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Two Problems

Model Checking

Given a system model M, an initial state s0, and a formula ϕ which
specifies the property, Model Checking can be viewed as M, s0 |= ϕ.

Planning

Classical Planning is defined as a three-tuple (S0,G ,A) where S0

represents the initial state, G represents the set of goal states and A
represents a finite set of deterministic actions.

Intuition: construct a safety property G¬ϕ that requires the formula ϕ
never to hold, such that the model checker is able to search for a
counterexample that leads to a state where ϕ holds.
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Motivation

Research shows the performance of model checkers are comparable to
that of the state-of-the-art planners.

Domain specific control knowledge can be exploited to improve the
performance of model checkers on planning problems.

Model checkers are good at handling large state spaces, which
possibly implies better performance on real world problems compared
with planners.

Model checking can be used as underlying planning service for upper
layer applications.
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Tools

PAT

CSP# is an expressive model description language combining
high-level compositional operators with program-like codes.

Self-defined C# Libraries provide unlimited potentials on modelling
complex data operations and data types.

Flexible and modularized framework allows users to build customized
model checking modules for specific domains.

NuSMV

NuSMV is an extension of the symbolic model checker SMV.

Models are described as transition relations between current and next
state pairs: next(identifier):=expression.

Specifications can be expressed in both CTL and LTL.

Array indices in NuSMV must be statically evaluated to integer
constants.
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Tools cont’d

Spin

Spin models are described in a modelling language called Promela
that loosely follows CSP and hence models in CSP# can be
converted with minimal efforts.

The counterexamples produced by Spin are not guaranteed to be in
the minimum size.

SatPlan

SatPlan is an award winning planner for optimal deterministic
planning created by Prof. Henry Kautz, Dr. Jörg Hoffmann and
Shane Neph.

SatPlan encodes the planning problem into a SAT formulation with
length k and check the satisfiability using a SAT solver.

The optimality of plan is restricted to the solution length or
make-span.
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Tools cont’d

Metric-FF

Metric-FF is a domain independent planning system developed by Dr.
Jörg Hoffmann.

Numerical plan metrics and optimization criteria are allowed.

Two parameters h and g can be customized to assign priorities to
either speed or quality.

Standard weighted A* search is used to speed up searching, thus the
optimality is not guaranteed.
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The bridge crossing problem

The bridge has been damaged and can only carry
two soldiers at a time.

The soldiers only have a single torch which is
needed when crossing the bridge.

The time needed for each soldier are 5, 10, 20, 25
minutes respectively.

The goal is to find a solution to get all the soldiers
to cross the bridge to safety in 60 minutes or less.
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The bridge crossing problem cont’d

The bridge crossing problem is a plan existence problem with a constraint
on the total time.

We extend the original problem to versions with up to 9 soldiers:

Soldier 1 2 3 4 5 6 7 8 9

Time Cost 5 10 20 25 30 45 60 80 100

Table: Time cost of each soldier
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Experimental Results

# Time* Metric-FF PAT NuSMV Spin

WITH DFS INVAR CTL LTL
4 60 0.00 0.05 0.04 0.0 0.1 0.1 0.02
5 90 0.00 0.19 0.04 0.1 0.9 0.4 0.02
6 130 0.03 1.12 0.22 0.2 14.4 2.5 0.06
7 175 0.16 6.18 0.25 0.5 330.8 71.3 0.11
8 235 0.94 33.19 10.26 m m m 10.50
9 300 5.30 145.51 16.40 m m m 19.50

Table: Experimental results for the bridge crossing problem
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Experimental Results cont’d

Figure: Execution time comparison of PAT, Spin and Metric-FF on the bridge
crossing problem
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The sliding game problem

The sliding game problem is the largest puzzle
of its type that can be completely solved.

The game is simple, and yet obeys a
combinatorially large problem space of 9!/2
states.

The N × N extension of the problem is
NP-hard.
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The sliding game problem cont’d

(a) Hard1 (b) Hard2 (c) Most1

(d) Most2 (e) Rand1 (f) Rand2

Figure: Initial configurations of the sliding game problem instances
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Experimental Results

Problem L* H SatPlan PAT NuSMV Spin

BFS INVAR CTL LTL suboptimal
Hard1 31 21 444.42 9.60 45.2 > 600 > 600 2.25
Hard2 31 21 438.34 10.05 41.6 > 600 > 600 2.06
Most1 30 20 152.76 9.84 42.8 > 600 > 600 1.99
Most2 30 20 152.24 10.01 42.0 > 600 > 600 2.47
Rand1 24 12 33.70 7.00 30.0 > 600 > 600 2.63
Rand2 20 16 2.89 3.54 16.8 505.6 > 600 2.13

Table: Experimental results for the sliding game problem
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Experimental Results cont’d

Figure: Execution time comparison of PAT, NuSMV and SatPlan on the sliding
game problem, shown on a logarithm scale
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Comparison of Tools

Tools Numerical bridge crossing sliding game

Metrics Existence Optimality Optimality
PAT

√ √ √ √

NuSMV
√ √

×
√

Spin
√ √

× ×
SatPlan × × ×

√

Metric-FF
√ √

× ×

The counterexamples provided by Spin are not guaranteed the
shortest.

The plans found by Metric-FF are not guaranteed optimal.
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From PDDL to CSP#

Assumptions

The PDDL domain descriptions are written in the subset of PDDL 2.1
that includes STRIPS-like operators with literals having typed
arguments and numerical plan metrics.

The naming and structures of the original PDDL model should be
preserved.

The translation process from
PDDL to CSP# can be
divided into 5 steps:

1 Typing

2 Predicates

3 Initial State

4 Actions

5 Goal
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Typing

PDDL
Domain File:

(:types place locatable - object

soldier torch - locatable)

Problem File:

(:objects

soldier0 soldier1 soldier2 soldier3 - soldier

torch - locatable

north south - place)

CSP#

enum {north,south};

enum {soldier0,soldier1,soldier2,soldier3,torch};
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Predicates

PDDL
(:predicates (at ?x - locatable ?y - place))

CSP#

C# Library:

1 void setPredicate(predicateName, x, y, value);

2 bool tryPredicate(predicateName, x, y);

3 int snapShot();

CSP# File:

#import "Predicate";

var<Predicate> pre = new Predicate();

enum {At};
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Initial State

PDDL
(:init (at soldier0 south) (at soldier1 south)

(at soldier2 south) (at soldier3 south)

(at torch south)

(= (time soldier0) 5) (= (time soldier1) 10)

(= (time soldier2) 20) (= (time soldier3) 25)

(= (time-cost) 0))

CSP#

var time[N] = {5,10,20,25};

var time_cost = 0;

ini() = initial{pre.setPredicate(At,soldier0,south,true);

pre.setPredicate(At,soldier1,south,true);

pre.setPredicate(At,soldier2,south,true);

pre.setPredicate(At,soldier3,south,true);

pre.setPredicate(At,torch,south,true)} -> Skip;

Li Yi (National University of Singapore) B.Comp. Dissertation April 19, 2011 22 / 45



Initial State

PDDL
(:init (at soldier0 south) (at soldier1 south)

(at soldier2 south) (at soldier3 south)

(at torch south)

(= (time soldier0) 5) (= (time soldier1) 10)

(= (time soldier2) 20) (= (time soldier3) 25)

(= (time-cost) 0))

CSP#

var time[N] = {5,10,20,25};

var time_cost = 0;

ini() = initial{pre.setPredicate(At,soldier0,south,true);

pre.setPredicate(At,soldier1,south,true);

pre.setPredicate(At,soldier2,south,true);

pre.setPredicate(At,soldier3,south,true);

pre.setPredicate(At,torch,south,true)} -> Skip;

Li Yi (National University of Singapore) B.Comp. Dissertation April 19, 2011 22 / 45



Actions

PDDL
(:action StoN

:parameters (?x - soldier ?y - soldier)

:precondition (and (at ?x south) (at ?y south) (at torch south))

:effect (and

(not (at ?x south)) (not (at ?y south))

(not (at torch south))

(at ?x north) (at ?y north) (at torch north)

(when (>= (time ?x) (time ?y))

(increase (time-cost) (time ?x)))

(when (< (time ?x) (time ?y))

(increase (time-cost) (time ?y)))))
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Actions cont’d

CSP#

StoN(x,y) = [x!=y

&& pre.tryPredicate(At,x,south)

&& pre.tryPredicate(At,y,south)

&& pre.tryPredicate(At,torch,south)]

s.x.y{pre.setPredicate(At,x,north,true);

pre.setPredicate(At,x,south,false);

pre.setPredicate(At,y,north,true);

pre.setPredicate(At,y,south,false);

pre.setPredicate(At,torch,north,true);

pre.setPredicate(At,torch,south,false);

if(time[x]>time[y])

{time_cost=time_cost+time[x];}

else

{time_cost=time_cost+time[y];}

} -> Trans();
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Actions cont’d

CSP#

Trans() = tau{snap = pre.snapshot()} ->

([] z:{0..3}@([] y:{0..3}@StoN(z,y)))

[]([] x:{0..3}@NtoS(x));
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Goal

PDDL
(:goal (and

(at soldier0 north) (at soldier1 north)

(at soldier2 north) (at soldier3 north)))

(:metric minimize (time-cost)))

CSP#

#define goal (pre.tryPredicate(At,soldier0,north)

&& pre.tryPredicate(At,soldier1,north)

&& pre.tryPredicate(At,soldier2,north)

&& pre.tryPredicate(At,soldier3,north));

#assert Plan reaches goal with min(time_cost);
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Case Study: Transport4You

“Transport4You” is a project submission for the 33rd

International Conference on Software Engineering
(ICSE) - Student Contest on Software Engineering
(SCORE).

It is a specifically designed municipal transportation
management solution which is able to simplify the fare
collection process and provide customized services to
each subscriber.

The project is selected as one of the finalists (5 out of
94 submissions) which are going to be presented for
the final round of the competition at ICSE 2011 in
Hawaii.
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Route Planning Module

Figure: Simulator architecture diagram
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Why Using PAT?

The searching algorithms of PAT is highly efficient and ready to be
used. It also saves the time of implementing a different planning
algorithm for every new problem.

CSP# is a highly expressive language for modelling various kind of
systems. PAT is ready to solve all kinds of planning problems.

PAT is constructed in a modularized fashion. Modules for specific
purposes can be built to give better support for the domains that are
considered.
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Route Planning Demonstration
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Definition

A Route Planning task is defined by a 5-tuple (S,B,t,c,L) with the
following components:

S is a finite, non-empty set of bus stops. Terminal stops include start
terminal sstart ⊆ S , and end terminal send ⊆ S , where sstart ∩ send = ∅.
B is a finite set of bus lines, and for every bus line bi ∈ B, bi : S → S
is a partial function. bi (s) is the next stop taking bus i from stop s.
∀s ∈ sstart∀b ∈ B, s ∈ dom(b) −→ b−1(s) = α.
∀s ∈ send∀b ∈ B, s ∈ dom(b) −→ b(s) = β.
∀b ∈ B, b−1(α) = α ∧ b(β) = β.

t : S → BS is a function where BS ⊆ B. t(s) is the set of available
bus lines at stop s, i.e., BS = {bi ∈ B | s ∈ dom(bi )}.
c : S → S is a partial function. c(s) is the stop one can get to by
crossing the road at stop s.

L is a unary predicate on S. L(s) is true when the current location of
user is at stop s.
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Definition cont’d

Given initial location s0 and destination sg , a Route Planning domain
maps a Route Planning task to a classical planning problem with
close-world assumption as follows:

States: Each state is represented as a literal s ∈ S , where L(s) holds.

Initial State: s0

Goal States: sg

Actions: 1. (TakeBus(bi , s),
PRECOND: bi ∈ t(s),
EFFECT: ¬L(s) ∧ L(bi (s)))
2. (Cross(s),
PRECOND: s ∈ dom(c),
EFFECT: ¬L(s) ∧ L(c(s)))
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Basic Model

Environment Variables

enum{TerminalA, Stop5, Stop7, Stop9 ... Stop26, Stop11, Stop35,
Stop34};

var sLine1 = [TerminalA, Stop5, Stop7, Stop9, Stop58, Stop31, Stop33,
Stop53, Stop57, TerminalC];
var<BusLine> Line1 = new BusLine(sLine1,1);
var sLine2 = [TerminalC, Stop56, Stop52, Stop32, Stop30, Stop59,
Stop10, Stop8, Stop6, TerminalA];
var<BusLine> Line2 = new BusLine(sLine2,2);
...
var sLine14 = [TerminalC, Stop34, Stop32, Stop30, Stop16, TerminalB];
var<BusLine> Line14 = new BusLine(sLine14,14);
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Basic Model cont’d

Initial State

var currentStop = Stop5;
var B0 = [-2];
var<BusLine> currentBus = new BusLine(B0,-1);

Transition Functions

takeBus()=case{
currentStop==TerminalA:BusLine1[]BusLine3[]BusLine5[]BusLine7
currentStop==Stop5:BusLine1[]BusLine5
currentStop==Stop7:BusLine1[]BusLine5
...
currentStop==Stop11:BusLine12
currentStop==Stop35:BusLine13
currentStop==Stop34:BusLine14
};
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Basic Model cont’d

Transition Functions

BusLine1=
TakeBus.1{currentStop=Line1.NextStop(currentStop);
currentBus=Line1;} ->plan;
...
BusLine14=
TakeBus.14{currentStop=Line14.NextStop(currentStop);
currentBus=Line14;} ->plan;

crossRoad()=case{
currentStop==Stop5: crosscurrentStop=Stop6 ->plan
currentStop==Stop7: crosscurrentStop=Stop8 ->plan
...
currentStop==Stop35: crosscurrentStop=Stop34 ->plan
currentStop==Stop34: crosscurrentStop=Stop35 ->plan
};
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Basic Model cont’d

Transition Functions

plan=takeBus()[]crossRoad();

Goal States

#define goal currentStop==Stop53;
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Cost Function Approach

Modified Transition Functions

takeBus()=tau{cost = cost + 10}->case{...
crossRoad()=tau{cost = cost + 2}->case{...
BusLine1=tau{if (!currentBus.isEqual(LineX )){cost = cost + 5}}
->TakeBus.1...

New assertion: #assert plan reaches goal with min(cost);

cost = 10× ]takeBus + 5× ]crossRoad + 2× ]busChange

Original problem can be solved by a simple breadth-first search.

To find the goal state with minimum cost, the whole state space has
to be searched?
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Cost Function Approach cont’d

Algorithm 1 newBFSVerification()

initialize queue: working ;
current ← InitialStep; τ ←∞;
repeat

value ← EvaluateExpression(current);
if current.ImplyCondition() then

if value < τ then
τ ← value;

end if
end if
if value > τ then

continue;
end if
for all step ∈ current.MakeOneMove() do

working .Enque(step);
end for

until working .Count() 6 0
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Search Space Pruning

Figure: An example bus line configuration

Figure: A solution produced by the basic model
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Search Space Pruning cont’d

Given the current bus line is bk , an action TakeBus(bi , sj) is not
redundant if one of the followings holds:

1 bi = bk

2 bi ∈ t(sj) ∧ bk ∈ t(sj) ∧ bi (sj) 6= bk(sj) ∧ ∃m ∈ N1,
bi (sj)

−m 6= bk(sj)
−m

3 1 and 2 do not hold and bi (sj) 6= bk(sj) ∧ b−1
i (sj) 6= b−1

k (sj)

Figure: Special pattern of two overlapping bus lines
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Search Space Pruning cont’d

(a) Same Previous Stop

(b) Same Next Stop

Figure: Redundant bus changes
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Performance Comparison

State Transition Time Memory Cost Cost’ Length Length’

Basic 1029.46 1070.93 0.0448 11119.91 58.23 1254 5.51 0
Cost 1125.31 1169.82 0.0483 11281.58 56.02 0 5.59 247
Prune 158.48 185.77 0.0179 9197.95 56.79 379 5.51 0

Table: Comparison results of three route planning models

Values are average among the 3660 (61× 60) test cases.

The length of the shortest solution was get by solving the shortest
path problem using Dijkstra algorithm.

The search space pruning model performs the best in terms of
execution time and memory space.

The cost function model guarantees the lowest total cost.
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Future Work

Extend the comparisons to a larger range of model checking as well as
planning tools to get a more general view of the subject.

By fine tuning the way of modelling or exploiting domain specific
knowledge, some models can be further optimized.

An automated translator for the translation from PDDL to CSP# can
be implemented.

The applications of PAT as planning service should be extended to a
larger range on real problems in various fields.
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The End
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