
Identifying Solidity Smart Contract
API Documentation Errors

Chenguang Zhu1, Ye Liu2, Xiuheng Wu2, Yi Li2

1. The University of Texas at Austin

2. Nanyang Technological University, Singapore

ASE 2022

Oct 13, 2022

2

Decentralized Applications and Smart Contracts

Apps

(Centralized)

DApps

• Immutable
• Self-enforcing
• Affordable and accessible

• Relying on intermediaries
• Non-transparent
• Slow and costly

3

Why is DApp a big thing?

Internet is the information superhighway, blockchain is the Internet of value

Decentralized finance

Energy trading

Supply chain management

• Banking, insurance,
decentralized exchange, …

• Nearly $30 billion locked
inside

• 4.4 million wallets

• Direct peer-to-peer
exchange of surplus
electricity

• Reduce transaction costs

• Better visibility and
traceability

• Improve financing,
contracting, and
international transactions

4

Ethereum Decentralized Applications (DApps)

Key Features

q Event driven front-end code

q Smart contract execution powered by gas

q Transaction may fail if requirements are not met

Prevalence

q Nearly 50M Solidity smart contracts deployed
on Ethereum

q 1.96x increase within two years

q 4,056 DApps, serving 113.86K daily active users

Events

$$ Gas

Transaction
revert

5

Solidity Smart Contract Libraries

q Motivation: DApp’s complexity keeps growing
q Developers rely on third-party libraries – e.g., OpenZeppelin, Dappsys,

ERC721-Ext, etc.

q API Documentation Errors
q 46% commits within the past 6
months from OpenZeppelin
modified/fixed API documentations
q Domain-specific errors: event
emissions, transaction
requirements/reversions

qAccording to Kondo et al. (2020)
q 36.3% of the verified contracts uses
code from OpenZeppelin
q ERC-20 and SafeMath are among the
most frequently used APIs

On-chain-off-chain synchronization bug
(Zhang et al., FSE’21)

Example: ECR-721 Contract Extensions

DocCon Detected API Doc Errors

q The OfferWithdrawn event emission is
undocumented

q The event is also transitively emitted by function
_beforeTokenTransfer

…

Developers’ Fixes

6

We helped save some gas!

1. Introduction

2. Existing approaches

3. DocCon
• Code fact extraction
• Doc fact extraction
• Inconsistency queries

4. Evaluation

5. Summary

7

Outline

8

Limitations of the Existing Solutions

q No existing techniques for Solidity smart contracts yet

q Solutions for other languages (e.g., Java) do not fit
q Grammatical errors

q Incorrect code names

q Parameter properties: nullness, type, range limitation

q Different features matter in Solidity DApp documentations
q Events: emissions
qTransactions: requirements, reversions, …
q Language-Specific Elements: contracts, modifiers, events, addresses, …

/* If button is less
than zero or greater
than the number of
button masks reserved
for buttons */

if (button <= 0 || button > BUTTON
DOWN MASK.length) {

…
}

Smart Contract
Solidity Code

Smart Contract API
Documentation

Code Facts Document FactsFact Query Engine

API Documentation
Errors

Extracting Code Facts Extracting Document FactsError Detector

Code Fact Extractor Document Fact Extractor

9

Overview of DocCon

1 2

3

10

Differential Factbase

Wu, Zhu & Li (FSE 2020)

qTraverse Solidity ASTs to extract code names & relations
q Build ASTs from source code

q Code entity names: contracts, functions, events, etc.

q Code entity relations: calls, event emissions, transaction reversions, etc.

11

Step 1: Code Facts Extraction

q HasFn("VestingWallet", "release")

q HasParam("VestingWallet", "release", "token")

q Emit("VestingWallet", "release", "ERC20Released", "true")

q Call("VestingWallet", "release", ["IERC20(token)",

"beneficiary()", "releasable"], "SafeERC20",

"safeTransfer", ["token", "to", "value"])

12

Fact Schema – A Partial List

Predicates Descriptions

Override(ca:Ct, fa:Fn, cb:Ct, fb:Fn) Function cb.fb overrides ca.fa

HasFn(c:Ct, f:Fn) Contract c has a function f

FnHasMod(c:Ct, f:Fn, m:Mod) Function c.f has a modifier m

Require(c:Ct, f:Fn, e:Expr) c.f requires condition e to be true

Revert(c:Ct, f:Fn, e:Expr) c.f reverts under condition e

Emit(c:Ct, f:Fn, ev:Event, e:Expr) c.f emits event ev under condition e

… …

q Same schema is used for both the code and doc facts

13

Step 2: Doc Facts Extraction

q Use custom document templates
q Each template is a rule for extracting a fact from a sentence

qWe designed 37 templates based on our observation of Solidity library documentations

qA partial list of document templates

Document Templates Facts

<In c.f: "Requirements: - ′va′ must be
strictly less than ′vb′">

Require(c, f, va < vb)

<In c.f: "Reverts with ... if ′va′ is at
least ′vb′ ">

Revert(c, f, va >= vb)

<In c.f: "Emits an {e} event"> Emit(c, f, e, "true")

Emit("VestingWallet", "release",
"TokensReleased", "true")

14

Step 3: Error Detection through Factbase Queries

Emit(..., OfferWithdrawn)
HasParam(..., to)

⇠: Code Facts
Require(..., _minted(tokenId))
HasParam(..., recipient)

⇡: Doc Facts

Level-1 Error: {G | G 2 ⇡ ^ G 8 ⇠}
Level-2 Error: {G | G 2 ⇠^G 8 ⇡^G.name 2 {Emit,Revert,Require}}
Level-3 Error: {G | G 2 ⇠^G 8 ⇡^G.name 8 {Emit,Revert,Require}}

Require(..., _minted(tokenId)) in ⇡ but not in ⇠
HasParam(..., recipient) in ⇡ but not in ⇠
Emit(..., OfferWithdrawn) in ⇠ but not in ⇡
HasParam(..., to) in ⇠ but not in ⇡

L1

L2
L3

Incorrectness:
External incompleteness:
Internal incompleteness:

Inconsistency Queries: Inferring Additional Facts

qFacts about one function also apply to another
function, if there are sentences such as "@dev
see …" in documentation
qE.g., function ca.fa reverts under condition e if its

documentation contains ”See cb.fb" and cb.fb
reverts under e.

qRevert(ca, fa, e) <- SeeFn(ca, fa, cb, fb),
Revert(cb, fb, e).

qFacts propagate through the call chain
qRevert(ca, caller, e) <- Revert(cb, callee,
e), Call(ca, caller, cb, callee).

16

Examples

Wrong Event Names (L1)

qThe ERC20Released event is incorrectly
documented as TokensReleased

Wrong Transaction Requirements (L1)

qThe transaction requirement of tokenId
is spurious

17

More Examples

Missing Events (L2)

q The Deposited event emission is
undocumented

q Transitively affect another function

Missing Transaction Reversions (L2)

q The transaction reversions are
undocumented

q RQ1: How precise is DocCon in detecting errors in Solidity smart
contract API documentations?

q RQ2: How relevant are the smart contract API documentation
errors detected by DocCon?

q RQ3: What are the categories of the smart contract API
documentation errors detected by DocCon?

18

Evaluation: Research Questions

qThree popular Solidity smart contract libraries
q OpenZeppelin

q Dappsys

q ERC721 Contract Extensions

q >18K stars in total on GitHub

19

Evaluation: Subjects

20

RQ1: DocCon’s Precision

Library #Detected Precision

Level-1 Level-2 Level-3 Level-1 Level-2

OpenZeppelin 49 567 3741 78% 72%

Dappsys 4 141 448 50% 53%

ERC721 Contract Extensions 3 79 377 100% 73%

Overall 56 787 4566 76% 66%

Answer to RQ1

DocCon detected 56 level-1 and 787
level-2 API documentation errors in all
the three libraries, with the level-1 and
level-2 precision of 76% and 66%,
respectively.

Precision: Manual Inspection

q Level-1: Inspected all

q Level-2: Inspected 449 errors

q Level-3: Did not inspect

q Reported 40 errors to developers
q Developers confirmed 29 (72.5%)

q Developers fixed 22 (55%)

q All our bug reports are publicly
available: https://sites.google.com/v
iew/doccon-tool

q Developer reacted positively

21

RQ2: DocCon’s Practical Relevance

“Thank you for pointing that out. We
definitely need more consistency or at least
clearer guidelines on how we approach that
matter.” [1]

“You’re welcome to submit pull requests as
well next time.” [2]

Answer to RQ2
DocCon’s detection results are useful to developers in
practice

[1] [2] https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3374

https://sites.google.com/view/doccon-tool
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3374

22

RQ3: Categorization of Smart Contract API
Documentation Errors

Error Categories

q Event Emission

q Transaction Requirement/Reversion

q Element Containment

q Element Reference

Answer to RQ3

DocCon detected four categories of errors,
two of which have no counterparts in
general-purpose programming languages

23

Contribution and Summary

DocCon

Novel fact-based technique for
detecting errors in Solidity
smart contract API
documentations

Evaluation

Reported 40 errors to library
developers, who confirmed 29
and fixed 22

Publicly Available

https://sites.google.com/view/doccon-tool

Problem Highlight

We show that many errors
exist in smart contract library
API documentations

yi_li@ntu.edu.sg

@liyistc

https://sites.google.com/view/doccon-tool

