
Yi Li
Nanyang Technological University

Online
May 13, 2021

Smart Contract Security and Fairness
A Tale of Two Contending Parties



3

Why is blockchain such a big thing?

Internet is the information 
superhighway

Blockchain is the Internet of 
value (trust)



Smart Contracts

Image curtsey: www.flaticon.com 

Users Smart Contract Execution Blockchain

User-defined computer programs running on top of blockchain

4



• Managing exchange of digital assets

• Applications across many different 
sectors

• Ethereum in 2020:
• 825,895 smart contracts created in 

February
• 2,855 DApps
• 31.59K active users / Day
• 1.143M ($670M) transactions / Day

Smart Contracts

McKinsey&Company

Sources:
Ethereum Statistics: https://ycharts.com/indicators/reports/ethereum_statistics
Consensys: https://consensys.net/blog/news/ethereum-by-the-numbers-may-2020/

5

https://ycharts.com/indicators/reports/ethereum_statistics
https://consensys.net/blog/news/ethereum-by-the-numbers-may-2020/


6

In code we trust? No!

Blockchain

Smart
Contracts

Decentralization

Anonymity

Immutability

Transparency
Level of trust

Problem: establishing trust between parties with conflicting interests 

Contract owner Contract user



Story 1
Who moved my Ether?

7



2019/01

2018/06

2018/05

2018/04

2018/04
2018/02

2018/01

2017/12

2017/06

2016/08
2016/01

2015/01

2014/03

2014/02

51% attack on Ethereum Classic, $200K of Loss 

Bithumb Hacks with $31 Million Dollars Stolen

EDU, BAIC Smart Contracts Bugs

BEC, SMT Smart Contracts Bugs

Myetherwallet Suffer from DNS Hijacking
BitGrail Hacks with Stolen NanoTokens of 170 Million

Dollars Coincheck Hacks with 530 Million Dollars Stolen

Nicehash Hacks with 4700 BTC Missing with 62 Million Dollars

Bithumb Hacks with 1 Billion KoreanYuan Loss and 30 Thousand User

Info. Leaked Bitfinex Hacks with 120,000 BTC Stolen of 75 Million Dollars
Cryptsy Hacks with 13,000 BTC and 300,000 LTC

Stolen Bitstamp Hacks with 19,000 BTC Stolen

Poloniex Hacks with 12.3% BTC Lost

Mt.Gox Hacks with Followed Bankruptcy

Blockchain/Smart Contracts Security Incidents

8



9

Example: the DAO attack

DAO Contract

mapping( address => u i n t )  ba lances;

f u n c t i o n  wi thdraw( )  {
u i n t  amount = ba lances[msg.sender ] ;
msg. s e n d e r . c a l l . v a l u e ( a m o u n t ) ( ) ;
ba lances[msg.sender ]  = 0 ;

}

Attacker’s Contract

f u n c t i o n  moveBalance( ) {
dao.withdraw( ) ;

}
. . .

w i t hd raw( )

10 ether

wi thd raw( )

........r

f unc t i on ( ) payable{
dao.withdraw( ) ;

}

Calls the default
"fallback” function



10

Example: the DAO attack

Image source: https://quantstamp.com/blog/what-is-a-re-entrancy-attack

Attacker’s contract

Initiate withdrawal

fallback function

overridden by the attacker
triggers another withdraw

withdraw

DAO contract

withdraw

Ether transfer

send Ether, pass along gas

update balance

internal state update

Re-entrancy attack with repeated Ether withdrawal

-10 ETH



11

Moral of the story

Contract Developer Attacker

≠

Contract developers’ expectations ≠ how the contract code actually works



Story 2
All I want is my fair share

12



An Auction Smart Contract 

l Open to all bidders
l highestBidder wins the bid
l Latecomer wins when bidding $1 more than the highestBid

13



An Auction Smart Contract 

3

4

6

C wins and pays $6

Bidder Valuation Bid Price
A 3 3
B 4 4
C 6 6

l Open to all bidders
l highestBidder wins the bid
l Latecomer wins when bidding $1 more than the highestBid

14



Threats to “Smart” Auction Fairness

3

4

Untruthful behaviors

Collusion among 
bidders

• C wins but pays only $5
• Auctioneer loses

• B and C win and only 
pay $4 in total

• Both auctioneer and 
other bidders lose

15



A “Smart” Ponzi Scheme

-$100

+$50

+$25

+$25

16



17

Moral of the story

Benign
Participants

Malicious
contract owner (or 
other participants)

Contract participants’ interpretation ≠ how the game rules are actually written

≠



Fairness

≠

Security

≠

18

Smart Contracts: Security vs Fairness

Developer Attacker
Benign

ParticipantsMalicious
participants



19

Establishing Trust between Contending Parties

Security  
Checker

Fairness  
Checker

To establish trust

Contract Implementation

? ?



• Check for pre-defined (high-profile) attack patterns
• Reentrancy

• The DAO attack (3.5 million Ether stolen, worth $45 million USD)

• Exception Disorder
• Gasless Send
• Integer Overflow/underflow

• The Proof of Weak Hand (PoWH) coin
• 866 Ether stolen

• …

• Easy to miss real issues or find a lot of spurious bugs

20

A Typical Security Checker Security  
Checker



msg.sender.call.value(amount)(); 

21

Pattern-Based Security Checkers

DAO Contract

mapping(address => uint)  balances;

function withdraw(uint amount) {
require(balances[msg.sender] ≥ amount);

}

Attacker Contract

function attackDao(){ 
dao.withdraw(...);

}
. . .

10 ether

withdraw()

function() payable{
dao.withdraw(...);

}
balances[msg.sender] -= amount;

Non-exploitable reentrancy – withdraw cannot go beyond authorization

withdraw
check -> update -> send
√

attackDAO
withdraw

check ->
⤬

Throw exception

........ revert

Security  
Checker



• Key insights:
• Vulnerabilities happen due to the mismatch between the externally visible 

balance and the internal bookkeeping

• This applies to many types of vulnerabilities

• Two invariants to hold for all “reasonable” contracts:
• Balance invariant (intra-contract)
• Transaction invariant (inter-contract)

• These include but are not limited to all ERC-20 contracts

22

Security checker that knows you well Security  
Checker

Contract 
developers’ 

belief!



• Balance Invariant. For every contract <a, bal, P, M>,  
∑!∈#𝑀(𝑝) − 𝑏𝑎𝑙 = 𝐾, where K is a constant 

• Example in contracts Attacker - DAO
• before: (10 + 15) – 25 = 0
• after: (10 + 20) – 30 = 0 

Balance Invariant

DAO ContractAttacker Contract

mapping(address => uint)    M

M[‘lucy’] = 10

......

function deposit(){ 
dao.deposit.value(...)();

}

M[‘mike’] = 15M[‘mike’] = 20

balance   bal = 25balance   bal = 30balance   bal = 30balance bal = 25

Deposit - 5 ether

5

5

23

Security  
Checker



balance   bal = 30

Transaction Invariant

DAO ContractAttacker Contract

mapping(address => uint)    M

M[‘lucy’] = 10

......
function withdraw(){ 

dao.withdraw(...);
}

M[‘mike’] = 15M[‘mike’] = 10

balance   bal = 25balance   bal = 35 balance bal = 20

Withdraw - 5 ether

5

5

• Transaction Invariant. For every outgoing transaction <a, r, v>,  
∆ 𝑀 𝑟 + ∆ 𝑟. 𝑏𝑎𝑙 = 0, where ∆ 𝑥 = 𝑝𝑜𝑠𝑡 𝑥 − 𝑝𝑟𝑒(𝑥) and pre(x)
and post(x)  denote value of a variable x before and after a transaction

• Example in contract Attacker – DAO
• ∆ 𝐷𝐴𝑂.𝑀 = −5 and   ∆ 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟. 𝑏𝑎𝑙 = +5

24

Security  
Checker



Invariant Violation in DAO Attack

DAO Contract

mapping(address => uint)  balances;

function withdraw(uint amount) {

msg.sender.call.value(amount)();

}

Attacker Contract

function attackDao(){ 
dao.withdraw(5);

}
. . .

withdraw
check -> send
bal=25 ∑𝑴=25

........

function() payable{
dao.withdraw(5);

}

The balance invariant is violated!

balances[msg.sender] -= amount;

require(balances[msg.sender] ≥ amount);

Authorized amount

attackDAO

"fallback” function

withdraw
check -> send
bal=20 ∑𝑴=25

withdraw
check -> send
bal=0 ∑𝑴=+∞

25

Security  
Checker



ContraMaster: Oracle-Supported Fuzzing

26

Security  
Checker

[ICSE’18]
[TDSC’20]



• Discovered 3 types of new attacks (not reported by other tools)
• Incorrect access control

• E.g., CreditDepositBank

• Honey trap
• E.g., ETH_VAULT and WhaleGiveaway
• Violating transaction invariants

• Deposit less and withdraw more
• E.g., LZLCoin
• Violating balance invariants

• More details can be found at: https://sites.google.com/view/contramaster

New Attack Surfaces

27

Security  
Checker

https://sites.google.com/view/contramaster


There is no objective standard of “fairness”. “Fairness” is 
strictly in the eye of the beholder... To a producer or seller, a 
“fair” price is a high price. To the buyer or consumer, a “fair” 
price is a low price. How is the conflict to be adjudicated?

– Milton Friedman, Newsweek, July 4, 1977. 

28

Fairness  
Checker



• Challenges in defining fairness
• Fairness can be subjective
• Fairness ≠ Equality ≠ Equity (in contrast to the “unbiased” definition)

• Consider smart contract as a game form
• A number of players: 𝑁 = {1, 2, … , 𝑛}
• An action set for each: 𝛩#, 𝛩$, … , 𝛩%
• An outcome function:

• 𝑑: 𝛩 ⟶ 𝑂 (allocation function)
• 𝑡: 𝛩 ⟶ ℝ# (transfer function)

• Preference (utility) function (individual-specific)
• 𝑢&: 𝑂 ⟶ ℝ

Define Fairness Properties

29

Fairness  
Checker

Contract 
participant’s 
expectation!



Smart Contract Fairness Verification

Automated  
Checker

Smart Contract

Other considered fairness 
properties:
• 2-collusion freeness
• Optimality
• Efficiency
• …

E.g., TruthfulnessFocusing on generic
fairness properties, i.e., 
independent from 
individual preferences

30

Fairness  
Checker



Mapping Smart Contracts into Mechanism 
Models 

1. Allocation function

Who is the winner?

2. Transfer (pricing) function

How much should the winner pay?

What defines the mechanism outcome?

31

Fairness  
Checker



Mapping Smart Contracts into Mechanism 
Models

3-player mechanism model

CryptoRomeAuction := 𝑚𝑠𝑔𝑠𝑒𝑛𝑑𝑒𝑟!, 𝑚𝑠𝑔𝑣𝑎𝑙𝑢𝑒!, −

𝑚𝑠𝑔𝑠𝑒𝑛𝑑𝑒𝑟", 𝑚𝑠𝑔𝑣𝑎𝑙𝑢𝑒", −

𝑚𝑠𝑔𝑠𝑒𝑛𝑑𝑒𝑟#, 𝑚𝑠𝑔𝑣𝑎𝑙𝑢𝑒#, −

assume: (𝒏𝒐𝒕 (𝑚𝑠𝑔𝑠𝑒𝑛𝑑𝑒𝑟!< 𝑚𝑠𝑔𝑠𝑒𝑛𝑑𝑒𝑟! + 1)) 𝐚𝐧𝐝

(𝐧𝐨𝐭 (𝑚𝑠𝑔𝑠𝑒𝑛𝑑𝑒𝑟"< 𝑚𝑠𝑔𝑠𝑒𝑛𝑑𝑒𝑟" + 1))

allocate: 𝒂𝒓𝒈𝒎𝒂𝒙(𝑚𝑠𝑔𝑣𝑎𝑙𝑢𝑒!, 𝑚𝑠𝑔𝑣𝑎𝑙𝑢𝑒", 𝑚𝑠𝑔𝑣𝑎𝑙𝑢𝑒#)

price: 𝒎𝒂𝒙(𝑚𝑠𝑔𝑣𝑎𝑙𝑢𝑒!, 𝑚𝑠𝑔𝑣𝑎𝑙𝑢𝑒", 𝑚𝑠𝑔𝑣𝑎𝑙𝑢𝑒#)

Some contract annotation can be automated: e.g., ERC-1202 (voting), ERC-1815 (blind auction)

32

Synthesizing mechanism models with symbolic execution

Fairness  
Checker

[FSE’20] Ye Liu, Yi Li, Shang-Wei Lin, Rong Zhao



Fairness Proof: from k-player to n-player

K-players' 
Model

Check 
Property

Find 
Invariants

Counter 
Examples

unfair

unknown Fair

Smart 
Contract

verifiedunverified

Verifier

• ALLOCATE = argmax(BID) (TopBidder)
• PRICE = max(BID) (1st-Price)
• PRICE = max(BID\{BID[argmax[BID]}) (2nd-Price)

33

Fairness  
Checker



Story 3
When the boundary between security and fairness becomes blurry … 

34



DeFi is an ecosystem of financial applications that are built on 
blockchain using smart contracts

35

Decentralized Finance

Source: https://defipulse.com/

Source: https://thedefiant.io/defi-projects-map/



• Composability is one of the key features of DeFi applications

36

DeFi “Money Lego”



37

“Bounded Loss” Property Violation

“The loss of a liquidity provider is bounded by a 
certain value (20%) of the original deposit ”

Curve Pool

Сurve
Trader

Compound Pool

Impermanent Loss

Curve
Liquidity 
Provider

[DeFi’21] Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu



38

“Bounded Loss” Property Violation

“The loss of a liquidity provider is bounded by a 
certain value (20%) of the original deposit ”

Curve Pool

Compound Pool

Curve
Liquidity 
Provider Compound

Borrower

Overutilization

[DeFi’21] Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu



• Reality is often more complicated
• A contract behind one game may become a player of another
• A player may play multiple games simultaneously
• All contracts/games can potentially be hostile

• Sometimes, fairness is security
• There are “technical” security and “economical” security (Werner et al., 2021)

• “A DeFi protocol is technically secure if it is not possible for an attacker to obtain a risk-free profit”
• “A DeFi protocol is economically secure if the protocol aligns incentives among all interacting agents 

such that non-technical exploits are economically infeasible”

• So, how do we move forward?
• We don’t have an answer, yet …
• May draw some inspirations from the literature

39

Moral of the story



• Scalable and precise inter-
contract analysis

• Easier way to write good 
specifications

• Collaborative development of 
standards

• …

40

Some open challenges

SCPub dataset
[ACM CSUR’21]

Definitely more attention on fairness issues



41

Acknowledgements

Ye Liu Palina Tolmach Haijun Wang

Shang-Wei Lin Yang Liu



42

6

In code we trust? No!

Blockchain

Smart
Contracts

Decentralization

Anonymity

Immutability

Transparency
Level of trust

Problem: establishing trust between parties with conflicting interests 

Contract owner Contract user

Fairness

≠

Security

≠

Smart Contracts: Security vs Fairness

Developer Attacker

18

Malicious
participants

Benign
Participants

19

Establishing Trust between Contending Parties

Security  
Checker

Fairness  
Checker

To establish trust

Contract Implementation

? ?

• Reality is often more complicated
• A contract behind one game may become a player of another
• A player may play multiple games simultaneously
• All contracts/games can potentially be hostile

• Sometimes, fairness is security
• There are “technical” security and “economical” security (Werner et al., 2021)

• “A DeFi protocol is technically secure if it is not possible for an attacker to obtain a risk-free profit”
• “A DeFi protocol is economically secure if the protocol aligns incentives among all interacting agents 

such that non-technical exploits are economically infeasible”

• So, how do we move forward?
• We don’t have an answer, yet …
• May draw some inspirations from the literature

39

Moral of the story


