and extracts
generic reusable patching patterns as recommendations. We con-
ducted experimental study on an industrial codebase with 10K
projects involving diverse defect patterns. We managed to extract
3K templates of defect-patch pairs, which have been successfully
applied to the entire codebase. Our approach is able to make rec-
ommendations within milliseconds and achieves a false positive
rate of 22% confirmed by manual review. The majority (10/12) of
the interviewed developers appreciated Precfix, which has been
rolled out to Alibaba to support various critical businesses.

KEYWORDS

Defect detection, patch generation, patch recommendation.
ACM Reference Format:

Xindong Zhang, Chenguang Zhu, Yi Li, Jianmei Guo, Lihua Liu, and Haobo
Gu. 2020. Precfix: Large-Scale Patch Recommendation by Mining Defect-
Patch Pairs. In Software Engineering in Practice (ICSE-SEIP ’20), May 23–

29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3377813.3381356

1 INTRODUCTION

Patch recommendation is the process of identifying errors in soft-
ware systems and suggesting suitable fixes. Recent studies show
that on average 49.9% of software developers’ time has been spent
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7123-0/20/05. . . $15.00
https://doi.org/10.1145/3377813.3381356

in debugging and about half of the development costs are associated
with debugging and patching [5, 11, 49]. Automated patch recom-
mendation can significantly reduce developers’ debugging efforts
and the overall development costs, improving software quality and
system reliability.

Recommending patches automatically is a challenging task, es-
pecially for large-scale industrial codebase. Many state-of-the-art
techniques from the literature make assumptions on the existence
of auxiliary development artifacts such as complete test suites and
detailed issue tracking and debugging reports, which may not be
readily available in the day-to-day development environment. To
better understand the specific challenges in applying existing tech-
niques in the development environment of Alibaba, we investigated
the development practices and the entire codebase at Alibaba, ended
up extracting a sample benchmark set which includes over 10,000
software projects, spanning over 15 million commits and 30 million
files. We have made the following observations through the study.

First, the project codebase often has insufficient documentation
and manual labeling of defects and patches is hardly possible, which
makes accurate patch mining and generation difficult. For example,
recent studies proposed approaches based on clone detection [36],
patch mining [17], information retrieval [59], and machine learn-

ing [6, 26] for fault localization and repair, which naturally require
a large amount of labeled data. On the other hand, existing methods
for automatic defect and patch identification suffer from inaccu-
racy. For instance, the SZZ algorithm [48] only achieves less than
25% accuracy on our benchmark set, which is mainly due to the
inaccurate/missing bug reports and log messages.

Second, the patch recommendation process has to be highly re-
sponsive in suggesting patches, in order to be useful in the everyday
development routine. However, many existing fault localization
and patch generation techniques require dynamic execution of
test suites. For example, the spectrum-based [1, 18] and mutation-

based [35, 40] fault localization techniques both assume strong
test cases and utilize test execution results to identify defects. The
generate-and-validate approaches [7, 22, 32] for patch generation
search for candidate patches and validate their correctness using
test suites. The problem with these techniques is that the test suites
in our benchmark set may not be complete and the test execution
often takes significant amount of time, making responsive online
patch recommendation impossible.

Finally, many fault localization and patch generation techniques
focus on specific domains such as concurrency [30, 31], HTML con-
tent generation [46], and memory leaks [10]. Yet, our benchmark

https://doi.org/10.1145/3377813.3381356
https://doi.org/10.1145/3377813.3381356

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Xindong Zhang, Chenguang Zhu, Yi Li, Jianmei Guo, Lihua Liu, and Haobo Gu

set covers a variety of business scenarios from diverse application
domains, including e-commerce, logistics, finance, cloud comput-
ing, etc. These domain-specific techniques may work well in their
targeted cases, but they are often not generalizable to the diverse
applications from the company codebase.

The above mentioned characteristics of the codebase and de-
velopment environment make the adoption of existing techniques
unsuitable. In this paper, we propose a pragmatic patch recommen-
dation approach Precfix, with customized improvements in terms
of both the precision and efficiency when applied on large-scale
industrial codebase. First, Precfix does not rely on labeled defects
or patches, which are difficult to obtain in practice. Instead, we
automatically mine a large number of defect-patch pairs from his-
torical changes. To improve the accuracy of the mining results, we
introduce optimizations which take into account the characteristics
of typical developer behaviors in committing bug fixing changes.
We also allow developers in the loop to provide feedback on the
quality of the recommended patches, and the feedback is used to
improve the precision of future recommendations. Second, since the
defects and patches are mined from the entire company codebase
and we use generic features when processing and clustering them,
Precfix is generally applicable to all company projects written in
different languages, handling different business logic, and deployed
on different platforms. Finally, Precfix consists of an offline patch

discovery phase and an online patch recommendation phase. The
online phase is designed to be extremely responsive and can finish
recommending patches within milliseconds in practice. We found
that being scalable and efficient is extremely important for patch
recommendation tools to be integrated into day-to-day interactive
and repetitive development tasks, such as code reviewing.

Precfix has been implemented and deployed as an internal web
service in Alibaba. It is also integrated as a part of the code review
process and provides patch recommendations whenever developers
commit new changes to the codebase. We evaluated the effective-
ness and efficiency of Precfix, and demonstrate its usefulness
on a large-scale industrial benchmark with over 10,000 projects,
spanning over more than 15 million commits and 30 million files.
Contributions.Wemake the following contributions in this paper.
• We propose Precfix— a semi-automated patch recommendation
tool for large scale industrial codebase.
• Precfix implements customized optimizations in defect-patch
pair mining and clustering, which help improve the accuracy of
patch recommendation over existing techniques.
• Precfixmanaged to extract 3K defect templates from 10K projects.
Our approach is able to make recommendations within millisec-
onds and achieves a false positive rate of 22% confirmed by man-
ual review.
• We conducted a small-scale user study and the majority (10/12)
of the interviewed developers appreciated Precfix, which has
been rolled out to Alibaba to support various critical businesses.

2 RELATEDWORK

The techniques presented in this paper intersect with different areas
of research. In this section, we compare Precfix with fault local-
ization, automated patch generation, and patch recommendation.

2.1 Fault Localization

Fault localization [41, 51, 54, 60] is the activity of identifying the
locations of faults in a program. Many different types of fault lo-
calization techniques have been proposed. Spectrum-based fault
localization [1, 18] utilizes test coverage information to pinpoint
faulty program or statistical techniques. For example, Tarantula [18]
uses a homonym ranking metric to calculate the suspiciousness val-
ues of statements, which are calculated according to the frequency
of the statements in passing and failing test cases. Mutation-based
fault localization [35, 40] mutates a program and runs its test cases,
using the test results to locate faults. For example, Metallaxis [40]
generates a set of mutants for each statement, assigns each mutant
a suspiciousness score, and aggregates the scores to yield the sus-
piciousness of the statement. Other faults localization techniques
identify locations of faults in some alternative ways, including
dynamic program dependency analysis [2, 45], stack trace analy-
sis [53, 55], conditional expressions mutation analysis [58], infor-
mation retrieval [59], and version history analysis [23, 44].

2.2 Automated Patch Generation

Automated patch generation [11, 34, 50, 57] aims to automatically
repair software systems by producing a fix that can be validated be-
fore it is fully accepted into the system. Automated patch generation
techniques can be divided into two main categories: generate-and-
validate approaches and semantics-driven approaches. Generate-
and-validate approaches [7, 22, 32, 43, 52] iteratively execute two
activities: patch generation, which produces candidate patch of
the bug by making atomic changes or applying bug fix templates;
patch validation, which checks the correctness of the generated
solutions by running test cases. For example, GenProg [52] uses ge-
netic programming to guide the generation and validation activities.
At every iteration, it randomly determines the location to apply an
atomic change, according to a probability distribution that matches
the suspiciousness of the statements computed with fault localiza-
tion algorithms. Every candidate solution is validated running the
available test suite. It defines a fitness function that measures the
fitness of each program variant based on the number of passing and
failing test cases. Semantics-driven approaches [21, 30, 38] formally
encode the problem, either as a formula whose solutions correspond
to the possible fixes, or as an analytical procedure whose outcome
is a fix. A solution found by such approaches is correct by construc-
tion, thus no validation is needed. For example, SemFix [38] uses
fault localization to identify the statement that should be changed,
then tries to synthesize a fix by modifying a branch predicate or
changing the right hand side of an assignment.

2.3 Patch Recommendation

Patch recommendation [3, 16, 20, 24, 36] suggests a few candidate
changes which may repair a given fault. In some cases, the recom-
mended patches are perfect fixes, while in other cases some efforts
are required from the developers to produce the final fix. Although
these techniques do not guarantee a working repair, their results
are still useful in assisting developers in deriving the patch. A num-
ber of patch recommendation techniques have been proposed so
far. For example, Getafix [3] from Facebook learns recurring fix
patterns for static analysis warnings and suggests fixes for future

Precfix: Large-Scale Patch Recommendation by Mining Defect-Patch Pairs ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

occurrences of the same bug category. It firstly splits a given set
of example fixes into AST-level edits, then it learns recurring fix
patterns from these edits based on a clustering technique which
produces a hierarchy of fix patterns. Finally, given a bug under fix,
it finds suitable fix patterns, ranks candidate fixes, and suggests the
top-most fixes to developers. As another example, CLEVER [36]
from Ubisoft aims to intercept risky commits before they reach the
central repository. It first builds a metric-based model to assess the
risky level of incoming commits, then it uses clone detection to
compare code blocks in risky commits with some known historical
fault-introducing commits.

All these aforementioned techniques depend on existing patches
or already-known bug patterns. In contrast, we do not assume
enough debugging reports, and we extract templates of defect-
patch pairs through data mining. Open-source dataset such as De-
fect4J [19] contains labeled defects and the corresponding patches,
which have been examined and analyzed by many researchers.
Yet, recent studies [56] indicate that many state-of-the-art patch
generation techniques has the problem of over-fitting to specific
benchmark set. Therefore, many of the existing techniques can-
not be directly applied on the industrial codebase, which is quite
different from the open-source dataset in many ways.

3 PRELIMINARY STUDY

To better understand the codebase at Alibaba and the challenges in
applying existing techniques in the industrial development envi-
ronment, we conducted a preliminary study of the usage scenarios
of patch recommendation techniques within the company and em-
pirically analyzed the characteristics of the company codebase.

3.1 Challenges for Existing Techniques

Through manual inspection, interviews with developers, and em-
pirical studies, we identified three key challenges for existing fault
localization and automated patch generation techniques to be suc-
cessfully applied on our benchmark.
Insufficient Labeled Data. A lot of fault localization and auto-
mated patch generation techniques require labeled defect and patch
samples to be able to extract patterns of typical bug fixes. Yet, this
is a substantial obstacle in our case, since there exists very few
labeled defects or patches in the company codebase. Moreover, due
to the widespread legacy code in the codebase, a large number of
software projects only have partial debugging reports and very
limited test cases. The commit messages may be succinct and do
not follow any standard template either. Therefore, it is challenging
to label defects and the associated fixes manually, given the size and
complexity of the codebase. The business logic and bug fix patterns
of the internal company codebase are quite different from that of
open source projects [42, 47]. Thus, we decide not to directly use
the labeled data from open-source projects.
High Responsive Standard. The application scenario of patch
recommendation in Alibaba is highly interactive. Patch recommen-
dation needs to be run whenever new commits are submitted by
developers for code review. The recommended patches are then
checked by developers, who may decide to incorporate the sugges-
tions into the commits. On average, a developer submits three to
four commits per week, and both the submitter and reviewer expect

F/C = 1

41.3%

F/C = 2

19.6%

F/C = 3

9.8%

F/C = 4

6.6%
F/C ≥ 5

22.7%

Figure 1: Distribution of the number of changed files per

keyword-matched commit (F/C).

prompt patch recommendations to avoid delays during the review
process. Therefore, the responding time for patch recommendation
is supposed to be reasonably low in order to be integrated into
the development routine. This renders some automated patch gen-
eration approaches inappropriate, since they need to repeatedly
compile and execute tests for each identified defect.
Generalizability Requirement. Our benchmark set consists of
more than 10K projects supporting more than 100 software appli-
cations. These applications cover a variety of domains including
e-commerce, finance, cloud computing, and artificial intelligence,
many of which are used by millions of users on a daily basis. The
patch recommendation techniques should be generalizable to cover
all different projects and defect types.

3.2 Challenges in Defect-Patch Identification

There exists techniques [27–29, 48] which automatically identify
changes of certain kinds, e.g., bugs and fixes, from commit histories.
These techniques, such as the SZZ algorithm [48], can be useful for
labeling defect-patch pairs in the absence of high-quality labeled
data. The high-level idea is to first locate bug-fixing commits based
on keywords in commit messages and debugging reports. For ex-
ample, a commit is considered as bug-fixing commit if it appears
in a bug report or its commit message contains keywords such as
“bug” and “fix”. For each identified bug-fixing commit, one can trace
each line of changed code back in history to locate the bug-inducing
commits using version control information such as git-blame [12].

Various optimizations have been introduced in the SZZ algo-
rithm to reduce the false positives. For example, the timestamp of a
candidate bug-inducing commit is compared with the time when
the bug is reported to rule out unreasonable results. Yet, we found
that even with these optimizations, the SZZ algorithm still does not
perform well on our benchmark (25% true positive rate). To figure
out the reason why the SZZ algorithm does not perform well on
our codebase, we quantitatively analyzed the dataset and identified
two stages in the algorithm where imprecision can be introduced:
(1) the identification of bug-fixing commits, and (2) the location of
bug-inducing commits via back-tracing in history.
Imprecision in Locating Bug-FixingCommits. The first reason
causing imprecision is that the keyword matching approach is
not always reliable. For example, through manual inspection, we
discovered that a commit with the commit message containing
the keyword “fix”, does not change any program logic and only
modifies the label of an Android UI button. Even if a commit does fix

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Xindong Zhang, Chenguang Zhu, Yi Li, Jianmei Guo, Lihua Liu, and Haobo Gu

Figure 2: Distributions of the number of bug-

inducing commits (BC).

Online Patch Recommendation
Code

Reviewers

Feedback

Offline Patch Discovery

(,)
…

Defect-Patch Pairs
Pattern Clusters

Clustering

Patch Template
Database

Generalization

Company
Codebase

Extraction

Integration

Patch
Candidates

Figure 3: Overview of the Precfix workflow.

a bug, it can also make irrelevant changes to other parts of the code.
Fig. 1 shows the distribution of the number of changed files in each
commit matched by at least one keyword. The keywords we used
include “fix”, “bug”, “repair”, “wrong”, “fail”, “problem”, and their
corresponding Chinese translations. About 60% of the commits
change more than one file, among which 40% touch over two files.
Many such commits are multi-purpose, causing imprecision in
locating bug-fixing commits.
Imprecision in Locating Bug-Inducing Commits. Additional
imprecision can be introducedwhen there aremultiple bug-inducing
commits in the history. When back-tracing in history, it is possible
to end up with more than one commits, each partially contributing
to the defect. We randomly select four projects from the dataset.
Fig. 2 plots the distribution of the number of bug-inducing commits
identified by the SZZ algorithm for each bug-fixing commit. For
example, for project 𝑃1, among all the defects, 78% are induced by
one commit, 14% are induced by two commits, 4% are induced by
three commits, and 3% are induced by more than three commits.
We found that the commit-level back-tracing often introduces too
much irrelevant changes for the similar reason discussed before.

4 OUR APPROACH

Fig. 3 overviews the workflow of Precfix. Precfix consists of an
offline patch discovery component and an online patch recommen-

dation component. The patch discovery component first extracts
potential defect-patch pairs from commits in the version controlled
history, clusters defect-patch pairs based on their similarity, and
finally extracts generic patch templates to be stored in a database.
The patch recommendation component recommends patch candi-
dates to developers and collects their feedback. It removes patches
rejected by developers, and includes manually crafted patch tem-
plates submitted by developers to improve the patch database.

4.1 Patch Discovery

The offline patch discovery component performs three steps to
generate patch templates: extracting defect-patch pairs, clustering
defect-patch pairs, and collecting generic patch templates.

4.1.1 Extracting Defect-Patch Pairs. The first step is to extract a
large number of defect-patch pairs from the codebase. We make

two improvements to the SZZ algorithm, to adapt to the needs of
the industrial codebase.
Constraining the Number of Changed Files. The first adjust-
ment is to set a threshold on the number of files modified in a
bug-fixing commit, filtering out any commit that exceed the thresh-
old. In this way, we could reduce the false positives that are caused
by multi-purpose commits (C.f. Sect. 3). We heuristically chose five
as the threshold, which help reduce false positives without discard-
ing too many candidate commits (22.7% as indicated in Fig. 1).
Identifying Bug-Inducing Code Snippets. The second improve-
ment aims to improve the precision of identifying bug-inducing
changes. As studied in Sect. 3, commit-level back-tracing in his-
tory tends to be imprecise, especially when there are many multi-
purpose commits contributing to the defect.

Therefore, instead of tracing commits back in time and identify-
ing bug-inducing commits, we directly identify bug-inducing code

snippets. In fact, the differences before and after the introduction of
a bug-fixing commit already contain information about both the de-
fects and the patches. Now we describe the improved method-level
defect-patch pair extraction in more details.
Method-Level Defect-Patch Pair Extraction. To further reduce
false positives, we constrain the defects and patches as the removed
and inserted lines in a bug-fixing commit, respectively. We confine
the scope of defects and patches to be within a single method. Of
course, these constraints may rule out some genuine defect-patch
pairs, e.g., patches only removing old lines or inserting new lines.
Our current bug-fix model balances between the completeness and
accuracy, attempting to be simple but applicable to the most com-
mon cases. We randomly sampled 90 bug fixes from the benchmark
set and confirmed that 68 (76%) of them contain both removed
and inserted lines, which fall into our simplified bug model. We
found in practice that the compromises made in the recall (24%)
help significantly improve the precision.

Given a bug-fixing commit and the source code of the project,
the workflow of extracting defect-patch pairs is the following.
(1) Check out the last-updated snapshot before the bug-fixing com-

mit and record inserted and removed lines in the commit for
later parsing.

(2) Extract inserted lines in the commit, which are patch snippets.

Precfix: Large-Scale Patch Recommendation by Mining Defect-Patch Pairs ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

(3) Extract removed lines in the commit, which are defect snippets.
(4) Associate each defect snippet with the corresponding patch

snippet, forming defect-patch pairs.
(5) Filter out the lines of defect snippets that are not in the same

method scope as any patch lines, making defect-patch pairs
more cohesive.

(6) Filter out assertion lines, comments, and logging lines from the
defect-patch pairs as they are generally irrelevant to bug fixes.
At this point, we have obtained a set of defect-patch pairs, on

which we perform the remaining steps of the patch discovery.
4.1.2 Clustering Defect-Patch Pairs. To obtain common defects
patterns in the codebase, we group all the extracted defect-patch
pairs into a set of clusters.

We use density-based spatial clustering of applications with
noise (DBSCAN) [9] as our clustering algorithm. DBSCAN is a well-
established clustering method without the need to determine the
number of clusters (𝐾) in advance. Given a set of points in some
vector space, DBSCAN groups points that are closely packed to-
gether (nearby neighbors), marking as outliers those points that lie
in low-density regions. We choose DBSCAN instead of other clus-
tering algorithms, such as KNN [8] and 𝐾-means, because in our
case, the number 𝐾 could not be known in advance. A well known
limitation of the vanilla DBSCAN algorithm is that it is computa-
tionally expensive when coping with large-scale dataset [37], since
it considers all possible comparisons between every data point. In
our application scenario, most of the comparisons are unnecessary,
as many code snippets are very loosely related. Therefore, we make
three customized improvements to DBSCAN to mitigate this issue.
Utilizing SimHash-KDTree Reducers. The first customization
is to use SimHash-KDTree reducers to avoid the comparison of some
irrelevant data points. SimHash [33] is an algorithm that generates a
low-dimensional vector signature for any high-dimensional vector.
The generated low-dimensional vector has the same expressiveness
as the original high-dimensional vector, but is shorter in length,
thus enables faster comparison. During preprocessing, we use the
SimHash algorithm to map the contents of code snippets to 16-bit
hashcode sequences. Then we run the KDTree algorithm [4] to
group all the sequences that have a Hamming distance less than
4 into the same reducer. During the clustering, we only compute
similarity of code snippets in the same reducer.
Exploiting API Sequence Information. The second improve-
ment is to exploit the information from API call sequences to avoid
irrelevant comparisons. The intuition behind this is that if two
code snippets contain two completely different API call sequences,
then they are obviously not belonging to the same patch pattern,
thus should not be compared during the clustering. Therefore, we
parse the ASTs of defect-patch pairs and extract API call sequences
for each code snippet in advance. During clustering, even if two
code snippets are in the same reducer, as long as their API call
sequences do not match, we skip the comparison of them. We name
this filtering process as APISeq.
Normalizing Code Snippets. We also improve the clustering ac-
curacy of DBSCAN by normalizing code snippets. Some common
coding patterns have multiple equivalent ways of expression. These
ways, although semantically equivalent, are syntactically different,

Algorithm 1: Similarity computation of defect-patch pairs.
input : ⟨𝑑1, 𝑝1 ⟩, ⟨𝑑2, 𝑝2 ⟩– two defect-patch pairs; 𝑅 – the set of

reducers obtained from SimHash-KDTree; 𝑤 – the
weight of Jaccard similarity coefficient;

output :𝑆𝑖𝑚 – the similarity score of the two input defect-patch
pairs;

1 if �𝑟 ∈ 𝑅 s.t. ⟨𝑑1, 𝑝1 ⟩ ∈ 𝑟 and ⟨𝑑2, 𝑝2 ⟩ ∈ 𝑟 then

2 return 0;

3 𝑠𝑒𝑞1 ← ExtractAPISeq(⟨𝑑1, 𝑝1 ⟩) ;
4 𝑠𝑒𝑞2 ← ExtractAPISeq(⟨𝑑2, 𝑝2 ⟩) ;
5 if 𝑠𝑒𝑞1 ∩ 𝑠𝑒𝑞2 = ∅ then
6 return 0;

7 𝑆𝑖𝑚𝑑 ← ComputeSimilarityScore(𝑑1, 𝑑2, 𝑤) ;
8 𝑆𝑖𝑚𝑝 ← ComputeSimilarityScore(𝑝1, 𝑝2, 𝑤) ;
9 𝑆𝑖𝑚 ← (𝑆𝑖𝑚𝑑 + 𝑆𝑖𝑚𝑝) ÷ 2;

10 return 𝑆𝑖𝑚;
11

12 Function ComputeSimilarityScore(𝑠1, 𝑠2, 𝑤) :
13 return

𝑤 × ComputeJac(𝑠1, 𝑠2) + (1 − 𝑤) × ComputeLev(𝑠1, 𝑠2) ;

which decreases the accuracy of clustering. For instance, a string
value could be expressed as either a single string literal or the
concatenation of several string literals. When we compare code
snippets, we want to consider these equivalent expressions as the
same. Therefore, we normalize the code snippets to convert these
semantically equivalent snippets into syntactically same format.
Our normalization rules are as follows: (1) merge consecutive calls
of the same API into one API call sequence, concatenated by the dot
(“.”) operator; (2) change “.append(string)” to the concatenation
of strings; and (3) merge the concatenation of strings into a single
string.

DBSCAN computes the distance between two defect-patch pairs
based on their similarity. The computation of similarity is described
in Algorithm 1. Given two defect-patch pairs, the algorithm first
checks whether they are in the same reducer. The reducers are ob-
tained using the customized hashing algorithm (SimHash +KDTree).
If they are not in the same reducer, then the similarity computation
is skipped (Line 2). Otherwise, the algorithm invokes APISeq, addi-
tional filtering based on theAPI sequence used, on each defect-patch
pair to extract API sequences (Lines 3-4). If there is no intersec-
tion between the two API sequences, the algorithm also skips the
similarity computation (Line 6).

The remaining defect-patch pairs after the filtering proceed to
the similarity computation. The similarity function we used in
Algorithm 1 is a weighted sum of two similarity metrics: the Jac-
card similarity coefficient [39] and the Levenshtein distance [25]
(Lines 7-9). We choose these two similarity metrics because the Jac-
card similarity coefficient is able to capture the token overlapping
rate while the Levenshtein distance has the ability to capture the
ordering information of the token list.

4.1.3 Collecting Generic Patch Templates. After the clustering step
finishes, for each pattern cluster, Precfix tries to extract a generic
patch template, which summarizes the common pattern of defect-
patch pairs in that cluster. Each template encodes a pattern of defect
and its corresponding patch.

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Xindong Zhang, Chenguang Zhu, Yi Li, Jianmei Guo, Lihua Liu, and Haobo Gu

sb.append(token);
if (sb.length() > 1) {

sb.deleteCharAt(sb.length() - 1;
}

if (builder.length() > 1) {
builder.deleteCharAt(builder.length() - 1;

}

sb.append(token);
if (sb.length() > 1) {

sb.deleteCharAt(sb.length() - 1;
}

if (builder.length() > 1) {
builder.deleteCharAt(builder.length() - 1;

}

1 if (@Para{sb, builder}.length() > 1) {
2 @Para{sb, builder}.deleteCharAt(@Para{sb, builder}.length()-1);
3 }

Patch1

Patch2

Generic Patch Template

ꍌ

ꍌ

ꍍ

Figure 4: The process of extracting templates.

The goal of template generalization is to make the patch gener-
ally applicable in different contexts and understandable to develop-
ers. Although all the defect-patch pairs from the same cluster are
similar, they differ from each other in some context-specific way,
e.g., variable names. We abstract away all context-specific contents
and only preserve the generic templates.

The first step of template generalization is to convert code lines
into a list of tokens, each token is either a symbol or a parameter.
Symbols are context-independent, they together form the common
patterns among all the defect-patch pairs in a cluster; parameters
are context-specific that represent the abstraction of variable names.
When a template is applied at a specific context, its parameters are
supposed to be replaced by the actual variable names.

The second step is to extract templates from the token lists. We
use the recursive longest common substring (RLCS) algorithm [15]
to perform matching between token lists. RLCS recursively calls
longest common substringmatching until all the tokens arematched.
The highlighted parts in Fig. 4 are the matched tokens after the
RLCS process (Step 1). We adjust the vanilla RLCS so that different
parameter names are not matched while the other symbols are.
Finally, we collect all the parameter names that are matched in the
same cluster to a list and store them in our self-defined parame-
ter format. Step 2 in Fig. 4 shows that different parameter names
are recognized and collected, and stored in the standard format:
@𝑃𝑎𝑟𝑎{parameter name list}.

Finally, for each defect-patch pair, we change the parameter
names in the patch snippet to match the parameter names in the
corresponding defect snippet. After this step, Precfix constructs a
patch template database, which contains all the extracted templates.

4.2 Patch Recommendation

The online patch recommendation component is triggered when-
ever developers commit new code changes. During code review,
Precfix matches each of developers’ newly committed code snip-
pet with the templates database. If a code snippet matches with a
template, Precfix replaces the generic parameter placeholders in
the template with the actual parameter names used in the specific

(a) Inline view of recommended patch.

(b) Detailed view of defect-patch pairs and the template suggestion form.

Figure 5: Precfix user interface for patch recommendation.

contexts. If multiple templates are matched, they are ranked based
on the frequency of the corresponding defect-patch pairs before
clustering. By default, Precfix recommends the most popular patch
candidate. The patch candidate is then sent to the code submitters
and reviewers for feedback. We collect feedback from developers to
validate the patch candidates and improve the template database of
Precfix. More specifically, the defects and the corresponding rec-
ommended patches are presented to the developers. As developers
inspect each recommended patch, we also collect their reactions
on the patch, i.e., accept or reject. If patches from a certain template
are frequently rejected, we will manually inspect the template and
decide whether to remove it.

During the patch validation process, in addition to feedback on
the recommended patches, Precfix also accepts patch templates
created by developers and is able to integrate them into Precfix’s
template database. We encourage developers to make custom ad-
justments to the existing patches or build their own patch templates
based on their experience. We believe this contribution mechanism
can enrich the template database in the long run.

Fig. 5 shows the Precfix user interface for patch recommen-
dation. Developers interact with it during code reviews. Fig. 5(a)
shows the inline view of an identified defect and the correspond-
ing patch recommended. Fig. 5(b) shows the detailed view of the
defect-patch pairs (left) and the developer template suggestion
form (right). The left side shows the list of defect-patch pairs from
which the recommended template was extracted. The details of
each defect-patch pair can be expanded, viewed, and voted for or
against. Specifically, the two records shown in Fig. 5(b) are from
the files “.../Rec***dler.java” and “.../Trip***Impl.java”,
respectively. The right side is a form allowing developers to devise
their own patches and submit to the database.

Precfix: Large-Scale Patch Recommendation by Mining Defect-Patch Pairs ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

5 IMPLEMENTATION AND EVALUATION

In this section, we describe the implementation details of Precfix
and evaluate its effectiveness and efficiency on our benchmark set.

Precfix is implemented on top of the cloud-based data process-
ing platform, MaxCompute [14], developed by Alibaba. The commit
history data is preprocessed and stored in data tables on the Alibaba
Cloud [13] storage first. The defect-patch pair extraction is imple-
mented as a set of SQL scripts and user-defined functions (about
900 LOC). The clustering of defect-patch pairs is highly parallelized
(taking about 1 KLOC Java code) and handled by the MapReduce
engine of MaxCompute. The online patch recommendation com-
ponent is integrated with the internal code review process and is
triggered whenever a new commit is submitted.

The goal of our empirical evaluation is to answer the following
research questions. RQ1: How effective is Precfix in locating de-
fects and discovering patches? RQ2: How efficient is Precfix in
recommending patches? RQ3: How much do our improvements
of DBSCAN increase the efficiency of clustering? RQ4: What kind
of patches does Precfix recommend? RQ5: What are the users’
opinions on the usability of Precfix?

We run the offline patch discovery component of Precfix on the
randomly extracted sample dataset described in Sec 3. The sample
dataset includes 10K projects, 15M commits, and 30M files. On
this dataset, Precfix extracted 3K bug fix templates, forming the
template database. During the clustering stage, 4,098 MB memory
was allocated for each reducer.

5.1 Effectiveness

We use two metrics for measuring the effectiveness of Precfix:
False Positive Rate (FPR) and Extractability Score (ES).

FPR measures the quality of patches, which is calculated as:

𝐹𝑃𝑅 = (𝑁𝑡𝑜𝑡𝑎𝑙 − 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡)/𝑁𝑡𝑜𝑡𝑎𝑙 (1)

where 𝑁𝑡𝑜𝑡𝑎𝑙 denotes the total number of bug fix templates ex-
tracted by Precfix, 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 denotes the number of correct tem-
plates extracted by Precfix. A low FPR indicates high quality of
patches.

ES score measures the effectiveness of Precfix in extracting
templates from clusters, is calculated as:

𝐸𝑆 = 𝑁𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠/𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 (2)

where 𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 denotes the number of clusters obtained in the clus-
tering step of patch discovery, and 𝑁𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠 denotes the number
of bug fix templates extracted from the clusters. A high ES score
indicates high effectiveness in extracting templates. In the ideal
case, Precfix is supposed to extract one template from every clus-
ter. However, in practice, there could be some clusters of which the
defect-patch pairs are too complex to summarize. Thus, Precfix
sometimes could not achieve 100% ES score.

We randomly sampled 170 templates extracted by Precfix in
our experiment and manually inspected them. To reduce potential
bias in our inspection, we applied the following rule of thumb in
determining the correctness of a template: (1) if a template is too
generic, e.g., modification to a “for-loop” bound, it is often the result
of unintended clustering of similarly structured but semantically
unrelated code snippets; and (2) if a template is too specific to a
certain context, such as replacing an “if” condition using some

Figure 6: Execution time of each phase of patch discovery.

project-specific APIs, it cannot be easily migrated to other applica-
tion contexts. We consider the templates falling into either category
incorrect. According to these criteria, the FPR obtained from the
inspection is 22%. Note that in our application scenario, this number
is supposed to be gradually reduced as developers provide feedback
on the discovered patches and contribute their own patches.

To have a direct comparison with the SZZ algorithm, we ran our
implementation of SZZ on the same sample dataset (10K projects)
and compared with Precfix. Since SZZ and Precfix are of differ-
ent objectives, and end-to-end comparison is not possible. Instead,
we compared the phase of locating defects which is common for
both techniques. As introduced in Sec. 3.2, SZZ locates defects in
two steps: finding bug-fix commit with keyword matching and
identifying the bug-inducing commits with back-tracing. We also
manually examined 170 bug-fix commits identified by SZZ, and
only reported incorrect ones which are easy to confirm. Examples
of such false positives include comments and log file modifications,
import statement insertions and deletions, style changes, error mes-
sage modifications, etc. The FPR of SZZ is 63% (107 out of 170)
according to the inspection. In contrast, Precfix locates defects
with the extracted templates. Most of the aforementioned incorrect
bug-fixes are caused by keyword matching, which could be effec-
tively reduced in the clustering stage. As a result, Precfix achieves
better precision in identifying defects (FPR 22%).

We also randomly sample and inspect 100 clusters obtained
by Precfix and the templates extracted from these clusters. The
inspection confirms that Precfix successfully extract templates
from 93 clusters. In other words, the ES score obtained by Precfix
on the sample dataset is 93%.

Answer to RQ 1

Overall, Precfix achieves a false positive rate of 22% in
patch discovery and an extractability score of 93%.

5.2 Efficiency

As invoking patch recommendation on any code snippet only take
several milliseconds, we mainly evaluate the efficiency of Precfix
for patch discovery. We measure the time taken by each step on
the sample dataset: extracting defect-patch pairs, clustering defect-
patch pairs, and extracting templates.

Fig. 6 shows the time consumed in each step. In summary, the
time consumed in the defect-patch pairs extraction step takes 22
min; the clustering is the most time-consuming step, taking 270
min; the template extraction step takes 5 min.

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Xindong Zhang, Chenguang Zhu, Yi Li, Jianmei Guo, Lihua Liu, and Haobo Gu

Figure 7: Execution time of different clustering approaches.

API Modification

40.0%

Validation Check

26.0%

API Wrapping

14.0%

Others
20.0%

Figure 8: Distribution of patches in each category.

Answer to RQ 2

Of the steps of patch discovery, extracting defect-patch
pairs, clustering defect-patch pairs, and extracting tem-
plates consumes 22 min, 270 min, and 5 min, respectively.

To answer RQ3, we investigated how much our improvements
of the vanilla DBSCAN improve the efficiency. We compared the
execution time of our default SimHash-KDTree + APISeq DBSCAN
clustering, and the raw DBSCAN clustering, SimHash-KDTree +
DBSCAN clustering. The result of the comparison is shown in Fig. 7.

As is shown, the execution time of the default SimHash-KDTree +
APISeqDBSCAN is 4.5 hours, which saves 95% of the time compared
with the raw DBSCAN. The execution time of SimHash-KDTree
DBSCAN is 16.5 hours, which saves 75% compared with the raw
DBSCAN. This result confirms that both SimHash-KDTree and
APISeq improves the efficiency of clustering.

Answer to RQ 3

Our two improvements of the DBSCAN, SimHash-KDTree
and APISeq, improves the efficiency of clustering by 75%
and 20%, respectively.

5.3 Patch Categories

We randomly sampled 50 templates from the template database
and manually inspected each one. Based on the inspection results,
we categorized these templates into four categories: API modifica-
tion, validation check, API wrapping, and others. Fig. 8 shows the
distribution of templates of each category. There are 20 templates
assigned to the API modification category, accounting for 40% of
the total number; 13 templates (26%) are assigned to the validation
check category; 7 templates (14%) are assigned to the API wrapping
category; 10 templates (20%) are assigned to the “others” category.

API Modification. Templates in this category fix the defect by
modifying the call of an API, including: (1) update the caller of
an API, (2) add, update, or delete the parameters of an API, and
(3) update the return type of an API. Fig. 9 is a template of API
modification. It deletes a parameter of buildReqParams()method,
and adds two new parameters.
1 multipleSource.setParams(

2 MultiSourceConvertUtil.buildReqParams(

3 - itemSku.getItemId().getValue(),

4 + itemSku.getConfigId(),

5 itemSku.getSkuId(),

6 itemSku.getSellerId(),

7 + itemSku.getGpuId()},

8 multipleSource.getPageSize(),

9 multipleSource.getPageIndex()));

Figure 9: An example of API modification.

Validation Check. Templates in this category add or modify vali-
dation checks. Such checks include: (1) null pointers, i.e., adding
“if(xxx==null) return;” above defect snippets, (2) boundary condi-
tions, i.e., adding or modifying conditions in condition expression
above such as “if” or “while” expressions, and (3) access permissions,
i.e., replacing the variable assignment with a ternary operation such
as “a = b == null ? 0 : 1”. Fig. 10 is a template of validation check. It
adds a condition to check whether accountStatus is null and its
length is greater than zero.
1 + if (accountStatus != null && accountStatus.length > 0) {

2 query.addCondition(new In(STR, accountStatus));

3 + }

Figure 10: An example of validation check.

API Wrapping. Templates in this category fix the defect by wrap-
ping logic-independent code snippets to form an API (mostly a
utility API), which improves code quality and facilitates software
maintenance, preventing from introducing defects due to over com-
plex code.

Fig. 11 is a template of API wrapping. It packages the original
code snippets into getUrl() and requestAndCheckThenFillResult(),
forming two new APIs.
1 - String ip = host.getIp();

2 - String url ="http://".concat(ip).concat(flowHost);

3 - HttpResponse<String> response = httpRequest.asString();

4 - ErrorUtil.checkError(httpRequest, response, TREND, start);

5 - bodys.add(response.getBody());

6 + String url = UrlUtil.getUrl(headHost, flowHost);

7 + UrlUtil.requestAndCheckThenFillResult(httpRequest, bodys, TREND, start);

Figure 11: An example of API wrapping.

Other. Templates in this category fix the defect in some special
ways, which usually depend on the context. For example, Fig. 12
shows a template fixing a defect by changing the name of a class.
1 - String cur = CurrencyConvertUtil.getAvailableCurrency(currencyCode);

2 + String cur = MoneyConvertUtil.getAvailableCurrency(currencyCode);

Figure 12: An example of other fixes.

Answer to RQ 4

89.8% of the patches discovered by Precfix are in one of
the three categories: API modification, validation check,
and API wrapping.

Precfix: Large-Scale Patch Recommendation by Mining Defect-Patch Pairs ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

5.4 User Study

With the template database, we ran patch recommendation of Prec-
fix on the whole internal codebase1, from which Precfix identified
30K defects from 7K projects in total and provided corresponding
patches. Precfix has been deployed in Alibaba for about one year
so far. Every week, it recommends about 400 patches to developers
on average, and receives about two to three false positive reports.

To answer RQ5, we randomly sampled 50 defects identified by
Precfix, and sent the recommended patches to the submitters
of the defective code snippets for their opinions. In the end, 12
developers responded to our requests, all of whom are maintainers
of the corresponding repositories. We interviewed these developers,
presented them the defects and patches with two questions:

Q1: “Is the patch suggested by Precfix valid? If so,

would you like to apply the patch?”
Q2: “Would you like to use Precfix during code review?”

For Q1, 10 of 12 developers answered “yes”. They confirmed that
the defect code found by Precfix are true positive, and agreed to
fix them using the suggested patch. For the other two developers
who rejected the patches, one developer reported that although the
recommended patch provided by Precfix works for local testing
configuration but is not valid for global configuration, as it induces
problems when running together with other components. She com-
mented that the patch was not appropriate for all possible contexts.
Another negative case is that the developer has already used a null
pointer check inside the called API, so she commented it is not
necessary to have another null pointer checking outside the call
as Precfix suggested. Overall, these comments from developers
confirm the value of Precfix. In special cases, developer could
judge the validity of the recommended patch and decide whether
to adopt it.

For Q2, all of the 12 developers answered “yes”. They agreed on
that Precfix would improve the effectiveness of code review, and
would like to see Precfix adopted on their projects. As an example,
one interviewed developer said “I often struggle finding defects
when reviewing code. It would be really helpful when having a
patch recommendation technique to assist me.”

Answer to RQ 5

Themajority (10/12) of the interviewed developers acknowl-
edged the value of the patches provided by Precfix, and
all of them would like to see Precfix adopted in practice.

5.5 Discussion

In the experiment, we have tried multiple combinations of the
weight of Jaccard similarity coefficient and Levenshtein distance.
We noticed that although Levenshtein distance captures token or-
dering information, it is highly sensitive to the change of ordering.
As a result, we set 0.9 to the weight of Jaccard similarity coefficient,
while 0.1 to the weight of Levenshtein distance, as heuristics.

5.6 Threats to Validity

Our experiments are subject to common threats to validity.

1Due to company policy, we could not report the total number of projects.

External. Subjects used in the sample dataset may not be repre-
sentative for the entire internal codebase. We manually checked
the selected subjects and confirmed that they cover more than 100
diverse application domains, which could help mitigate this threat.
We only consider Java programs in our codebase as the current im-
plementation of Precfix only handle Java, but the idea of Precfix
is essentially independent of languages.
Internal.We rely on manual inspection to determine the correct-
ness of bug-fix templates and the recommended patches, which
may be subjective. To mitigate this threat, we established common
criteria before the inspection, as described in Sec. 5.1, and then two
authors inspected each case independently. A patch is determined
to be incorrect only if they reached an agreement on it.

6 CONCLUSION

In this paper, we present Precfix, a patch recommendation tech-
nique designed for large-scale industrial codebase. For patch dis-
covery, Precfix extracts defect-patch pairs from version controlled
histories, clusters these pairs with common patterns, and extracts
bug fix templates from clusters. For patch recommendation, Prec-
fix relies on the feedback from developers during code review.
Moreover, Precfix integrates custom patches created by devel-
opers to improve its template database. We run Precfix’s patch
generation on a subset (10K projects) of the internal codebase at
Alibaba and extract 3K patches. Our manual inspection confirms
that Precfix has low false positive rate (22%) while achieves a
high extractability score (93%). In addition, our user study on the
usability of Precfix’s patch recommendation functionality shows
that the majority (10/12) of the interviewed developers appreciated
Precfix and would like to see it widely adopted.

The current implementation of Precfix still has some incom-
pleteness in terms of the type of defects and patches handled. In the
future, we would like to lift these restrictions while maintaining
the high accuracy of patch recommendation. We would also like to
apply machine learning-based approaches to automate the patch
template improvement as much as possible.

ACKNOWLEDGMENTS

This article is partially supported by the Singapore Ministry of
Education Academic Research Fund Tier 1 (No. 2018-T1-002-069),
National Natural Science Foundation of China (No. 61772200), and
Alibaba Group.

REFERENCES

[1] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2007. On the Accuracy of
Spectrum-Based Fault Localization. In Testing: Academic and Industrial Conference

Practice and Research Techniques-MUTATION. 89–98.
[2] Hiralal Agrawal, Joseph R Horgan, Saul London, andW EricWong. 1995. Fault Lo-

calization Using Execution Slices and Dataflow Tests. In International Symposium

on Software Reliability Engineering. 143–151.
[3] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:

Learning to Fix Bugs Automatically. arXiv:1902.06111 [cs.SE]
[4] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Associa-

tive Searching. Communications of the ACM 18, 9 (1975), 509–517.
[5] Tom Britton, Lisa Jeng, GrahamCarver, Paul Cheak, and Tomer Katzenellenbogen.

2013. Reversible Debugging Software. Technical Report. Judge Business School,
University of Cambridge.

[6] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys
Poshyvanyk, and Martin Monperrus. 2018. SequenceR: Sequence-to-Sequence
Learning for End-to-End Program Repair. arXiv:1901.01808 [cs.SE]

https://arxiv.org/abs/1902.06111
https://arxiv.org/abs/1901.01808

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Xindong Zhang, Chenguang Zhu, Yi Li, Jianmei Guo, Lihua Liu, and Haobo Gu

[7] Valentin Dallmeier, Andreas Zeller, and Bertrand Meyer. 2009. Generating Fixes
From Object Behavior Anomalies. In International Conference on Automated

Software Engineering. 550–554.
[8] Belur VDasarathy. 1991. Nearest Neighbor (NN)Norms: NNPattern Classification

Techniques. IEEE Computer Society Tutorial (1991).
[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A Density-

Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In International Conference on Knowledge Discovery and Data Mining. 226–231.

[10] Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping Zhou,
Bing Xie, and Hong Mei. 2015. Safe Memory-Leak Fixing For C Programs. In
International Conference on Software Engineering. 459–470.

[11] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software
Repair: A Survey. Transactions on Software Engineering 45, 1 (2019), 34–67.

[12] Git 2019. git-blame: Show What Revision and Author Last Modified Each Line of
a File. https://git-scm.com/docs/git-blame.

[13] Alibaba Group. 2019. Alibaba Cloud. https://www.alibabacloud.com.
[14] Alibaba Group. 2019. MaxCompute: Conduct Large-Scale Data Warehousing

with MaxCompute. https://www.alibabacloud.com/product/maxcompute.
[15] Daniel S. Hirschberg. 1977. Algorithms for the Longest Common Subsequence

Problem. Journal of the ACM 24, 4 (1977), 664–675.
[16] Dennis Jeffrey, Min Feng, Neelam Gupta, and Rajiv Gupta. 2009. BugFix: A

Learning-Based Tool to Assist Developers in Fixing Bugs. In International Con-

ference on Program Comprehension. 70–79.
[17] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.

2018. Shaping Program Repair Space with Existing Patches and Similar Code. In
International Symposium on Software Testing and Analysis. 298–309.

[18] James A Jones andMary JeanHarrold. 2005. Empirical Evaluation of the Tarantula
Automatic Fault-Localization Technique. In International Conference on Auto-

mated Software Engineering. 273–282.
[19] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database

of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
International Symposium on Software Testing and Analysis. 437–440.

[20] Shalini Kaleeswaran, Varun Tulsian, Aditya Kanade, and Alessandro Orso. 2014.
Minthint: Automated Synthesis of Repair Hints. In International Conference on

Software Engineering. 266–276.
[21] Yalin Ke, Kathryn T Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing

Programs with Semantic Code Search. In International Conference on Automated

Software Engineering. 295–306.
[22] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Auto-

matic Patch Generation Learned from Human-Written Patches. In International

Conference on Software Engineering. 802–811.
[23] Sunghun Kim, Thomas Zimmermann, E James Whitehead Jr, and Andreas Zeller.

2007. Predicting Faults from Cached History. In International Conference on

Software Engineering. 489–498.
[24] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim,MartinMonperrus,

Jacques Klein, and Yves Le Traon. 2019. iFixR: Bug Report Driven Program Repair.
In Symposium on Foundations of Software Engineering. 314–325.

[25] Vladimir I Levenshtein. 1966. Binary Codes Capable of Correcting Deletions,
Insertions, and Reversals. Soviet physics doklady 10, 8 (1966), 707–710.

[26] Jian Li, Pinjia He, Jieming Zhu, and Michael R. Lyu. 2017. Software Defect
Prediction via Convolutional Neural Network. In International Conference on

Software Quality, Reliability and Security. 318–328.
[27] Yi Li, Chenguang Zhu, Milos Gligoric, Julia Rubin, and Marsha Chechik. 2019.

Precise Semantic History Slicing Through Dynamic Delta Refinement. Automated

Software Engineering 26, 4 (Dec 2019), 757–793.
[28] Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. 2017. FHistorian:

Locating Features in Version Histories. In Proceedings of the 21st International

Systems and Software Product Line Conference - Volume A (Sevilla, Spain). ACM,
New York, NY, USA, 49–58.

[29] Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. 2017. Semantic Slicing
of Software Version Histories. Transactions on Software Engineering 44, 2 (2017),
182–201.

[30] Haopeng Liu, Yuxi Chen, and Shan Lu. 2016. Understanding and Generating
High Quality Patches for Concurrency Bugs. In Symposium on Foundations of

Software Engineering. 715–726.
[31] Peng Liu, Omer Tripp, and Charles Zhang. 2014. Grail: Context-Aware Fixing

of Concurrency Bugs. In Symposium on Foundations of Software Engineering.
318–329.

[32] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning
Correct Code. In Symposium on Principles of Programming Languages. 298–312.

[33] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. 2007. Detecting
Near-Duplicates for Web Crawling. In International Conference on World Wide

Web. 141–150.
[34] Martin Monperrus. 2018. Automatic Software Repair: A Bibliography. ACM

Computing Surveys 51, 1 (2018), 17:1–17:24.
[35] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the Mu-

tants: Mutating Faulty Programs for Fault Localization. In International Conference
on Software Testing, Verification and Validation. 153–162.

[36] Mathieu Nayrolles and Abdelwahab Hamou-Lhadj. 2018. CLEVER: Combining
Code Metrics with Clone Detection for Just-In-Time Fault Prevention and Reso-
lution in Large Industrial Projects. In International Conference on Mining Software

Repositories. 153–164.
[37] Helmut Neukirchen. 2016. Survey and Performance Evaluation of DBSCAN Spa-

tial Clustering Implementations for Big Data and High-Performance Computing

Paradigms. Technical Report. Engineering Research Institute, University of Ice-
land.

[38] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. Semfix: Program Repair via Semantic Analysis. In International Con-

ference on Software Engineering. 772–781.
[39] Suphakit Niwattanakul, Jatsada Singthongchai, Ekkachai Naenudorn, and Su-

pachanun Wanapu. 2013. Using of Jaccard Coefficient for Keywords Similarity.
In International Multiconference of Engineers and Computer Scientists. 380–384.

[40] Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: Mutation-Based Fault
Localization. Software Testing, Verification and Reliability 25, 5-7 (2015), 605–628.

[41] Spencer Pearson, Jose Campos, Rene Just, Gordon Fraser, Rui Abreu, Michael D.
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and Improving Fault
Localization. In International Conference on Software Engineering. 609–620.

[42] Vidyasagar Potdar and Elizabeth Chang. 2004. Open Source and Closed Source
Software Development Methodologies. In International Conference on Software

Engineering. 105–109.
[43] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An Analysis of

Patch Plausibility and Correctness for Generate-And-Validate Patch Generation
Systems. In International Symposium on Software Testing and Analysis. 24–36.

[44] Foyzur Rahman, Daryl Posnett, Abram Hindle, Earl Barr, and Premkumar De-
vanbu. 2011. Bugcache for Inspections: Hit or Miss?. In Symposium on Foundations

of Software Engineering. 322–331.
[45] Manos Renieres and Steven P Reiss. 2003. Fault Localization with Nearest Neigh-

bor Queries. In International Conference on Automated Software Engineering.
30–39.

[46] Hesam Samimi, Max Schafer, Shay Artzi, Todd Millstein, Frank Tip, and Laurie
Hendren. 2012. Automated Repair of HTML Generation Errors in PHP Appli-
cations using String Constraint Solving. In International Conference on Software

Engineering. 277–287.
[47] Guido Schryen. 2009. A Comprehensive and Comparative Analysis of the Patch-

ing Behavior of Open Source and Closed Source Software Vendors. In International
Conference on IT Security Incident Management and IT Forensics. 153–168.

[48] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do
Changes Induce Fixes?. In International Conference on Mining Software Reposito-

ries. 1–5.
[49] Undo Software. 2014. Increasing Software Development Productivity with Re-

versible Debugging.
[50] Yida Tao, Jindae Kim, Sunghun Kim, and Chang Xu. 2014. Automatically Gener-

ated Patches as Debugging Aids: A Human Study. In Symposium on Foundations

of Software Engineering. 64–74.
[51] Shaowei Wang, David Lo, Lingxiao Jiang, Lucia, and Hoong Chuin Lau. 2011.

Search-Based Fault Localization. In International Conference on Automated Soft-

ware Engineering. 556–559.
[52] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.

Automatically Finding Patches Using Genetic Programming. In International

Conference on Software Engineering. 364–374.
[53] Chu-Pan Wong, Yingfei Xiong, Hongyu Zhang, Dan Hao, Lu Zhang, and Hong

Mei. 2014. Boosting Bug-Report-Oriented Fault Localization with Segmentation
and Stack-Trace Analysis. In International Conference on Software Maintenance.
181–190.

[54] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. Transactions on Software Engineering 42,
8 (2016), 707–740.

[55] Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and Sunghun Kim. 2014.
CrashLocator: Locating Crashing Faults Based on Crash Stacks. In International

Symposium on Software Testing and Analysis. 204–214.
[56] He Ye, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2019. A

Comprehensive Study of Automatic Program Repair on the Quixbugs Benchmark.
In 2019 IEEE 1st International Workshop on Intelligent Bug Fixing (IBF). IEEE, 1–10.

[57] Jooyong Yi, Shin Hwei Tan, Sergey Mechtaev, Marcel Böhme, and Abhik Roy-
choudhury. 2018. A Correlation Study between Automated Program Repair and
Test-Suite Metrics. In International Conference on Software Engineering. 24.

[58] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006. Locating faults through
automated predicate switching. In Proceedings of the 28th international conference

on Software engineering. ACM, 272–281.
[59] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where Should the Bugs be

Fixed? More Accurate Information Retrieval-Based Bug Localization Based on
Bug Reports. In International Conference on Software Engineering. 14–24.

[60] Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D Ernst, and Lu Zhang.
2019. An Empirical Study of Fault Localization Families and Their Combinations.
Transactions on Software Engineering (2019), To appear.

https://git-scm.com/docs/git-blame
https://www.alibabacloud.com
https://www.alibabacloud.com/product/maxcompute

