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Abstract—Over the past few years, SMT string solvers have found their applications in an increasing number of domains, such as
program analyses in mobile and Web applications, which require the ability to reason about string values. A series of research has
been carried out to find quality issues of string solvers in terms of its correctness and performance. Yet, none of them has considered
the performance regressions happening across multiple versions of a string solver. To fill this gap, in this paper, we focus on solver
performance regressions (SPRs), i.e., unintended slowdowns introduced during the evolution of string solvers. To this end, we develop
SPRFinder to not only generate test cases demonstrating SPRs, but also localize the probable causes of them, in terms of commits.
We evaluated the effectiveness of SPRFinder on three state-of-the-art string solvers, i.e., Z3Seq, Z3Str3, and CVC4. The results
demonstrate that SPRFinder is effective in generating SPR-inducing test cases and also able to accurately locate the responsible
commits. Specifically, the average running time on the target versions is 13.2x slower than that of the reference versions. Besides, we
also conducted the first empirical study to peek into the characteristics of SPRs, including the impact of random seed configuration for
SPR detection, understanding the root causes of SPRs, and characterizing the regression test cases through case studies. Finally, we
highlight that 149 unique SPR-inducing commits were discovered in total by SPRFinder, and 27 of them have been confirmed by the

corresponding developers.

Index Terms—SMT string solver, performance regression, SPRFinder

1 INTRODUCTION

THe Satisfiability Modulo Theories (SMT) problem is
a class of decision problems for first-order formula
extended with various background theories. A few well-
established SMT solvers (e.g., Z3 [1] and CVC4 [2]) have
been developed for determining the satisfiability of SMT
formula in the theories of Boolean, linear, non-linear arith-
metics, as well as string operations, etc. These solvers have
been widely adopted in supporting many practical appli-
cations, such as software/hardware verification [3]-[5], bug
finding [6], [7], type inference [8], [9], synthetic biology [10].
String solvers are specialized SMT solvers with the ability
to reason about string values, which find their applications
in an increasing number of domains, such as the security
analyses of mobile and Web applications [11], [12]. As a
fundamental and universal reasoning engine, the quality of
SMT solvers is crucial to the upper-layer applications.
Same as all other software systems, SMT solvers have
quality issues (e.g., correctness bugs [13] and performance
slowdowns) which may greatly affect the soundness and
efficiency of the applications. For example, bugs in SMT
solvers may cause incorrect results in program verification

e Yao Zhang, Sen Chen (corresponding author), and Xiaohong Li are with
the College of Intelligence and Computing, Tianjin University. Emails:
zzyy@tju.edu.cn, senchen@tju.edu.cn, xiaohongli@tju.edu.cn.

o Xinofei Xie is with the Singapore Management University. Emails:
xfxie@smut.edu.sg.

e Yi Li and Yang Liu are with the Nanyang Technological University.
Emails: yi_li@ntu.edu.sg, yangliu@ntu.edu.sg.

o Yun Lin is with the Shanghai Jiao Tong University and National Univer-
sity of Singapore. Email: llmhyy@gmail.com

e This work was done while the first author was at Nanyang Technological
University.

or omission of test cases in test case generation [14]. The
efficiency of SMT solvers also significantly impacts the
performance of the applications. A well-known example is
that the performance of solvers is one key factor that limits
the scalability of symbolic execution. For example, when the
path condition is too complex such as non-linear arithmetic,
it may pose the scalability issues [15].

To this end, a few attempts have been made in finding
bugs in SMT solvers, mostly focusing on soundness bugs.
For example, recent studies (e.g., YinYang [13], STORM [14],
StringFuzz [16], and BanditFuzz [17]) identified multiple
bugs in the arithmetic and string solvers of Z3 and CVC4,
where either an “UNSAT” result is produced for satisfi-
able input formula or vice versa. The solvers can also be
incomplete, in which case they are not able to determine
the satisfiability of the inputs and report “UNKNOWN.”
Nevertheless, compared with these functional bugs, the per-
formance of SMT solvers are less tested. Except for detecting
functional bugs, StringFuzz [16] and BanditFuzz [17] were
also evaluated on the performance issues of SMT solvers.
Specifically, StringFuzz focuses on performance testing of
solvers, while BanditFuzz uses RL-based algorithm to max-
imize the performance gap between different solvers. As
fundamental reasoning engines, the solvers’ runtime per-
formance bottlenecks can influence the efficiency of ap-
plications (e.g., symbolic execution, loop invariants infer-
ence). Researchers have proposed many methods (e.g., some
heuristics) to optimize their runtime performance [18]-[20].

There are a few hurdles to the detection and confirmation
of performance issues for SMT solvers. First, unlike func-
tional bugs, which can be manifested by deterministic test
inputs, performance issues often also depend on the config-
urations, and sometimes non-deterministic factors such as



random seeds. Therefore, it is harder for non-expert users
to discover and report such issues. Second, debugging and
localizing the causes for performance issues is more difficult,
mainly because performance regressions are relative to a
reference version of the solver. Looking at a single version
alone, there may not be enough clue on where the ac-
tual problem is. Finally, performance changes—intended or
not—can be introduced frequently during software evolu-
tion. For instance, a fix for a soundness bug may slow down
the solver on certain inputs, and optimizations for some
formulas may also cause a performance drop on other for-
mulas. Many of such problems are unknown to the develop-
ers [21] and if remaining to be undetected, they may become
technical debts and accumulate throughout the lifetime
of the solvers. We refer to such unintended performance
slowdowns of SMT solvers as solver performance regressions
(SPRs). In this paper, we aim to shed light on the solver
performance regressions. In particular, we focus on string
solvers, i.e., SMT solvers using the string theory, such as
Z3seq [1], Z35tr3 [22], CVC4 [2], S3 [23], and S3N [12]. String
solvers have been widely applied in security analysis and
verification tasks [12] (e.g., the ubiquitous string operations
in Web applications), and have been shown to be susceptible
to performance bugs [17]. To understand better the causes
of performance slowdowns, we are particularly interested in
how performance is affected by code changes (i.e., commits)
during the evolution of string solvers. Towards this goal, we
attempt to address the following specific challenges.

1) How to effectively identify performance regressions,
ideally with diverse underlying root causes. Joseph et
al. [17] proposed a fuzzing technique, BanditFuzz, to dis-
cover inputs running slow on one solver, when compared
with other reference solvers (e.g., Z3, CVC4, and MathSAT),
aiming to maximize the performance difference on distinct
solvers. However, what they report is performance differ-
ence (between different solvers) while we are interested in
finding performance regressions in this work. More specif-
ically, we look at performance regression of an individual
solver, i.e., cases where a newer version runs much slower
than an older version. Comparing to BanditFuzz [17], we
aim to discover solver performance regressions (SPRs) that
unveil more diverse root causes rather than a large number
of regressions sharing the same root cause. 2) How to debug
and localize the root causes once a performance regression
is detected. We use the commit(s) as an approximation
to the root cause and aim to find minimal code changes
responsible for the performance slowdown. 3) How to better
understand the different causes so that SPRs can be cor-
rectly mitigated. Performance debugging and analysis are a
significant challenge [24]. Performance regressions on SMT
solvers are rather convoluted and difficult to fix.

To address these challenges, we first implement a testing
tool, named SPRFinder, to detect SPRs in a range of solver
versions. SPRFinder is built on top of BanditFuzz from two
perspectives, i.e., an adaptive mutation and the diversity-
aware feedback. Thus, SPRFinder can detect SPRs which
can be traced back to a more diverse set of SPR-inducing
code changes. To localize probable causes for an SPR, we
then use a bisect-based algorithm to identify the responsible
commit(s). Furthermore, to better understand the detected
SPRs, we perform a case study on the intention of the
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localized commits to find out the reasons causing the SPRs.

We evaluated the usefulness of SPRFinder on the latest
three versions of Z3 (i.e., 4.8.7, 4.8.8, and 4.8.9) and CVC4
(e, 1.7, 1.8, and 1.9'). To conduct a fair comparison on
SPR detection, we first customized the functionality of Ban-
ditFuzz (named BanditFuzz_ SPR) to use it on one type of
solvers with different versions. We take random fuzzing and
BanditFuzz_SPR as our experimental baselines. The experi-
ments demonstrate that SPRFinder is effective in detecting
SPRs when comparing with the baselines. Note that, the goal
of BanditFuzz is to maximize the performance gap between
different kinds of solvers, so that the results do not reflect
the performance of BanditFuzz in its original domain.

By evaluating the detected SPR cases on different ran-
dom seeds,”> we found that 96.8% of the detected SPR cases
(using the default seed) can still be reproduced with at least
one fixed seed configuration. With the commit localization
technique, we traced back to a total of 149 responsible
commits, where 27 of them have been confirmed and 6 of
them have been fixed. We further conducted an empirical
study on the 149 commits and found that the objectives of
these commits include: program fixes, algorithmic updates,
background theory selection, and others. Through these
results and feedback from the developers, we summarize
common causes of SPRs. To the best of our knowledge, we
are the first to detect and analyze performance regressions
introduced during the evolution of SMT solvers. To summa-
rize, we make the following contributions:

o We developed a regression testing tool, SPRFinder,® to
detect the performance regressions between multiple ver-
sions of the solver. Besides, we empirically investigate
the impact of random seed configuration when detecting
SPRs.

e We proposed an automated localization technique to
identify the commit that is responsible for the detected
performance regression issues.

e We conducted the evaluation to demonstrate the effec-
tiveness and the usefulness of our methods. We have
identified a total of 146 commits that can cause SPRs in
Z3Seq, Z35tr3, and CVC4, where 27 of them have been
confirmed and 6 SRPs have been fixed by the developers.

e We carried out the first empirical study to explore the
characteristics of SPRs, including understanding the root
causes of SPRs and characterizing the regressing test
cases based on developers’ feedback, and provide useful
findings for the research community.

2 BACKGROUND

We begin by introducing the definitions of string solver and
the solver performance regressions (SPRs), and presenting
the strategy used in Banditfuzz [17].

1. Note that CVC4-1.9 is not released and we use its latest develop
version as of January 2021.

2. Users can configure the parameter of “random seed” or use the
default setting when running SMT solvers to control the propositional
variable selection in the SMT core, which would probably affect the
results of SPRs detection.

3. The source code of SPRFinder is public available on GitHub (https:
/ / github.com/ConfZ/SPRFinder).



2.1 String Solver

String constraint solving is the branch of the satisfiability
modulo theories (SMT), whose typical constraint is on string
length , concatenation, replace, regular expression, etc. For
example, the following formula:

(str.contains (str.++ a b) c)

represents whether there exists an assignment for string
variables a,b,c that can make the concatenation of a,b
contains c. Such an assignment is also called a model of the
formula. If the assignment exists, we say that the formula is
“SAT”. Otherwise, the formula is “UNSAT”. String solver is
developed to determine whether these string formulas are
“SAT” or “UNSAT”, and gives the corresponding models.

The growth of string manipulating programs in mod-
ern programming languages, including PHP, Python,
JavaScript, et al, demands SMT solvers being capa-
ble of analyzing string constraints. Especially in fuzzing
and software/hardware analysis domain, many new ap-
proaches [25]-[28] achieved better performance by adopting
the string solvers. As a fundamental reasoning system,
string solver plays an increasing significant role for the
upper applications.

2.2 BanditFuzz

Banditfuzz banditfuzz is a fuzzer to conduct the perfor-
mance testing and bug fuzzing for string and floating point
solvers (e.g., CVC4 and Z3). The most related part to our
work is the performance fuzzing for string solvers, so we
mainly introduce the strategy of performance fuzzing in
Banditfuzz as follows.

The motivation of BanditFuzz is to maximize the run-
time gap of a case in the distinct solvers. They deploy
their mutation strategy on a multi-armed bandit prob-
lem [29], which is a common reinforcement learning [30],
[31] problem in MDP [32]. Specifically, Banditfuzz extends
Stringfuzz [16] as the generator (G) to generate the input
cases, and takes the SMT operator [33] (e.g., “str.++” and
“str.replace”) as the bandits (an action) in RL algorithm. In
each testing loop, BanditFuzz takes a test case t from G
and runs C on the distinct solvers S; and S5. Meanwhile, it
computes the score (SCp), which is defined as:

Score :=Tg, —Ts,,

where T's, and T’s, represent the running time of the solver
S1 and Ss.

In mutation section, BanditFuzz chooses an operator r as
an action to generate a new mutant ¢’ by replacing one of the
operators in ¢ with r, and then computes the score SC,. If
SC; is higher than SCp, Banditfuzz updates the Thompson
sampling bandit [34]. That means the  can make the solver
slower and more possible be selected in the next mutation.
After that, BanditFuzz selects the top score ranks of cases
and keep doing the next round. By this strategy, Banditfuzz
can expand the runtime gap after each testing loop.

Note that, BanditFuzz aims to maximize the runtime gap
of a case as much as possible on the distinct solvers. Even
though Banditfuzz can better enlarge the performance gap
on different solvers, it is limited to finding more diverse
and unique cases. Specifically, SPR detection asks for finding

3

more unique cases rather than only maximize the runtime
gap, while Banditfuzz may easily fall into repeating muta-
tion on the same case and lack diversity guidance for more
unique cases so that it is not fit for SPR detection.

3 OVERVIEW

Figure 1 shows an overview of our approach including three
major steps: 1) performance regression testing for detecting
performance regression issues, 2) commit localization for
identifying the commit(s) responsible for the detected SPRs,
and 3) an empirical study to better understand the char-
acteristics and causes of SPRs. All the results of SPR cases
and SPR-inducing commits can be found on our website:
https:/ /sites.google.com/view /sprfinder

SPR Identification. Our test generation tool is extended
based on a performance fuzzer for SMT solvers, i.e., Ban-
ditFuzz. BanditFuzz is designed to generate inputs which
maximize the performance difference between the target
and reference solvers. In principle, it can also be applied
to discover performance regressions, which are manifested
by the performance gap between two versions of the same
solver. Yet, the default test generator used by BanditFuzz
has a fixed strategy to generate formulas, which may limit
the diversity of tests. It can perform well when two solvers
have different underlying algorithms and implementation
strategies, but does not work well when the two solvers
share great similarity (e.g., in the regression testing setting).
Moreover, BanditFuzz does not consider the code changes
which are responsible for the performance regressions.
Thus, the SPRs detected by BanditFuzz are often due to the
same underlying causes, limiting its potential in detecting
more bugs. Hence, we extended the design of BanditFuzz
in two main directions: 1) We extended the test generator to
support an adaptive configuration such that more diverse
test cases can be generated. 2) We proposed a dynamic time
warping (DTW)-based similarity [35], [36] for the guidance
of test generation so that diverse test cases, exposing SPRs
of different types, can be generated.

SPR Root Cause Localization. Each identified SPR by
SPRFinder is triggered by a generated test input on a slow
target version (newer) and a fast reference version (older).
These regressions reflect performance slowdowns happened
during the evolution of the solver. To help developers un-
derstand the root causes, we propose a method to localize
the commit(s) responsible for the SPRs. Although the com-
mit(s) may not correspond to the exact root cause of the
issue, they serve as a good starting point for further investi-
gation and debugging (the usefulness of these commits were
confirmed by developers in our issue reports). Specifically,
we employ an enhanced binary search over the commits
between the target and the reference versions, to localize
commit(s) introducing significant slowdowns.

Empirical Study. After localizing the responsible commit(s),
it is sometimes still challenging for developers to under-
stand and fix the issues. We conduct an empirical study
on the detected SPRs to understand the intention of the
localized commits. We also analyze the impact of incremen-
tal changes on the performance over a history range, and
compare the characteristics of SPRs across different solvers.
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Fig. 1: Overview of our work

Additionally, random seed configuration to SMT solver can
affect the detection performance of SPRs. Therefore, after
the SPR detection, we run the test cases found by SPRFinder
on 30 different random seeds, and see how much the ran-
dom seed configuration can affect the SPR testing and also
provide more information to the localization.

4 METHODOLOGY
4.1 Performance Regression Testing (SPRFinder)

Algorithm 1 shows how performance regression testing is
performed. It takes two versions of the solver as inputs
and returns a set of test cases that trigger SPRs. SPRFinder
maintains a case queue 7' that contains a certain number of
inputs (i.e., 8). At the beginning, it generates the initial cases
(Line 2) with the function Generator, which produces some
random SMT string formulas. Different from BanditFuzz,
we propose an adaptive configuration strategy to diversify
the generated test inputs. Then it starts the testing loop until
the given time limit is reached (Lines 3 to 20). For each
case t, if it causes a significant slowdown (Line 5), i.e., the
execution time on the new version v; is longer than the
previous version vg, a SPR is found and recorded (Line 6).
We remove it from the case queue (Line 7).

The variable ¢, is used to represent the execution time*
of test case ¢ on the version v. If the execution time of the
new version v is longer than that of the previous version v
by a pre-defined threshold « (Line 5), an SPR is identified.
Note that, because the performance of string solvers may
not be stable, we choose a sufficiently large threshold o to
reduce noises introduced by the performance fluctuations.
Besides, the threshold is adjustable to, for example, drive the
algorithm towards identifying SPRs with significant impact.
We adopt the Thompson sampling method [17] to select an
action (i.e., a mutation operator) that is more likely to trigger
SPRs (Line 9). With the selected operator, we generate a new
mutant ¢’ by replacing one of the operators in ¢ with action
(Line 10). Note that we use the same selection and mutation
strategy as BanditFuzz did, with details described in [17].
Then we compute the scores (c.f. Definition 1) of the mutant
and the original case respectively (Line 11). If the score
of the mutant is better than the original case, it indicates
that the selected action works well and the reward of the
action is updated with the Thompson sampling bandit [17]

4. We set a time limit for constraint solving to avoid non-termination.

Algorithm 1: SPR Testing based on BanditFuzz [17]

Input : v, v1: two versions of a SMT solver
Output: R: a set of performance regression test cases
Const : a: the threshold for performance regression
B: the number of test cases in the queue
c: the configuration of the generator
1 R:=0;
2 T := Generator(B,c);
3 while time limit is not reached do
4 fort € T do

5 if ty, —ty, > o then

6 R+ RU{t};

7 T+ T\ {t};

8 continue;

9 action < SelectAct();

10 t' < Mutate(t, action);

1 if Score(t') > Score(t) then

12 Dis := Distance(t);
Update Reward(action, Dis);

13 ift;, —t,, > athen

14 | R+ RU{t'};

15 else

16 | T« Tu{t'};

17 T <+ KeepBestScore();
18 NT <« Generator(f — len(T), c);
19 T+ TUNT;

20 ¢ < AdaptiveCon figuration(c);

21 return R;

(Line 12). If a SPR is triggered by ¢’ (Line 13), we add it into
R. Otherwise, it is added into the case queue (Line 16). After
mutation, SPRFinder only keeps the test case that achieve the
best score and removes the rest (Line 17). We then generate
a number of fresh cases using the generator (Line 18) and
add them into the queue (Line 19) so that the total number
is still 8. Finally, the configuration c is updated if no SPR is
discovered after a time window (see details below).

We highlight the novelties in Algorithm 1 of SPRFinder
compared with BanditFuzz as follows.

e In the Score calculation (Line 11), we propose a more
relaxed score calculation method to better guide the
following RL-based algorithm (c.f. Section 4.1.1).

e In the UpdateReward method (Line 12), we adopt
a novel DTW-based method (c.f. Definition 2 in Sec-
tion 4.1.2) to calculate the time distance between SPR-
inducing cases to adjust the reward increment. Thus,



the action selection can be better guided for more
diverse SPR-inducing cases.

e In the AdaptiveCon figuration method (Line 20), we
propose a self-adaptive configuration strategy to dy-
namically adjust the seed generator so that it can effec-
tively generate diverse cases (c.f. Section 4.1.3).

4.1.1 Performance Score for SPR Detection

When deciding if an input triggers an SPR, we compare the
solving time taken by the target version (the latest one) with
the minimum solving time over all other versions. If the gap
is bigger than the threshold, we consider it as an SPR. The
performance score used in Algorithm 1 is defined as follows.

Definition 1 (Performance Score). Given an input t and its
execution time (ty,,ty,,. .., 1y, ) on multiple versions (vo, v1,
..., Up) of a solver, its performance score is calculated as

Score(t) = ty, —min(tyy, - tu, 1)

sy YUp—1

where t,,,, refers to the latest version.

4.1.2 Distance-based Reward Calculation

To guide towards more diverse SPRs, we design the reward
function used in Algorithm 1 to take into account the sim-
ilarity between test cases. Ideally, we would like to know
if two given test cases may trigger SPRs due to the same
underlying root cause. However, this cannot be determined
before the actual causes are localized. Instead, we approxi-
mate the similarity in root causes with the similarity in the
duration of the caused slowdowns. This also reflects our
observation in practice that similar slowdown patterns are
often caused by the same commit(s).

Thus, we modify the reward function used by Bandit-
Fuzz with discount factors to consider the similarity of
slowdown patterns, so that reward is discounted when a
test input share similar pattern with an existing case.

To this end, we use T'S(t) = (tvy,tvys---,ty,) to repre-
sent the execution time sequence of the test case ¢ at each
version.

Definition 2 (Distance of Time Sequence). Suppose 1" is the
test cases generated before, the distance between t and T is:

Dis(t) = min({DTW (TS(t), TS(t'))|Vt' € TY),

where DTW (Dynamic time warping) [37] is a classic algorithm
to compute the distance between two temporal sequences.

Intuitively, when the distance is large, the new input ¢
is considered to be more different from the test cases in 7T
Then the reward is updated as:

Reward(A) := Rewardy,.(A) + v - Dis(t),

where v is the discount factors. A represents the selected
action and Reward(A) is the corresponding reward of the
action A. Reward,,.(A) refers to the reward of A in the
previous detection round.

4.1.3 Adaptive Configuration Update

We empirically observed that the generator chosen has a
direct impact on SPRFinder’s capability of discovering SPRs.
Our study also revealed that the following parameters may
affect the complexity of the generated constraints: 1) the
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length of the string constants, 2) the number of variables, 3)
the number of sub-formulas (i.e., asserted statements), and
4) the depth of the nested operations.

Further investigation confirmed that the generated tests
by BanditFuzz do not cover more complex constraints. Be-
sides, increasing the complexity parameters (e.g., the length
and the number of formulae) can result in more complex
constraints, and thereby longer unit solving time for both
the target and reference versions.

To balance between diverse constraints and short unit
solving time, and also to avoid local optimum, we propose
to adjust the complexity parameters based on the number
of SPRs identified during a time window, to allow the con-
straint complexity to be adjusted gradually (c.f. Section 5.2).

These parameters will be updated if no SPR was found
during a time interval ¢. We add or subtract a random value
in each update. Specifically, the parameters are updated
based on the time interval during which no SPR is detected.
Suppose the starting time is ¢y, then

o If no SPR was found within one interval (i.e., (¢o,to +
t)), the length of string constant L would be increased
or decreased a random value in [20,50], where L €
[10, 500].

If no SPR was found within two intervals (i.e., (to, to +
2t)), the number of variables V' would be increased or
decreased a random value in [1, 5], where V' € [3,20].
If no SPR was found within three intervals (i.e., (to, to +
3t)), the number of sub-formulas S would be increased
or decreased a random value in [1, 3], where S € [4,15].
If no SPR was found within four intervals (i.e., (tg, to +
4t)), the depth of the nested operations D would be
increased or decreased by 1, where D € [2, 6].

If no SPR was found within five intervals (i.e., (to, to +
5t)), we update the starting time as ¢y := ¢y + 5¢ and
continue to repeat the process from the first step.

We empirically set the range of each parameter (e.g., L €
[10,500]) and then increased/decreased values. If the new
value is out of range, we will ignore the update. Each
parameter is increased if t4,e < 6 - Tiimeout, Or decreased if
tave = 0 - Tiimeout, Where t4,. is the average unit solving
time of all generated cases and Tjimeour is the timeout
threshold. ¢ is a configurable threshold. Intuitively, if the
average solving time exceeds 6 - T}imeout, the complexity of
the generated case is too high, which may affect the testing
performance. Thus the parameters should be decreased to
derive a reasonable unit solving time. Otherwise, the pa-
rameters are increased to grow the constraint complexity.
Owing to this strategy, we can generate more diverse test
cases (c.f. Section 5.2).

4.2 Commit Localization

After SPRs are successfully identified, we localize commit(s)
responsible for these regressions as an approximation to the
root cause, aiming to find the code changes which led to
the performance slowdown. By narrowing the causes down
to specific commits, we can then analyze and debug them
more easily. A naive method is to compile the solver at
each commit and compare the performance of each input
with/without the commit. But, it is impossible to enumerate



Algorithm 2: Commit Localization

Input : T: A set of test cases
vp, v1: two versions of a SMT solver
Output: R: the localized commits

1 R+ 0;

2 Let o be an empty stack;

s 0.push((Cuy, Coy ), T);

4 while o is not empty do

5| (CoyCop), T o.pop();

6 if Cy, and C'y, are adjacent then
7 fort € T" do

8 | R+ RU{(t,Cu.)}

9 continue;

10 Ch,,, ¢ BiSect(Cy,,Cy.);
1 Um  Reset(Cm);

12 left < 0, right < 0;

13 fort € T' do

14 to,, < execute(vm,t);

15 if [ty,, — to,| < M then
16 | right < right U {t};

17 else if |ty,, —to.| < % then
18 | left < left U {t};

19 else

20 right < right U {t};

21 left < left U{t};

2 if le ft is not empty then

23 | o.push((Cu,,Cy,,),left);

2 if right is not empty then

25 | o.push((Cu,,,Cu, ), right);

26 return R;

all combinations considering the compilation and solving
time on each commit and input.

The traditional bisect-based tool such as git-bisect [38] is
not suitable for this specific task due to the following three
reasons. 1) The traditional bisect-based approaches can only
deal with one case in each localization round, while testing
hundreds of cases found by SPRFinder requires repeated
compilation and test runs, taking a huge amount of time and
effort. 2) Many abnormal solver feedback such as unknown
results, crashes, and timeouts require special treatment in
the performance testing scenario. 3) The running time of
string solvers is unstable, and small fluctuations may mis-
lead the localization. Therefore, we propose an enhanced
binary search to localize commits for a batch of test cases
together with customized support for solver performance
testing. The goal is to locate the relevant commits while
minimizing the time taken. The basic idea is to map test
cases into consecutive commits (i.e., commit range), which
are gradually narrowed down by binary search, until the
target commit is located.

Algorithm 2 shows the main procedure that identifies the
commits for a set of test cases. The inputs to the algorithm
include two versions of the target solver (e.g., CVC4-1.7
and CVC4-1.8) and a set of test cases that trigger the SPRs.
Note that, the algorithm can easily be extended to work on
multiple versions. A stack o is used to maintain the updated
commit ranges during the search (Line 2). Each item in
o includes a range and the test cases that fall within this
range (i.e., the range of commits containing the responsible
commit). At the beginning, all test cases 1" belong to the
range (C,,, Cy,) (Line 3), where (C,,, C,, ) represent all the
commits in between the two versions vy and v .

6

SPRFinder then refines the ranges with binary search,
until the commit can be localized for each test case (Lines 4
to 24). SPRFinder updates the commit range (C,_, C,,_ ) of
T’ (Lines 23 to 25) in each bisection round, where C,,_ and
C,, represent the starting commit and the ending commit of
the commit range, respectively. Specifically, if two commits
are adjacent (Line 6), we can already localize the commit,
ie, Cy,, for the test cases T’ (Lines 7-8). Otherwise, we
pick a middle commit C,, , (Line 10) and build the new
version v, (Line 11). The commit C,,  splits the original
commit range into two parts and we perform binary search
over them. We use left and right to represent the test
cases that belong to the first and the second halves of the
range, respectively. For each test case ¢, we run it at v,, and
obtain the running time ¢,,, (Line 14). We use t,, and ¢,,
to respectively represent the running time of a test case on
the two versions v and v, i.e., after the starting commit C,,
and the ending commit C,_ . In the binary search, we need to
determine whether the responsible commit should be closer
to the start version (i.e., in left part) or the end version (i.e., in
the right part). Thus, we compare the closeness between the
running time of the two versions based on a threshold (i.e.,
lt”;dt“el) If the time difference is less than this threshold,
two versions are assumed to have similar running time.
Specifically, if |t,,, — tu.| < %, it means that ¢,
is closer to t,, (Line 15), so that the responsible commit
for t should fall into the right half (C,, ,C,,) (Line 16).
Similarly, if |t,,, — tv,| < %, it means that ¢, is
closer to t,, (Line 17), and then it falls into the left half
(Cy,,Cy,,) (Line 18). Otherwise, if |t,,, — t,,| > w
and [t,,, —t,.| > ‘t‘igt”el, it demonstrates that t,, , is neither
closer to t,, nor closer to t,,, the responsible commit falls
into both halves. Finally, we put the refined ranges into the
range stack (Line 23 and Line 25) and SPRFinder continues
the refinement process in the next iteration. This way, we
perform the search for a batch of tests T' in one go. The
complexity of the algorithm is O(log nx|T'|), where n stands
for the number of commits between vy and v .

Even if the seed generator (c.f. Algorithm 1, Line 2)
and the operator based mutator (c.f. Algorithm 1, Line 10)
are designed only for string solvers in this work, they can
be further customized for other SMT solvers to solve a
similar problem. Besides, the commit localization technique
for batch of cases is also generally applicable in root cause
identification for performance issues of other solvers.

Um

5 EVALUATION OF SPRFinder

In this section, we evaluate our approach in order to answer

the following research questions.

« RQ1: How effective is SPRFinder in detecting performance
regressions?

e RQ2: How much does the random seed configuration
affect the SPR detection?

o RQ3: How accurately and efficiently can SPRFinder local-
ize responsible commit(s) for the SPR-inducing test cases?

5.1 Setups

Benchmarks. We selected two widely used string solvers
(i.e., Z3 [1] and CVC4 [2]) for the evaluation of our method.



- SPRFinder ) -®- SPRFinder o 601 -®- SPRFinder »
350 SPRFinder without DTW ..l.. 200 SPRFinder without DTW ..-- SPRFinder without DTW -’...
- BanditFuzz_SPR o° «+- BanditFuzz_SPR 2 - BanditFuzz_SPR A
3001 2. Random Fuzsing oo - Random Fuzzing 501 -5¢: Random Fuzeing &
] 0o, ] 3 o°
@ 250 o & 150 0 40 et
© o © © 20
- ° - - -‘
5 200 o 5 S 30 &
5 . et 5 100 3 P
8150 o T R 2 8 Jasoeee
E o 2 E E 20 go00e”
3 100 o e % =] 3 o F X
b= 4 s z 3 | - 3¢
Tt 00t 50 St xxxmumxwxx*‘x
50 n’."x*)’(")’(;&;x“x 10 2 oe e
ol % 0 0 SoarrSoeo’™
0 2 4 6 8 10 12 0 2 4 6 8 10 0 2 4 6 8 10 12
Time(h) Time(h) Time(h)
(a) Z3Seq (b) Z35tr3 (c) CVC4

Fig. 2: The total number of test cases generated by BanditFuzz_SPR, Random Fuzzing, and SPRFinder

[
=]
[}

- SPRFinder o00e®® 251 -®- SPRFinder o00 101 -®- SPFinder 0000
SPRFinder without DTW o SPRFinder without DTW .." SPFinder without DTW :
- BanditFuzz_SPR - BanditFuzz_SPR ; - BanditFuzz_SPR :"‘
© 40+ -»- Random Fuzzing © 201 *» Random Fuzzing 0000 © 8 " Random Fuzzing .....
E g E soasas
s 30 5 15 S 6 20000000008
o o S _.
5 5 5 s0s0c0¢0e3
320 310 % 4{ e prbrr
Qo Q Qo g
£ [S £ [
5 E] =] :
Z10 Z 5 Z 29
WOODOGOOR
0 04 ¥ 01 %
0 2 4 6 8 10 12 0 2 4 6 8 10 0 2 4 6 8 10 12
Time(h) Time(h) Time(h)
(a) Z3Seq (b) Z3Str3 (c) CVC4

Fig. 3: The total number of localized unique commits detected by BanditFuzz_SPR, Random Fuzzing, and SPRFinder

Specifically, we selected the latest three versions for each
solver, i.e., 4.8.7, 4.8.8 and 4.8.9 for Z3, as well as 1.7, 1.8,
and 1.9 for CVC4. Note that for Z3, there are two alternatives
for string solving: the theory of strings (via Z35tr3 solvers)
and the theory of sequences (via Z3Seq solver). We used
both of them in our experiments. There is a “random seed”
parameter (e.g., controlled by “~-random-seed” for CVC4
and “smt . random_seed” for Z3) in all the target solvers
which controls heuristic selection in the SMT core. The
random seeds chosen may have an impact on the solver’s
runtime performance even on the same input formulas. For
each solver, we feed the three selected versions to SPRFinder
and generate test cases that trigger SPRs between any two of
the three versions by the default random seed configuration,
since non-expert users are more likely to use the solver with
the default settings.

Approaches under Comparison. To be consistent with the
threshold defined in Algorithm 1, we also define the perfor-
mance regression threshold of the approaches under com-
parison as o. We compared SPRFinder with two approaches
(i.e., random fuzzing and BanditFuzz_SPR) in the following
experiments to demonstrate the effectiveness of SPR detec-
tion. Specifically, we implemented a random fuzzer which
adopts a random seed generator. In addition, we further
customized BanditFuzz (named BanditFuzz_SPR) because
original BanditFuzz is limited in detecting performance
regression issues. The main reasons include: 1) If BanditFuzz
finds an SPR-inducing case, it spends much time mutating
it, instead of the other seeds. This is because BanditFuzz
aims to maximize the time difference, rather than finding
a set of diverse SPR-inducing cases. 2) The seed generator
of BanditFuzz is configured with fixed parameters, which
limits the diversity of the generated test cases (more detailed
analysis can be found in Section 5.2)

Thus, we built BanditFuzz_SPR, which customized Ban-
ditFuzz in the following two aspects. 1) After finding a
SPR, BanditFuzz_SPR restarts and initializes all the settings,
while BandiFuzz keeps running until time is up. 2) Bandit-
Fuzz_SPR randomly adjusts parameters for the generator
in each test case generation, while BanditFuzz adopts the
default fixed parameters.

5.2 RQ1: Effectiveness of Performance Regression
Testing

Setup (RQ1). We ran SPRFinder, SPRFinder without DTW,
BanditFuzz_SPR, and Random fuzzing on a target solver
(i.e., Z3Str3, Z3Seq, and CVC4) for 12 hours to generate
test cases triggering performance regressions. To reduce
randomness, we repeated the process for 5 times. For each
test case, we set a 20-second timeout for the solver and ran
them with the default random seed configuration. We set
the number of test cases in the queue (5 in Algorithm 1) as
5. We set the discount factor v in Section 4.1.2 as 0.05, and
set 0 in Section 4.1.3 as 3/4. We compared the results using
two metrics: the number of unique SPR-inducing test cases
generated and the number of unique commits localized
based on the generated test cases.

To determine the threshold, we evaluated the perfor-
mance stability of running solvers. Specifically, we gener-
ated 500 string formulas and ran each case 10 times on the
same version to test the stability of these solvers. Table 1
shows the average time, average time differences, and the
maximal time difference of each string formula. We can see
that the maximal time difference and the maximal average
time are 2.02s and 9.91s on Z35tr3, respectively. Hence, in
our paper, we chose 10s as the threshold, which is a safe
setting considering the performance instability (compared
to 2.02s). Moreover, the slowdowns caused by the identified



TABLE 1: Running time on the same versions of solvers

Avg time  Avg diff Max diff
# Z3Seq 2.05 0.11 1.69
# 73Str3 9.91 0.24 2.02
#CVC4 1.43 0.03 0.35

SPRs would be significant enough, i.e., the regression can
affect the normal usage of the solvers (compared to 9.91s).

Results. Figures 2 and 3 show the averaged results of the
total number of generated test cases and the total num-
ber of commits localized based on the test cases. The x-
axis represents the running time, ranging from 0 to 12
hours. Overall, we can see that SPRFinder is more effec-
tive than random fuzzing, BanditFuzz_SPR, and SPRFinder
without DTW. We also noticed that SPRFinder and Ban-
ditFuzz_SPR outperform random testing (i.e., the Non-RL
fuzzer), demonstrating that reinforcement learning can be
helpful in this task. Furthermore, SPRFinder is more effective
than BanditFuzz_SPR, which indicates the usefulness of our
strategies, i.e., the guidance from the performance score (c.f.
Definition 1), the adaptive configuration and the distance-
based reward. Note that, even if Fig. 2 shows that the
improvement by using DTW seems to be limited in terms
of the total number of generated cases, we still see that
SPRFinder generates more unique SPR cases with a higher
speed when adopting DTW, based on Fig. 3. That fits our
goal well of finding unique SPRs which have different
underlying causes, rather than only optimizing the total
number of possibly repeated cases.

Table 2 shows the average results of both tools after the
12-hour experiment. We can see that, on average, SPRFinder
detects 362.4, 232.6, and 59.2 SPR test cases in total, on
the three versions of the target solvers, respectively. With
the commit localization technique applied on the detected
test cases, SPRFinder localizes 49.8, 25.2, and 10.0 SRP-
triggering commits, respectively. Considering all repeated
runs combined, SPRFinder found a total of 66, 61, and 22
unique commits for Z3Seq, Z35tr3, and CVC4, respectively.
We reported 10 and 15 issues to the developers of Z3 and
CVC(C4, respectively, where 4 and 12 of them have been
confirmed. Note that, 3 SPRs in CVC4 have been fixed up to
today.

We found less SPR-inducing commits in CVC4 compared
with Z3Seq and Z35tr3, which is a potential indication of the
tools” performance stability.

Answer to RQ1: SPRFinder is more effective than the
baseline approach (i.e., BanditFuzz_SPR) in detecting
performance regressions, and DTW helps to detect
more cases with unique causes. With SPRFinder, we
found 66, 61, and 22 unique SPR-inducing commits in
total. This results also show that there are many per-
formance regression issues in well-established string
solvers, which should be considered especially when
applied in performance-critical applications.

5.3 RQ2: Impact of the Random Seed Configuration

Setup. We empirically evaluated the test cases under dif-
ferent choices of random seeds and further investigated the
impact of random seeds for SPR detection. Specifically, we
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Fig. 4: Percentage of the cases that triggered SPRs by varying
random seeds, and n represents the number of SPRs triggered
by fixing random seeds to 1-30

took all 653 cases (362 for Z3Seq, 323 for Z35tr3, and 59 for
CVC(4, respectively) detected by SPRFinder in RQ1 using the
default random seed as the subjects. The problem with the
default random seed is that it is based on heuristics and may
incur different solver behaviors across multiple versions.
This brings a threat to the validity of our detected SPRs. To
eliminate the noise from random seeds, we ran each detected
case on the corresponding solver by fixing the random seeds
across versions, with different choices ranging from 1 to 30.°
Similar to RQ1, we set a 20-second timeout for each solving
and the performance regression threshold (c) as 10 seconds.
Finally, we calculated the number of SPR cases triggered
under different random seed configurations.

Results. Figure 4 shows the percentage of cases that suc-
cessfully triggered SPRs with various choices of random
seeds. The value of n represents the number of random
seeds caused SPRs on a test case. We classified n values into
the following five ranges, namely, n = 0, 0 < n < 10,
10 < n < 20,20 < n < 30, and n = 30, representing
the different levels of generality of the detected SPRs. For
example, n = 0 represents that the test case was triggered
by the default seed, but cannot be triggered by any of the
30 fixed random seeds. This indicates that the SPR case
is likely due to the noise incurred by the default random
seed when applied across multiple versions. In contrast,
n = 30 represents that the test case can be reproduced by all
of the 30 random seeds. This serves as a strong evidence
for the generality of the test, which also indicates a real
reproducible performance regress issue.

Based on the experiment results, we found that 67.8%
of the SPR-triggering cases can be reproduced on all the
30 random seeds for CVC4, while only 5% of the cases in
Z3Seq and 50% of the cases in Z35tr3 can be reproduced.
This shows that the random seed settings have a larger
impact on Z3seq and Z35tr3, when compared with CVC4.
In addition, there are 16.9% of the cases in CVC4 which
cannot be reproduced with the fixed random seeds. The
same values for Z3Seq and Z3Str3 are 2.8% and 0.4%,
respectively. In general, 27.8% of the detected cases with the
default random seed configuration can be reproduced on all
the tested random seed configurations.

Answer to RQ2: The random seed configuration has
an impact on SPR detection. Still, most (96.8%) of the

5. The seeds 1 to 30 were suggested by the Z3 developer [39].



TABLE 2: The average results of BanditFuzz_SPR, Random Fuzzing, and SPRFinder after 12 hours

Z3Seq Z73Str3 CVC4

min  max avg min max avg min max avg

SPRFinder 359 371 3624 221 238 2326 52 68 592

#Test SPRFinder without DTW 330 346 337 213 224 2184 46 49 474
BanditFuzz_SPR 170 192 186 183 191 1875 31 39 356

Random 146 161 1572 133 142 137.6 22 28 24

SPRFinder 49 51 49.8 24 26 25.2 9 11 10

#Commit SPRFinder without DTW 42 44 43.6 19 20 19.2 8 9 8.2
BanditFuzz_SPR 38 42 40.2 17 20 18.6 4 7 52

Random 36 43 39.8 17 19 18.2 1 4 2

TABLE 3: The average time overload before and after a commit

#Commit Before After Difference
Z3Seq 66 0.7 19.5 18.8
73Str3 61 0.7 20.0 19.3
CvVC4 22 3.1 19.9 16.8
Average (second) 15 19.8 18.3

SPR cases found in RQ1 can be triggered with at least
one fixed seed configuration. SPR detection on Z3Seq
is more easily affected by the choices of random seeds,
compared with other solvers.

5.4 RQa3: Effectiveness and Efficiency of Commit Lo-
calization

Setup. We evaluated effectiveness of the commit localization
technique by comparing the performance differences be-
tween the version before the localized commit (a.k.a. before-
commit version) and the version after this commit (a.k.a.
after-commit version). Note that, in the localization, for each
case we randomly selected one specific seed from the SPR-
inducing seeds (identified in RQ2). For example, if a SPR
is successfully reproduced on seeds 1 to 20 (in RQ2), we
randomly pick a seed from the range. For each commit,
we built two versions of the solver, i.e., the before-commit
version and the after-commit version and measured the
respective running time. A larger time difference indicates a
better accuracy in the commit localization.

Besides, we aim to investigate if SPRFinder can handle all
the conditions along the whole commit histories. To do this,
we built the commit histories of each solver (i.e., Z3 and
CVC4) and run these SPR-inducing cases (in RQ1) on the
whole commit histories of these solvers. Then, we selected
the representative cases of the results and classified them
into different categories. Finally, we checked if SPRFinder
can accurately locate theses cases by analyzing the time
trend of version updates. Finally, we evaluate the effi-
ciency of our commit localization approach by comparing
SPRFinder and git Git. We used all test cases (generated by
SPRFinder) in RQ1, and We ran both SPRFinder and Git-
bisect for 12 hours on the target solvers (i.e., Z3Seq, Z35tr3,
and CVC4) to test which approach can locate more cases
during the time range.

Results. Table 3 shows the averaged results. Column #Corm-
mit shows the total number of localized commits for each
solver. Column Before shows the average time overhead of
all test cases on the corresponding before-commit versions
and Column Right shows the average time overhead of all
test cases on the corresponding after-commit versions. Col-
umn Difference shows the average time difference between

the before-commit version and the after-commit versions.
The results show that with the localized commits, the test
cases have a considerable time difference (i.e., 18.8, 19.3,
and 16.8 seconds), which indicates that SPRFinder is able
to localize SPR-inducing commits accurately.

Figure 5 shows the representative results of sin-
gle cases running on the commit histories of the tar-
get solvers. The x-axis represents the commit history of
the solver versions, i.e., Z3-4.8.7 to Z3-4.8.9 or CVC4-
1.7 to CVC4-1.9, and the y-axis represents the running
time of the solver. C' and C’ represent responsible com-
mits and C), represents the middle commit of the com-
mit histories. We classify the results by two dimensions,
i.e., Monotonic/Non-monotonic, Single-Dominant/Multi-
Dominant. Specifically, Monotonic/Non-monotonic repre-
sents whether the time varies monotonously, and Single-
dominant/Multi-dominant represents if the SPR is domi-
nated by one commit or multiple commits. We analyzed
the localization ability of SPRFinder from the following four
conditions.

1) Monotonic & Single-Dominant: As shown in Fig. 5 (a),
the running time increases monotonically during the
commit histories, and obviously there is a steep soar that
makes the main contribution to the SPR (a.k.a. SPR is
dominated by single commit in the commit histories).
In this condition, SPRFinder can accurately locate the
commit C' accordingly.

2) Monotonic & Multi-Dominant: Compared with Single-
Dominant scenario, Multi-Dominant is more compli-
cated. As shown in Fig. 5 (b), the time grows
monotonously but more than one commit induced a
soar. Note that our algorithm (Line 15 and Line 17 in
Algorithm 2) disregards the little fluctuations, so we
mainly focus on the significant variations. Obviously,
both C' and C’ are dominating commits for the SPR. In
this condition, when the first round bisection locates C,,
as the middle commit, SPRFinder can move to both left
and right, so that both the responsible commits C' and C’
can be accurately located.

3) Non-Monotonic & Single-Dominant: In this condition, the
solver performance is non-monotonic but SPR is domi-
nated by a single commit. For example, in Fig. 5 (c), both
C and C’ can make the running time grow up, while C" is
not the domination because the running time here is less
than our threshold in Algorithm 2 (Line 15). Therefore,
SPRFinder can accurately locate the dominating commits.

4) Non-Monotonic & Multi-Dominant: This condition is the
most complicated one because SPRFinder may not be
correctly guided to find all the dominating responsible
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commits. For example, as shown in Fig. 5 (d), both C
and C’ are dominating commits. Once SPRFinder bisects
to C)y,, it will determine that the target commit falls into
right. Therefore, SPRFinder can only find C but miss and
C’. Even though SPRFinder would miss some results, it
can achieve a better performance and locate to at lest
one accurate commit, since localization for a batch of test
cases is quite a time-consuming task in practice. In fact, it
is a trade-off solution between performance and accuracy
in terms of the localization algorithm.

Figure 6 shows the average cases localized by Git-bisect
and SPRFinder. The x-axis represents the time ranging from
0 to 12 hours. We can clearly see that SPRFinder is much
more efficient, which is about 8x faster than Git-bisect in
our commit localization setting.

Answer to RQ3: In the most conditions of the commit
histories, SPRFinder is effective and efficient in localiz-
ing the responsible commits for the given performance
regression cases. The average time taken at the before-
commit version is 1.5 seconds, while that at the after-
commit version is 19.8 seconds. This is a strong indica-
tion that the localized commits are indeed responsible
for the SPRs. SPRFinder is more efficient (8x) than Git-
bisection in our batch scenario.

6 EMPIRICAL STUDY

Owing to the ability of SPRFinder and our own experiences
in performing the experiments, we conducted an empirical

study to have a deeper understanding of the characteristics
of SPRs and attempt to answer the following research ques-
tions.

« RQ4: How do incremental code changes impact the solver
performance?

+ RQ5: Why do the localized commits cause performance
regression issues?

6.1 RQ4: Impact of Incremental Code Changes

Setup. First, we aim to study the performance impact along
the whole commit histories. Specifically, we would like to
observe whether a single test case may trigger multiple
SPRs along the evolving versions of the solvers. We used
all the localized commits in RQ1 (i.e., 66, 61, and 22 in
Z3Seq, Z35tr3, and CVC4) as reference points and built
two reference versions, before and after each commit. We
then randomly selected one test case for each such commit,
which runs significantly slower at the newer version. Thus,
66, 61, and 22 test cases were selected for Z3Seq, Z35tr3,
and CVC4, respectively. Finally, we ran each test case on
all the reference versions and checked whether a SPR is
triggered at this version. We calculated how many SPRs can
be discovered along the commit histories using each test.

Results. Figure 7 shows the detailed results on each solver.
The x-axis represents the number of SPRs discovered by
a single test case along the version histories. The y-axis
represents the number of test cases that fall into the cor-
responding category. For example, for Z3Seq, there are 15
test cases which trigger SPRs on 4 different commits and 1
case which triggers SPRs on 13 commits. In general, we find
that a single test case may trigger multiple SPRs through the
commit histories, which indicates the instability of the solver
performance during incremental updates. For example, a
test may run faster after some commits, but become slower
again after the subsequent commits. In particular, some
cases in Z3Seq and Z3 Str3 have gone through more than
10 fast-to-slow changes during the evolution of the solvers.

Figure 8 shows the detailed performance vibration of an
example case, by fixing the random seed to 2. In the corre-
sponding commit histories, it triggered three performance
regression issues. Specifically, after the commit 78feac446,
the SPR was triggered for the first time. Then the issue was
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fixed by a later commit between 78feac446 and e075f3815.
Next, it triggered the second SPR (right after e075f3815),
which is then fixed before the commit d372af478. In the end,
it triggered the third regression right after d372af478.

In general, CVC4 tends to be more stable while Z35tr3
seems the most unstable. For example, for CVC4, most test
cases (12) only trigger SPRs once. The maximum number
of SPRs triggered by one test case was 3. For Z35tr3, the
number of SPRs triggered by one test case may vary from 1
to 12.

Answer to RQ4: The performance of the string solver is
unstable. During the evolution of the solver, some test
cases may trigger SPRs multiple times, i.e., a test case
can reveal SPRs caused by multiple commits.

6.2 RQ5: Empirical Study on SPR-inducing Commits

After the SPR-triggering commits are localized, the natural
next step is to understand and fix the issues. Fixing per-
formance regressions is a challenging task. Therefore, we
conducted an empirical study to understand the developers’
intentions behind these commits. We manually analyzed the
commits in combination with the developers’ feedback and
summarized the following reasons.

1) Program Fixes. Some commits aim to fix known bugs
in the program. As a result, it may cause performance
degradation on some input examples.

2) Algorithmic Update/Optimization. There are a major part
of commits that update algorithms used by the string
solvers. It may improve the performance on some inputs,
but we found it worsens the performance on other inputs
by a large margin.

TABLE 4: Commiit triage based on its intention

Z3Seq Z3Str3 CVC4 Total

Program Fixes 29 24 4 57

Algorithmic Update 24 26 9 59

Intention Theroy Selection 4 4 0 8
Unknown 9 7 9 25

Total 66 61 22 149

Class. Compromise 11 9 4 24
Performance Bug 0 0 3 3

3) Theory Selection. String solvers rely on other background
theory solvers to handle arithmetic, array, and other func-
tions. Yet, some commits update these theory solvers,
which results in performance regressions.

4) Unknown. There are also some other commits for which
we fail to identify the intentions.

Table 4 shows the number of commits based on the
intentions behind the update. We found that many SPRs
were caused by program fixes (38.3%) and algorithmic up-
dates/optimizations (39.6%). In total, SPRFinder discovered
66, 61, and 22 SPR-inducing commits in Z3Seq, Z35tr3,
and CVC4, respectively. Based on the feedback from the
developers, we further classified the commits into two
types: performance compromises and performance bugs. For the
performance compromise commits, developers aim to fix
bugs or improve performance on some test examples while
sacrificing that of others. We observed that programmers
made the compromise intentionally, as a more comprehen-
sive solution was yet ready. For the performance bugs,
developers were unaware that such commits may have side
effects, which could have been mitigated if known in prior.

Note that it is sometimes difficult to judge objectively
whether a commit is performance compromise or perfor-
mance bug, as it requires confirmations from the developers.
We could not always obtain such confirmation, and thus
classified the commits conservatively with best efforts. If the
commit messages clearly indicate that there were known
issues and compromises made, we regarded them as the
performance compromise commits. For performance bugs,
we only calculated the commits that have been confirmed or
fixed by developers. Row Class. of Table 4 shows the classi-
fied results and other un-classified commits were regarded
as unknown.

We also include some feedback from the developers of
CVC4 on two types of the cases as follows. Note that, for
the second case, the developer marked them with a bug tag
and fixed them subsequently.



Performance compromise: “The commit bd2793a fixed a
refutation soundness bug. That commit was a straightfor-
ward fix of a lemma that was unsound. Thus if CVC4 solved
this quickly before that commit and does not solve now, it
may have been due to unsound reasoning.”

Performance bug: “...This lead to an infinite loop of infer-
ences because we effectively were just splitting...a component
into two skolems and the only restriction was that the first
one was non-empty.”

We also investigated SPR-triggering test cases common
across different solvers based on the results from RQI.
Specifically, for Z35tr3 and Z3Seq, there are 7 test cases,
traced back to 17 commits, that can trigger SPRs on both.
There are 9 test cases that trigger SPRs on both Z35tr3 and
CV(4, and one test case that triggers SPRs on both Z3Seq
and CVC4.

Answer to RQ5: The SPRs are usually caused when de-
velopers aim to fix known bugs, update the algorithms,
and make changes to the other theory solvers. There
are some comprises that developers made intentionally,
and some are because of the developers’ unawareness
of potential side effects of their changes on solver per-
formance. In addition, some common test cases seem to
trigger SPRs on multiple solvers.

6.3 Threats to Validity

The selection of versions and the string solvers could be a
threat to validity, which may affect the generalizability of
the RQ1 results. To mitigate it, we selected 2 state-of-the-art
string solvers and the latest 3 versions for the evaluation.
The randomness of solver performance may be another
threat to the results of RQ1. We repeated the process for
5 times and calculated the average results. Another threat
comes from the hyper parameters used in the algorithm,
e.g., the threshold of performance regressions and the num-
ber of seeds. The random seed chosen is another threat.
In answering RQ1, we selected the default random seed,
which may introduce noises in determining some SPR-
inducing test cases. We systematically experimented on the
choices of random seeds in RQ2. Finally, the classification of
performance compromises and bugs may not be accurate,
because the commits, which are classified as performance
compromises, may also contain unknown bugs.

7 RELATED WORK

SMT Solver Testing. In recent years, there have been
many studies focusing on functional testing of SMT solvers.
Brummayer et al. [40] developed FuzzSMT to randomly
generate SMT formulas, essentially performing fuzz test-
ing on SMT solvers. Yet, it does not handle formulas in
the String theories. Bugariu et al. [41] proposed a for-
mula synthesis approach that is able to generate “SAT” or
“UNSAT” formulas, which are then used as test oracle to
detect soundness bugs. Similarly, our work also relies on
a seed generator, which performs adaptive adjustments to
the predefined parameters, thus is able to balance between
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diversity and performance. Moreover, we not only generate
SMT formulas, but also use the distance-based reward to
guide the subsequent mutations. Most of the recent studies
construct new test cases by transforming existing seed tests
according to certain relations [13], [14], [42]-[45]. The key
idea is to ensure that the satisfiability of the newly gen-
erated tests can be predicted via the transformation rules.
For example, Mansur et al. [14] proposed to mutate SMT
tests by breaking up and rebuilding the formulas based on
their models. A limitation is that their mutator is not able
to construct “UNSAT” formulas. Winterer et al. proposed
a series of transformations [13], [42], [43] to either fusing
two equisatisfiable formulas together, replacing operators,
or changing variables semantically. Yao et al. [45] introduced
a simple but effective SMT fuzzing technique that combines
two different input spaces, i.e., configuration space and se-
mantic space, to detect soundness bugs. They also proposed
a mutation approach [44], which produces mutants by over-
approximating or under-approximating a SMT formula. In
their work, the test oracle of the transformed formula can
be inferred from the original seed. All these works above
mainly focus on detecting soundness bugs, while our work
targets performance regression issues across different ver-
sions of a solver.

As for the performance testing of SMT solvers, Dmitry
et al. proposed StringFuzz [16], which is an effective gen-
erator and transformer for SMT formula. They used the
generation-based approach to produce and mutate valid
test cases to detect bugs and the performance limitations
in string solvers. To further study the performance gap
between different solvers, Scott et al. [17] proposed to adopt
a reinforcement learning algorithm to detect performance
issues and soundness bugs. They also used the Thompson
sampling method to select the best operator for the follow-
ing mutation. Both works studied the performance testing
of SMT solvers, but none of them targets the performance
regression issue concerning multiple versions of a solver.
Our work is the first to analyze the performance regression
during the evolution of a solver. Moreover, we also localize
the root causes of these cases to assist debugging.

BanditFuzz [17] is the most related one to our work.
SPRFinder is built based on BanditFuzz but can be distin-
guished from it in the following aspects: 1) SPRFinder is the
first work to study the SPR detection problem on different
versions of a solver, while BanditFuzz aims to find cases
causing a large performance gap between different types of
solvers. 2) SPRFinder cares more about the diversity of the
SPR-inducing cases, while BanditFuzz mainly focuses on en-
larging the performance gap between solvers. 3) SPRFinder
not only detects performance regressions, but also automat-
ically localizes the responsible commits of SPRs, and we
conducted empirical studies on these commits to have a
deeper understanding of the root causes. The evaluation
results (c.f. Figures 2 & 3 and Table 1) demonstrate that
BanditFuzz is limited on SPRs detection. We adopted a
dynamically adaptive mutation strategy to generate more
suitable cases to trigger more performance regressions and
adopted a DTW-based similarity approach to improve di-
versity of the mutants. Owing to these strategies, SPRFinder
works better on SPR detection.



Regression Testing. To ensure that software evolution does
not affect the existing functionalities of software, regression
testing [46] has been adopted. It is a time-consuming task to
run the entire test cases during regression testing [47], there-
fore, regression test selection [48]-[52], test suite minimiza-
tion [53]-[58], test case prioritization [59]-[62] have been
widely studied in this research area. Different from these
research directions, to identify the root causes of issues (e.g.,
performance issues, bugs) during regression testing, many
researchers focused on identifying issue-change commits,
which is also a prevalent challenge in regression testing.
Because developers have to spend extra time and efforts
narrowing down which commit caused the issues.

To figure out the real cause of the program failures,
Zeller [63] proposed delta-debugging to find the minimal
failure-inducing set by simplifying the input. But, this ap-
proach mainly focused on the failure-inducing inputs rather
than commits localization, while our work aims to locate
SPRs to the corresponding commits. Coulder et al. proposed
a git bisect strategy [38] that can help debugger to locate the
regression by bisecting the commit history. However, both of
the approaches above can only work on a single case, so that
not efficient enough on a batch of cases. Besides, they are
also not appropriate for SMT solver, while our work mainly
focuses on localizing commits for a batch of test cases, which
can minimize the compilation time and customize to better
handle the localization on solvers.

Cito et al. [64] used exploratory visual analysis and
change point analysis to identify the root causes of web
performance degradation issues. Similarly, Daly et al. [65]
also adopted change point detection to represent the signifi-
cant changes from a given history of performance results.
Miihlbauer et al. [66] proposed an approach to identify
configuration-dependent performance changes. Huang et
al. [67] proposed performance risk analysis (PRA) to es-
timate the risk of performance changes based on static
analysis, so that performance regression testing can further
leverage the analysis result to test commits with high risks
first. Our work distinguishes from these existing studies in
two aspects: 1) SPRFinder may generate many test cases and
each test case needs much time to solve (e.g., 20s), thus it is
expensive to localize the commit one by one. To improve the
efficiency, SPRFinder adopts the bisection-based approach
to localize commits for a batch of test cases. 2) Our work
mainly focuses on the discovering performance regressions
of SMT solver and analyze these regressions, where commit
localization is only one of the process.

8 CONCLUSION

In this paper, we studied performance regressions in string
solvers introduced during evolution. We developed an au-
tomated tool, named SPRFinder, which detects and localizes
solver performance regressions. SPRFinder is designed to
generate tests which maximize performance gaps between
different versions of the same solver. Based on the SPR-
inducing tests, we then localize the commits responsible,
which can be used as a starting point for further inves-
tigation. Based on the 149 commits identified, we also
conducted an empirical study to better understand the
performance issues in string solvers.
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The future work mainly includes: 1) exploring more
advanced reward function for improving the performance
of SPR detection and 2) applying our framework to more
applications such as other types of solvers.
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