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To upgrade, or not to upgrade

[1] Alex Gyori, Owolabi Legunsen, Farah Hariri, and Darko Marinov. Evaluating regression test selection opportunities in a very large open-source ecosystem. In ISSRE’18.
[2] Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro Inoue. Do developers update their library dependencies? In Empirical Software Engineering’18 

50%

40%

82%

A recent study[1] shows 50% of the 408 studied open-source Java 
projects break after an upgrade to library

40% of the breakages were runtime test failures (not caught by 
compilers)

In another study[2], 82% of the developers of the studied systems 
keep outdated dependencies, leaving system open to zero-day 
attacks
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• Will a library upgrade break a specific client (resulting in different behaviors)?

Client-Specific Library Upgrade Incompatibility 

Incompatible for Client1 
(may throw 
NullPointerException)

Compatible for Client2

Client1:

if (lib(s1, s2).length() > 0) {
  …
}

Client2:

lib(
  x.concat("abc"),
  y.concat("abc")
);
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Our Solution: Client-Specific Compatibility 
Checking (CompCheck)
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A new client method 
with matching context

New test generated (by reusing stored states)



Evaluation Subjects

● 24 Backward Incompatible APIs from 8 popular libraries

● 35 high-starred Java client projects on GitHub, having 202 call sites in total

...
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● Baselines

○ Sensor[1]: generating tests to reveal library dependency conflicts

○ CIA+SBST: Uses change impact analysis (CIA) to find the call sites affected
by the library upgrade, then perform search-based test generation

○ CompCheck--: Disable object reusing of CompCheck

● Comparison Goals

○ CompCheck vs Sensor vs CIA+SBST: An end-to-end comparison on the
effectiveness of incompatibility discovery

○ CompCheck vs CompCheck--: Measure the benefit of object reusing

Evaluation Baselines

[1] Ying Wang, Rongxin Wu, Chao Wang, Ming Wen, Yepang Liu, Shing-Chi Cheung, Hai Yu, Chang Xu, and Zhi-liang Zhu. Will Dependency Conflicts Affect My Program’s 
Semantics? TSE 2021. 9



Evaluation Results: number of incompatibilities 
found through generated tests 

1. CompCheck is effective in discovering incompatibility issues. It 
revealed 72.7% more issues than Sensor and 94.9% more issues than 
CIA+SBST

2. Object reusing significantly contributes to the overall effectiveness
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Contribution and Summary yi_li@ntu.edu.sg

@liyistc

Tool: CompCheck

https://sites.google.com/view/compcheck 

Evaluation

Revealed 72.7% more issues 
with incompatibility tests, than 
existing techniques

Dataset: CompSuite

https://github.com/compsuite-team/compsuite 

Source code and experiment 
data publicly available

A newly compiled dataset for 
library behavioral incompatibilities
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Problem Highlight

Many library upgrades have 
client-specific compatibility 
issues, which needs to be 
analyzed case by base

https://sites.google.com/view/compcheck
https://github.com/compsuite-team/compsuite

