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Decentralized Applications and Smart Contracts

Apps

(Centralized)

DApps

• Immutable
• Self-enforcing
• Affordable and accessible

• Relying on intermediaries
• Non-transparent
• Slow and costly
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Why is DApp a big thing?

Internet is the information superhighway, blockchain is the Internet of value

Decentralized finance

Energy trading

Supply chain management

• Banking, insurance, 
decentralized exchange, …

• Nearly $30 billion locked 
inside

• 4.4 million wallets

• Direct peer-to-peer 
exchange of surplus 
electricity

• Reduce transaction costs

• Better visibility and 
traceability

• Improve financing, 
contracting, and 
international transactions
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Ethereum Decentralized Applications (DApps)

Key Features

q Event driven front-end code

q Smart contract execution powered by gas

q Transaction may fail if requirements are not met

Prevalence

q Nearly 50M Solidity smart contracts deployed 
on Ethereum

q 1.96x increase within two years

q 4,056 DApps, serving 113.86K daily active users

Events

$$ Gas

Transaction
revert
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Solidity Smart Contract Libraries

q Motivation: DApp’s complexity keeps growing
q Developers rely on third-party libraries – e.g., OpenZeppelin, Dappsys, 

ERC721-Ext, etc.

q API Documentation Errors
q 46% commits within the past 6 
months from OpenZeppelin
modified/fixed API documentations
q Domain-specific errors: event 
emissions, transaction 
requirements/reversions

qAccording to Kondo et al. (2020)
q 36.3% of the verified contracts uses 
code from OpenZeppelin
q ERC-20 and SafeMath are among the 
most frequently used APIs



On-chain-off-chain synchronization bug 
(Zhang et al., FSE’21)

Example: ECR-721 Contract Extensions

DocCon Detected API Doc Errors

q The OfferWithdrawn event emission is 
undocumented

q The event is also transitively emitted by function 
_beforeTokenTransfer

…

Developers’ Fixes
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We helped save some gas!



1. Introduction

2. Existing approaches

3. DocCon
• Code fact extraction
• Doc fact extraction
• Inconsistency queries

4. Evaluation

5. Summary
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Outline
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Limitations of the Existing Solutions

q No existing techniques for Solidity smart contracts yet

q Solutions for other languages (e.g., Java) do not fit
q Grammatical errors

q Incorrect code names

q Parameter properties: nullness, type, range limitation

q Different features matter in Solidity DApp documentations
q Events: emissions
qTransactions: requirements, reversions, …
q Language-Specific Elements: contracts, modifiers, events, addresses, …

/* If button is less 
than zero or greater 
than the number of 
button masks reserved 
for buttons */

if (button <= 0 || button > BUTTON 
DOWN MASK.length) { 

… 
}



Smart Contract 
Solidity Code

Smart Contract API 
Documentation

Code Facts Document FactsFact Query Engine

API Documentation 
Errors

Extracting Code Facts Extracting Document FactsError Detector

Code Fact Extractor Document Fact Extractor
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Overview of DocCon

1 2

3
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Differential Factbase

Wu, Zhu & Li (FSE 2020)



qTraverse Solidity ASTs to extract code names & relations
q Build ASTs from source code

q Code entity names: contracts, functions, events, etc.

q Code entity relations: calls, event emissions, transaction reversions, etc. 
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Step 1: Code Facts Extraction 

q HasFn("VestingWallet", "release")

q HasParam("VestingWallet", "release", "token")

q Emit("VestingWallet", "release", "ERC20Released", "true")

q Call("VestingWallet", "release", ["IERC20(token)",

"beneficiary()", "releasable"], "SafeERC20",

"safeTransfer", ["token", "to", "value"])
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Fact Schema – A Partial List

Predicates Descriptions

Override(ca:Ct, fa:Fn, cb:Ct, fb:Fn) Function cb.fb overrides ca.fa

HasFn(c:Ct, f:Fn) Contract c has a function f 

FnHasMod(c:Ct, f:Fn, m:Mod) Function c.f has a modifier m

Require(c:Ct, f:Fn, e:Expr) c.f requires condition e to be true 

Revert(c:Ct, f:Fn, e:Expr) c.f reverts under condition e

Emit(c:Ct, f:Fn, ev:Event, e:Expr) c.f emits event ev under condition e

… …

q Same schema is used for both the code and doc facts
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Step 2: Doc Facts Extraction 

q Use custom document templates
q Each template is a rule for extracting a fact from a sentence

qWe designed 37 templates based on our observation of Solidity library documentations

qA partial list of document templates

Document Templates Facts

<In c.f: "Requirements: - ′va′ must be 
strictly less than ′vb′">

Require(c, f, va < vb)

<In c.f: "Reverts with ... if ′va′ is at 
least ′vb′ ">

Revert(c, f, va >= vb)

<In c.f: "Emits an {e} event"> Emit(c, f, e, "true")

Emit("VestingWallet", "release", 
"TokensReleased", "true")
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Step 3: Error Detection through Factbase Queries 

Emit(..., OfferWithdrawn)
HasParam(..., to)

⇠: Code Facts
Require(..., _minted(tokenId))
HasParam(..., recipient)

⇡: Doc Facts

Level-1 Error: {G | G 2 ⇡ ^ G 8 ⇠}
Level-2 Error: {G | G 2 ⇠^G 8 ⇡^G.name 2 {Emit,Revert,Require}}
Level-3 Error: {G | G 2 ⇠^G 8 ⇡^G.name 8 {Emit,Revert,Require}}

Require(..., _minted(tokenId)) in ⇡ but not in ⇠
HasParam(..., recipient) in ⇡ but not in ⇠
Emit(..., OfferWithdrawn) in ⇠ but not in ⇡
HasParam(..., to) in ⇠ but not in ⇡

L1

L2
L3

Incorrectness:
External incompleteness:
Internal incompleteness:



Inconsistency Queries: Inferring Additional Facts

qFacts about one function also apply to another 
function, if there are sentences such as "@dev 
see …" in documentation
qE.g., function ca.fa reverts under condition e if its 

documentation contains ”See cb.fb" and cb.fb
reverts under e.

qRevert(ca, fa, e) <- SeeFn(ca, fa, cb, fb), 
Revert(cb, fb, e).

qFacts propagate through the call chain
qRevert(ca, caller, e) <- Revert(cb, callee, 
e), Call(ca, caller, cb, callee).
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Examples

Wrong Event Names (L1)

qThe ERC20Released event is incorrectly 
documented as TokensReleased

Wrong Transaction Requirements (L1)

qThe transaction requirement of tokenId
is spurious 
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More Examples

Missing Events (L2)

q The Deposited event emission is 
undocumented

q Transitively affect another function

Missing Transaction Reversions (L2)

q The transaction reversions are 
undocumented



q RQ1: How precise is DocCon in detecting errors in Solidity smart 
contract API documentations?

q RQ2: How relevant are the smart contract API documentation 
errors detected by DocCon? 

q RQ3: What are the categories of the smart contract API 
documentation errors detected by DocCon?
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Evaluation: Research Questions 



qThree popular Solidity smart contract libraries
q OpenZeppelin

q Dappsys

q ERC721 Contract Extensions

q >18K stars in total on GitHub

19

Evaluation: Subjects 
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RQ1: DocCon’s Precision

Library #Detected Precision

Level-1 Level-2 Level-3 Level-1 Level-2

OpenZeppelin 49 567 3741 78% 72%

Dappsys 4 141 448 50% 53%

ERC721 Contract Extensions 3 79 377 100% 73%

Overall 56 787 4566 76% 66%

Answer to RQ1

DocCon detected 56 level-1 and 787
level-2 API documentation errors in all 
the three libraries, with the level-1 and 
level-2 precision of 76% and 66%, 
respectively.

Precision: Manual Inspection

q Level-1: Inspected all

q Level-2: Inspected 449 errors

q Level-3: Did not inspect



q Reported 40 errors to developers
q Developers confirmed 29 (72.5%)

q Developers fixed 22 (55%)

q All our bug reports are publicly 
available: https://sites.google.com/v
iew/doccon-tool

q Developer reacted positively
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RQ2: DocCon’s Practical Relevance

“Thank you for pointing that out. We 
definitely need more consistency or at least 
clearer guidelines on how we approach that 
matter.” [1]

“You’re welcome to submit pull requests as 
well next time.” [2]

Answer to RQ2
DocCon’s detection results are useful to developers in 
practice

[1] [2] https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3374

https://sites.google.com/view/doccon-tool
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3374
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RQ3: Categorization of Smart Contract API 
Documentation Errors

Error Categories

q Event Emission

q Transaction Requirement/Reversion

q Element Containment

q Element Reference

Answer to RQ3

DocCon detected four categories of errors, 
two of which have no counterparts in 
general-purpose programming languages
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Contribution and Summary

DocCon

Novel fact-based technique for 
detecting errors in Solidity 
smart contract API 
documentations

Evaluation

Reported 40 errors to library 
developers, who confirmed 29 
and fixed 22 

Publicly Available

https://sites.google.com/view/doccon-tool

Problem Highlight

We show that many errors 
exist in smart contract library 
API documentations

yi_li@ntu.edu.sg

@liyistc

https://sites.google.com/view/doccon-tool

