ogoge] NANYANG

TECHNOLOGICAL

&

The University of Texas at Austin

w‘.} UNIVERSITY
& SINGAPORE

ldentifying Solidity Smart Contract
APl Documentation Errors

Chenguang Zhu!, Ye Liu?, Xiuheng Wu?, Yi Li?
|. The University of Texas at Austin

2. Nanyang Technological University, Singapore

ASE 2022
Oct 13,2022

Decentralized Applications and Smart Contracts

Traditional Contracts

— — e I
D D : Smart Contracts

Apps

000
0ooc

(Centralized)

DApps (R —
- | Relying on intermediaries * |mmutable
D D * Non-transparent * Self-enforcing
_ — e Slow and costly * Affordable and accessible)

2

Why is DApp a big thing?

* Direct peer-to-peer
exchange of surplus
electricity

* Reduce transaction costs

Decentralized finance Supply chain management

* Better visibility and
traceability

* Improve financing,
contracting, and
international transactions

* Banking, insurance,
decentralized exchange, ...

* Nearly $30 billion locked
inside

* 4.4 million wallets

Energy trading

Internet is the information superhighway, blockchain is the Internet of value

Ethereum Decentralized Applications (DApps)

?

__I¥

Browser

& I— —

Internet [T TT T TT T mmmssmssssssmmmmmmmes
. Web Server

Front-end

JavaScript, HTML, CSS

Transaction
revert

Prevalence

U Nearly 50M Solidity smart contracts deployed

on Ethereum
U 1.96x increase within two years

1 4,056 DApps, serving | 13.86K daily active users

~N

_
-

_

Key Features

d Event driven front-end code
[Smart contract execution powered by gas

d Transaction may fail if requirements are not met

/
N

J

Solidity Smart Contract Libraries

J Motivation: DApp’s complexity keeps growing

) Developers rely on third-party libraries — e.g., OpenZeppelin, Dappsys,

ERC721-Ext, etc.
J According to Kondo et al. (2020)

] 36.3% of the verified contracts uses

code from OpenZeppelin
J ERC-20 and SafeMath are among the
most frequently used APIs

y 4 OpenZeppelin

€

~

APl Documentation Errors
) 46% commits within the past 6
months from OpenZeppelin
modified/fixed APl documentations
J Domain-specific errors: event

emissions, transaction

requirements/reversions

/

5

Example: ECR-721 Contract Extensions

ERC721

1}/// @dev Revoke an active offerj@=====—=—————————-- ————a
2 function _cancelOffer(uint256 tokenId) private {)
3 delete _offers[tokenId]; ,/
4 emit OfferWithdrawn(tokenId); "
5) -7
61/// @dev Clear active offers on transfersf*==="=="=""77%== ———
S —————— \
7 function _beforeTokenTransfer(address, address, uint256 tokenId) I'
< internal virtual override(ERC721) { /

8 if (_offers[tokenId].price > 9) {
9 _cancelOffer(tokenld);

10 }

11}

Developers’ Fixes

rE—_—__—__.__—_—_—_—_——_—_—_—_—_——_——_——_——_——_———————————— =1
- /// @dev Revoke an active offer
/// @dev Revoke an active offer.
11/ Emits an {OfferWithdrawn} event.

-

+ o+

/// @dev Clear active offers on transfers

I /// @dev Clear active offers on transfers.

+ o+

11/ Emits an {OfferWithdrawn} event if an active offer exists.

I
1
I
I
I
I
I
J
I
I
L

(DocCon Detected API Doc Errors

U The OfferWithdrawn event emission is

undocumented

U The event is also transitively emitted by function

_

_beforeTokenTransfer

\

v

‘EJ We helped save some gas!

jwahdatehagh commented on Aug 3

Sales and Transfers shouldn't result in OfferWithdrawn events as mentioned in #13.

That can be inferred off chain and we can save the bit of gas.

Outline

|. Introduction

2. Existing approaches
3. DocCon

e Code fact extraction
 Doc fact extraction
* Inconsistency queries

4. Evaluation

5. Summary

MAINDISHES

BEVERAGES

@ DESSERTS

Limitations of the Existing Solutions

- . . R -
J No existing techniques for Solidity smart contracts yet éh button is less
an zero or Jgreater

than the number of

[Solutions for other languages (e.g., Java) do not fit Futton masks reserved
for buttons */

J Grammatical errors
if (button <=0 || button > BUTTON

) Incorrect code names
DOWN MASK_length) {

J Parameter properties: nullness, type, range limitation

-

~N

(
[Different features matter in Solidity DApp documentations

J Events: emissions
) Transactions: requirements, reversions, ...
J Language-Specific Elements: contracts, modifiers, events, addresses, ... y

_

Overview of DocCon

Smart Contract
Solidity Code

! Smart Contract API
i Documentation

Extracting Code Facts Extracting Document Facts

I R—
ECode Facts ' Document Facg

. _Code Fact Extractor | [apj Documentatioﬁn _Document Fact Extractor |
Errors

Differential Factbase

data sources

D Source Code Static (Dynamic)
ocumen- | (multiple | Coverage
tation versions) Information

i-______\ ____________________ ¥

I Atomic Code

i Changes Coverage
|

]FJ, C/C++

| T]
- Java | exlractors
| | |
}_ ————

- more |
| -

Factbase (Storage

Analysis Program

Wu, Zhu & Li (FSE 2020)

Analysis Results «—— Query Engine | Grok

Souffié | --- J|

Step |: Code Facts Extraction

 Traverse Solidity ASTs to extract code names & relations
J Build ASTs from source code
) Code entity names: contracts, functions, events, etc.

J Code entity relations: calls, event emissions, transaction reversions, etc.

O HasFn("VestingWallet", "release")

/*x ... Emits a {TokensReleased} event. x/

function release(address token) public virtual { 0 HasParam("VestingWallet", "release", "token")
uint256 releasable = vestedAmount(token,

— uint64(block.timestamp)) - released(token); ¢ O Emit("VestingWallet", "release", "ERC20Released", "true")
_erc20Released[token] += releasable; N . W I .,
emit ERC20Released(token, releasable): O Call("VestingWallet", "release", ['IERC20(token)",

SafeERC20.safeTransfer(IERC20(token), beneficiary(),
— releasable);

} "safeTransfer", ["token", "to", "value"])

"beneficiary()", "releasable"], "SafeERC20",

Fact Schema — A Partial List

Override(ca:Ct, fa:Fn, cb:Ct, fb:Fn) Function cb.fb overrides ca.fa

HasFn(c:Ct, f:Fn) Contract c has a function f
FnHasMod(c:Ct, f:Fn, m:Mod) Function c.f has a modifier m
Require(c:Ct, f:Fn, e:Expr) c.f requires condition e to be true
Revert(c:Ct, f:Fn, e:Expr) c.f reverts under condition e
Emit(c:Ct, f:Fn, ev:Event, e:Expr) c.f emits event ev under condition e

] Same schema is used for both the code and doc facts

Step 2: Doc Facts Extraction

] Use custom document templates
J Each template is a rule for extracting a fact from a sentence

J We designed 37 templates based on our observation of Solidity library documentations

J A partial list of document templates

Document Templates Facts

<In c.f: "Requirements: - 'va’ must be Require(c, f, va < vb)
strictly less than 'vb™'>

<In c.f: "Reverts with ... if 'va’is at Revert(c, f, va >= vb)
least 'vb’ ">
<In c.f: "Emits an {e} event"> Emit(c, f, e, "true")

1 /*%x ... Emits a {TokensReleased} event. x/ Emit("VestingWallet", "release”,
2 function release(address token) public virtual { "TokensReleased", "true")

Step 3: Error Detection through Factbase Queries

Incorrectness:
External incompleteness:

Internal incompleteness:

C: Code Facts D: Doc Facts
Emit(..., OfferWithdrawn) Require(..., _minted(tokenId))
HasParam(..., to) HasParam(..., recipient)

y

A

\ 4

Level-1 Error: {x | x e D Ax ¢ C}
Level-2 Error: {x | x € CAx ¢ D Ax.name € {Emit, Revert, Require} }
Level-3 Error: {x | x € CAx ¢ D Ax.name ¢ {Emit, Revert, Require}}

[1 { Require(..., _minted(tokenId)) in D butnotin C
HasParam(..., recipient) in D but notin C
[2 Emit(..., OfferWithdrawn) in C but notin D

L3 HasParam(..., to) in C butnotin D

Inconsistency Queries: Inferring Additional Facts

JFacts about one function also apply to another
function, if there are sentences such as "@dev
see ..." in documentation

JE.g., function ca. fa reverts under condition e if its
documentation contains ”See cb.fb" and cb.fb
reverts under e.

JRevert(ca, fa, e) <- SeeFn(ca, fa, cb, fb),
Revert(cb, fb, e).

JFacts propagate through the call chain

(Revert(ca, caller, e) <- Revert(cb, callee,
e), Call(ca, caller, cb, callee).

/**
* @dev See {IERC721-approve}.
*/

Examples

[3v]

(= NS

/*x ... Emits a!{TokensReleased!Ievent. x/

function release(address token) public virtual
uint256 releasable = vestedAmount(token,

— uint64(block.timestamp)) - released(token);
_erc20Released[token] += releasable;
emit token, releasable);
SafeERC20.satelransfer(IERC20(token), beneficiary(),

— releasable);

}

-

D=T - - ¥ T S T B -

/*%x ... Requirements:

* -| "tokenld Jmust be already minted.

* - receiver cannot be the zero address.

* - ‘feeNumerator® cannot be greater than the fee denominator. =*/

function _setTokenRoyalty(uint256 tokenld, address receiver,

uint96 feeNumerator) internal virtual {
require(feeNumerator<=_feeDenominator(), "ERC2981:

-}

DY

require(receiver!=address(@),"ERC2981: Invalid parameters");

_

Wrong Event Names (L1))

(1 The ERC20Released event is incorrectly
documented as TokensReleased

J

-

_

Wrong Transaction Requirements (L1))

(The transaction requirement of tokenld

is spurious

J

More Examples

-

Missing Events (L2)

U The Deposited event emission is

undocumented

1 Transitively affect another function

1 /** @dev Stores the sent amount as credit to be withdrawn.
2 % @param payee The destination address of the funds. */
3 function deposit(address payee) public payable virtual onlyOwner {
4 uint256 amount = msg.value;
5 _deposi pavee] += amount;
6 emitpayee, amount); 7}
7
8 /** @dev Called by the payer to store the sent amount as credit
— to be pulled
9 * @param dest The destination address of the funds.
10 * @param amount The amount to transfer. */
11 function _asyncTransfer(address dest, uint256 amount) internal
— virtua
12 _escroalue: amount}(dest); }
1 /** @dev Returns the item at the beginning of the queue. */

20 N v U e W

10
11
12

function front(Bytes32Deque storage deque) internal view returns
— (bytes32 value) {

if (empty(deque))lrevert Empty();l
int128 frontIndex = deque._begin;

return deque._data[frontIndex]; }

/*% @dev Returns the item at the end of the queue. */

function back(Bytes32Deque storage deque) internal view returns

— (bytes32 value) {
if (empty(deque))lrevert Empty();l
int128 backlIndex;
unchecked { backIndex = deque._end - 1;}
return deque._data[backIndex]; }

_

~N

J

-

Missing Transaction Reversions (L2)

L The transaction reversions are

undocumented

-

~N

Evaluation: Research Questions

J RQI: How precise is DocCon in detecting errors in Solidity smart
contract APl documentations!?

J RQ2: How relevant are the smart contract APl documentation
errors detected by DocCon!

J RQ3:What are the categories of the smart contract API
documentation errors detected by DocCon!?

Evaluation: Subjects

[Three popular Solidity smart contract libraries
J OpenZeppelin
) Dappsys
J ERC721 Contract Extensions

] >18K stars in total on GitHub

y 4 OpenZeppelin

ERC721

Contract Extensions

RQI: DocCon’s Precision

Tbrary e Precsion

Level-1 Level-2 Level-3 Level-1 Level-2
OpenZeppelin 49 567 3741 78% 72%
Dappsys 4 141 448 50% 53%
ERC721 Contract Extensions 79 377 100% 73%
Overall 56 787 4566 76% 66%
/ Precision: Manual Inspection \ / Answer to RQ1 \

 Level-1: Inspected all
 Level-2: Inspected 449 errors

[Level-3: Did not inspect

_ J

_

DocCon detected 56 level-1 and 787
level-2 API documentation errors in all
the three libraries, with the level-1 and

respectively.

level-2 precision of 76% and 66%,

20

RQ2: DocCon’s Practical Relevance

] Reported 40 errors to developers [l Developer reacted positively

) Developers confirmed 29 (72.5%)
“Thank you for pointing that out. We

) Developers fixed 22 (55%) definitely need more consistency or at least
clearer guidelines on how we approach that

] All our bug reports are publicly matter.” [1]

available:
“You’re welcome to submit pull requests as
well next time.” [2]

-
Answer to RQ2

DocCon’s detection results are useful to developers in

practice y

[1]12]

21

https://sites.google.com/view/doccon-tool
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3374

RQ3: Categorization of Smart Contract API
Documentation Errors

/ Error Categories \

J Event Emission EC: 20 %)
(46.5%) Level-1 H
U Transaction Requirement/Reversion ER: 3 (7.0%) %errors _— TR 17
O Element Containment EE: 3 (7.0%) Y (39.5%)
\EI Element Reference /
. PaaEEER N
4 Answer to RQ3) IR: 191 A 1D
(64.3%) /17 G
DocCon detected four categories of errors, | Level-2
two of which have no counterparts in “EL errors EE: 106
\ .
general-purpose programming languages (Y
ANan (35.7%)

_ J

Contribution and Summary

4 Problem Highlight)

We show that many errors
exist in smart contract library
APl documentations

DA yi_li@ntu.edu.sg

£ @liyistc

-

J
Evaluation \

Reported 40 errors to library
developers, who confirmed 29
and fixed 22

J

DocCon

Novel fact-based technique for
detecting errors in Solidity
smart contract API

documentations

~

_
-

Publicly Available

RO

/
~

23

https://sites.google.com/view/doccon-tool

