
Client-Specific Upgrade Compatibility Checking via
Knowledge-Guided Discovery

Chenguang Zhu1, Mengshi Zhang2, Xiuheng Wu2, Xiufeng Xu2, Yi Li3

1. The University of Texas at Austin, USA

2. Meta Platforms, USA

3. Nanyang Technological University, Singapore

ICSE 2023

May 18, 2023

To upgrade, or not to upgrade

[1] Alex Gyori, Owolabi Legunsen, Farah Hariri, and Darko Marinov. Evaluating regression test selection opportunities in a very large open-source ecosystem. In ISSRE’18.
[2] Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro Inoue. Do developers update their library dependencies? In Empirical Software Engineering’18

50%

40%

82%

A recent study[1] shows 50% of the 408 studied open-source Java
projects break after an upgrade to library

40% of the breakages were runtime test failures (not caught by
compilers)

In another study[2], 82% of the developers of the studied systems
keep outdated dependencies, leaving system open to zero-day
attacks

2

• Will a library upgrade break a specific client (resulting in different behaviors)?

Client-Specific Library Upgrade Incompatibility

Incompatible for Client1
(may throw
NullPointerException)

Compatible for Client2

Client1:

if (lib(s1, s2).length() > 0) {
 …
}

Client2:

lib(
 x.concat("abc"),
 y.concat("abc")
);

3

Our Solution: Client-Specific Compatibility
Checking (CompCheck)

4

Knowledge
Matching

New Target
Client

Matched
Client Methods

Test Suite
Generation

Validation

Incompatibility Discovery

Incompatibility-
Revealing Tests

Open Source
Projects

Failed Tests

Library
Version Pair

Execution
Trace

Intermediate
States

API Incompatibility Knowledge

Knowledge
Extraction

Knowledge
Aggregation

Merged Client
Contexts (FSMs)

Knowledge
Storage

API Incompatibility
Knowledge Base

Module-Level
Regression

Testing

Knowledge Mining

Open Source
Projects

Failed Tests

Library
Version Pair

Execution
Trace

Intermediate
States

API Incompatibility Knowledge

Knowledge
Extraction

Knowledge
Aggregation

Merged Client
Contexts (FSMs)

Knowledge
Storage

API Incompatibility
Knowledge Base

Module-Level
Regression

Testing

Knowledge Mining

Our Solution: Client-Specific Compatibility
Checking (CompCheck)

5

Open Source
Projects

Failed Tests

Library
Version Pair

Execution
Trace

Intermediate
States

API Incompatibility Knowledge

Knowledge
Extraction

Knowledge
Aggregation

Merged Client
Contexts (FSMs)

Knowledge
Storage

API Incompatibility
Knowledge Base

Module-Level
Regression

Testing

Knowledge Mining

Our Solution: Client-Specific Compatibility
Checking (CompCheck)

6

Knowledge
Matching

New Target
Client

Matched
Client Methods

Test Suite
Generation

Validation

Incompatibility Discovery

Incompatibility-
Revealing Tests

Our Solution: Client-Specific Compatibility
Checking (CompCheck)

Open Source
Projects

Failed Tests

Library
Version Pair

Execution
Trace

Intermediate
States

API Incompatibility Knowledge

Knowledge
Extraction

Knowledge
Aggregation

Merged Client
Contexts (FSMs)

Knowledge
Storage

API Incompatibility
Knowledge Base

Module-Level
Regression

Testing

Knowledge Mining

7

A new client method
with matching context

New test generated (by reusing stored states)

Evaluation Subjects

● 24 Backward Incompatible APIs from 8 popular libraries

● 35 high-starred Java client projects on GitHub, having 202 call sites in total

...
8

● Baselines

○ Sensor[1]: generating tests to reveal library dependency conflicts

○ CIA+SBST: Uses change impact analysis (CIA) to find the call sites affected
by the library upgrade, then perform search-based test generation

○ CompCheck--: Disable object reusing of CompCheck

● Comparison Goals

○ CompCheck vs Sensor vs CIA+SBST: An end-to-end comparison on the
effectiveness of incompatibility discovery

○ CompCheck vs CompCheck--: Measure the benefit of object reusing

Evaluation Baselines

[1] Ying Wang, Rongxin Wu, Chao Wang, Ming Wen, Yepang Liu, Shing-Chi Cheung, Hai Yu, Chang Xu, and Zhi-liang Zhu. Will Dependency Conflicts Affect My Program’s
Semantics? TSE 2021. 9

Evaluation Results: number of incompatibilities
found through generated tests

1. CompCheck is effective in discovering incompatibility issues. It
revealed 72.7% more issues than Sensor and 94.9% more issues than
CIA+SBST

2. Object reusing significantly contributes to the overall effectiveness

10

Contribution and Summary yi_li@ntu.edu.sg

@liyistc

Tool: CompCheck

https://sites.google.com/view/compcheck

Evaluation

Revealed 72.7% more issues
with incompatibility tests, than
existing techniques

Dataset: CompSuite

https://github.com/compsuite-team/compsuite

Source code and experiment
data publicly available

A newly compiled dataset for
library behavioral incompatibilities

11

Problem Highlight

Many library upgrades have
client-specific compatibility
issues, which needs to be
analyzed case by base

https://sites.google.com/view/compcheck
https://github.com/compsuite-team/compsuite

