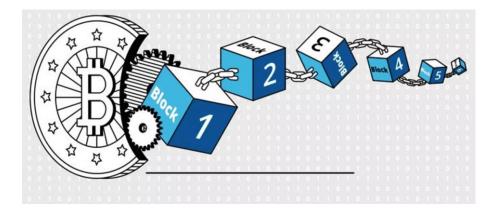


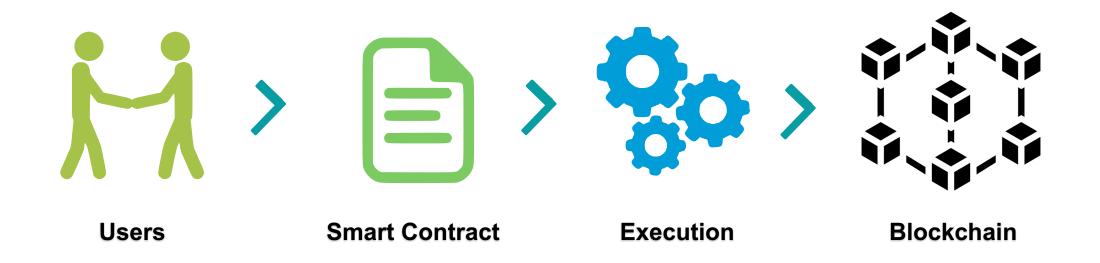
Smart Contract Security and Fairness A Tale of Two Contending Parties

Yi Li Nanyang Technological University

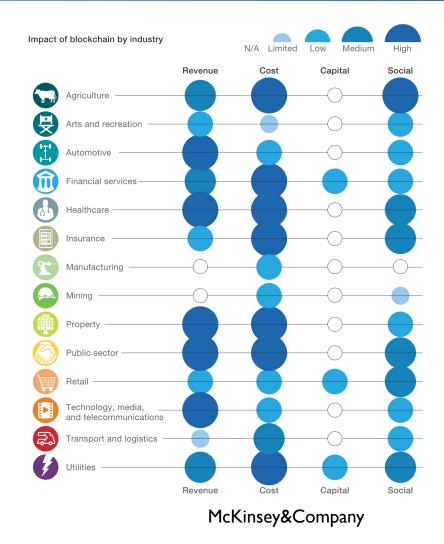

Online May 13, 2021

Why is blockchain such a big thing?

Internet is the information superhighway

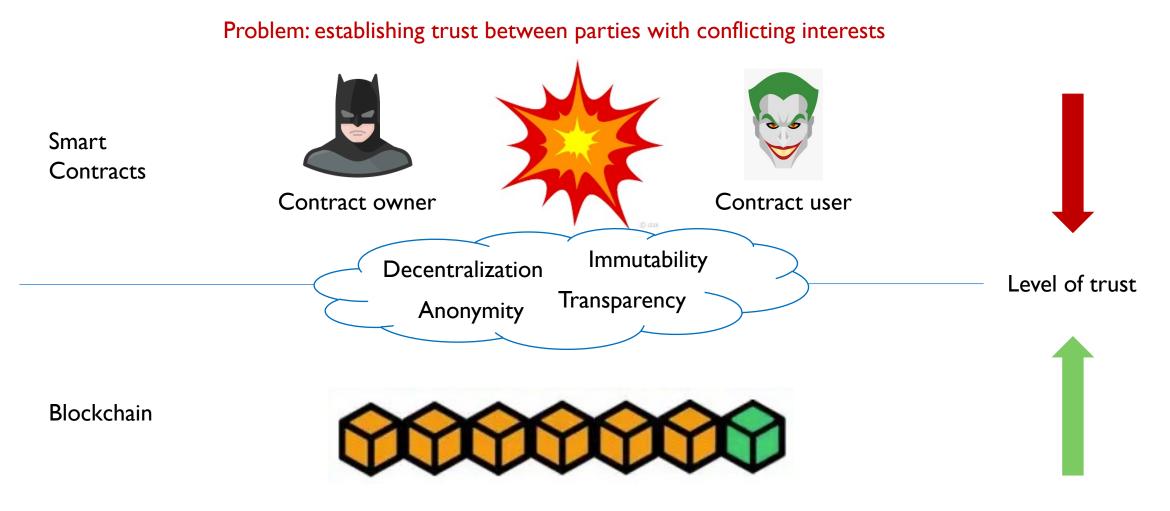


Blockchain is the Internet of value (trust)


Smart Contracts

User-defined computer programs running on top of blockchain

Smart Contracts

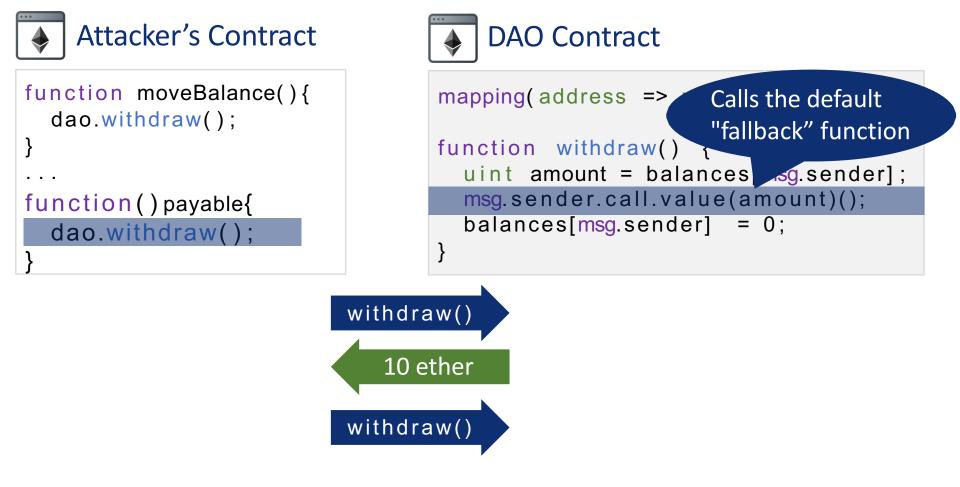

- Managing exchange of digital assets
- Applications across many different sectors
- Ethereum in 2020:
 - 825,895 smart contracts created in February
 - 2,855 DApps
 - 31.59K active users / Day
 - I.I43M (\$670M) transactions / Day

Sources:

Ethereum Statistics: <u>https://ycharts.com/indicators/reports/ethereum_statistics</u> Consensys: <u>https://consensys.net/blog/news/ethereum-by-the-numbers-may-2020/</u>

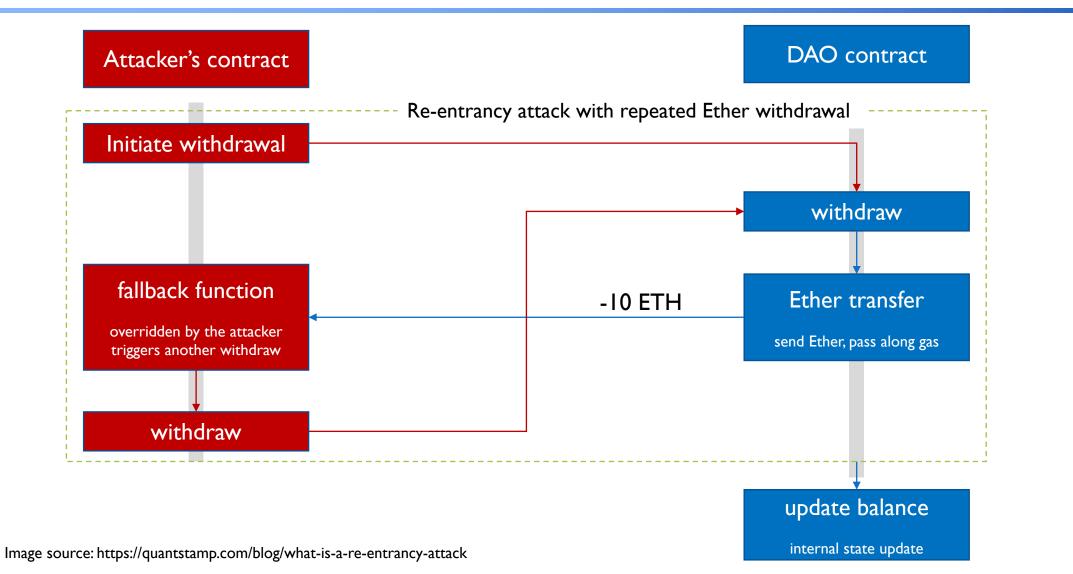
In code we trust? No!

Story I


Who moved my Ether?

Blockchain/Smart Contracts Security Incidents

2019/01	51% attack on Ethereum Classic, \$200K of Loss											
2018/06	Bithumb Hacks with \$31 Million Dollars Stolen	The DAO Attacked: Code Issue Leads to										
2018/05	EDU, BAIC Smart Contracts Bugs Jun 17, 2016 at 14:00 UTC by Michael del Castillo											
2018/04	BEC, SMT Smart Contracts Bugs	Ethereum • News • Ethereum										
2018/04	Myetherwallet Suffer from DNS Hijacking	ש f 8⁺ in 466 ŵ ⊾										
2018/02	BitGrail Hacks with Stolen Nano Tokens of 170 Milli	The DAO, the distributed autonomous organization that had collected over \$150m worth of the cryptocurren ether, has reportedly been hacked, sparking a broad market sell-off. A leaderless organization comprised of a series of smart contracts written on the ethereum codebase. The										
2018/01	Dollars Coincheck Hacks with 530 Million Dollars S											
2017/12	Nicehash Hacks with 4700 BTC Missing with 62 Million Dollars											
2017/06	Bithumb Hacks with I Billion Korean Yuan Loss and 3	0 Thousand User										
2016/08	Info. Leaked Bitfinex Hacks with 120,000 BTC Stolen of 75 Million Dollars											
2016/01	Cryptsy Hacks with 13,000 BTC and 300,000 LTC											
2015/01	Stolen Bitstamp Hacks with 19,000 BTC Stolen											
2014/03	Poloniex Hacks with 12.3% BTC Lost											
2014/02	Mt.Gox Hacks with Followed Bankruptcy	8										


 \sim

Example: the DAO attack

.....

Example: the DAO attack

Moral of the story

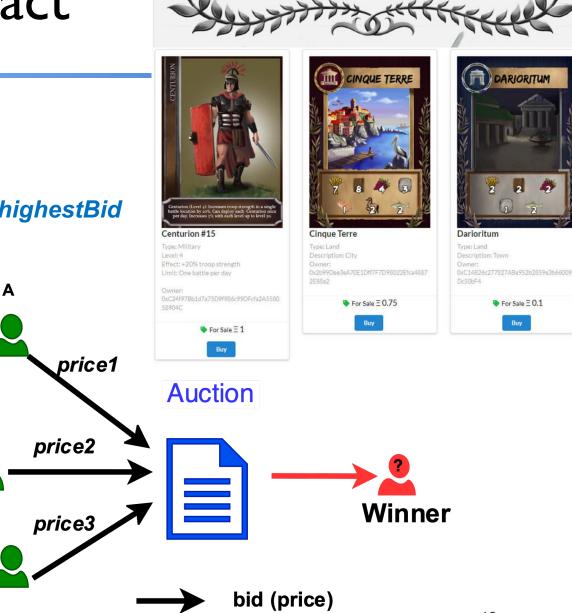
Contract developers' expectations \neq how the contract code actually works

¥

Contract Developer

Story 2

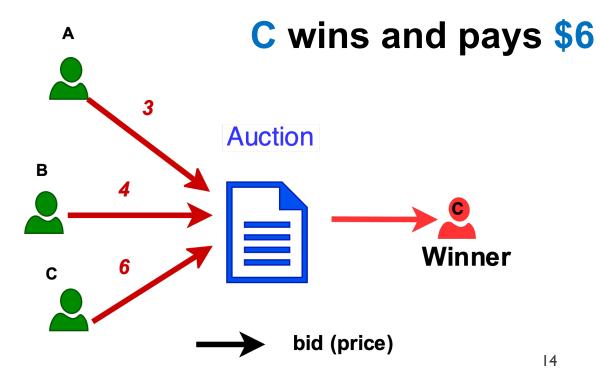
All I want is my fair share


An Auction Smart Contract

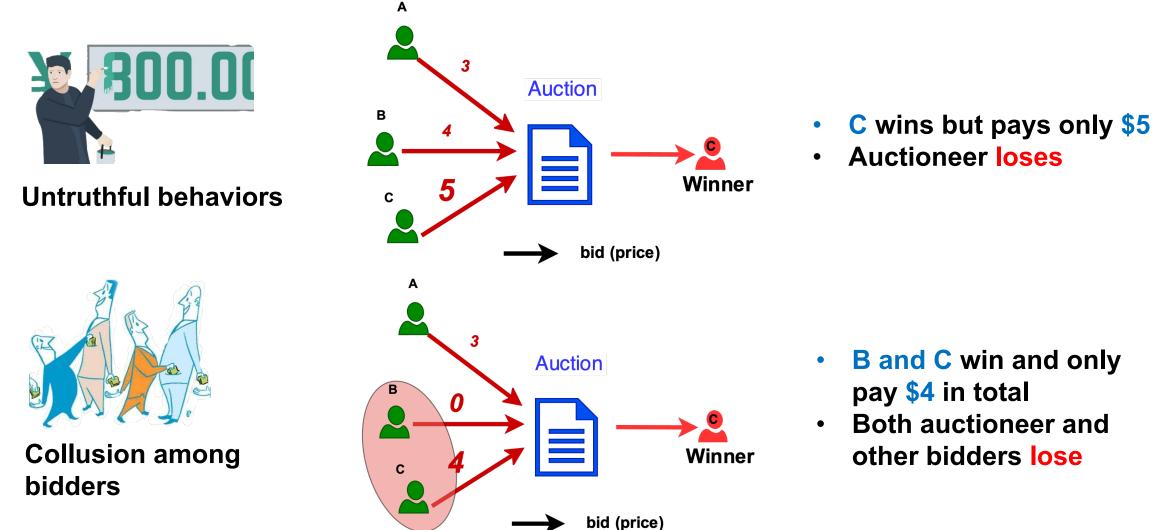
- Open to all bidders
- highestBidder wins the bid
- Latecomer wins when bidding \$1 more than the *highestBid*

B

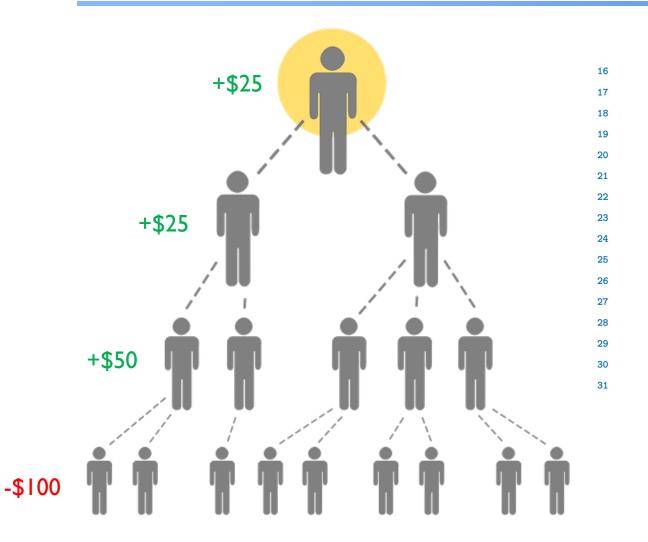
```
contract CryptoRomeAuction {
    uint256 public highestBid = 0;
    address payable public highestBidder;
    mapping(address=>uint) refunds;
    function bid() public payable{
        uint duration = 1;
        if (msg.value < (highestBid + duration)){
            revert();
        }
        if (highestBid != 0) {
            refunds[highestBidder] += highestBid;
        }
        highestBidder = msg.sender;
        highestBid = msg.value;
    }
}</pre>
```



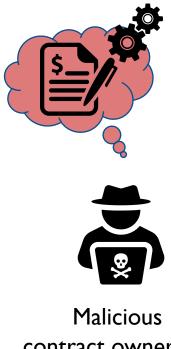
An Auction Smart Contract


- Open to all bidders
- highestBidder wins the bid
- Latecomer wins when bidding \$1 more than the *highestBid*

```
contract CryptoRomeAuction {
   uint256 public highestBid = 0;
   address payable public highestBidder;
   mapping(address=>uint) refunds;
   function bid() public payable{
     uint duration = 1;
     if (msg.value < (highestBid + duration)){
        revert();
     }
     if (highestBid != 0) {
        refunds[highestBidder] += highestBid;
     }
     highestBidder = msg.sender;
     highestBid = msg.value;
   }
}</pre>
```


Bidder	Valuation	Bid Price
А	3	3
В	4	4
С	6	6

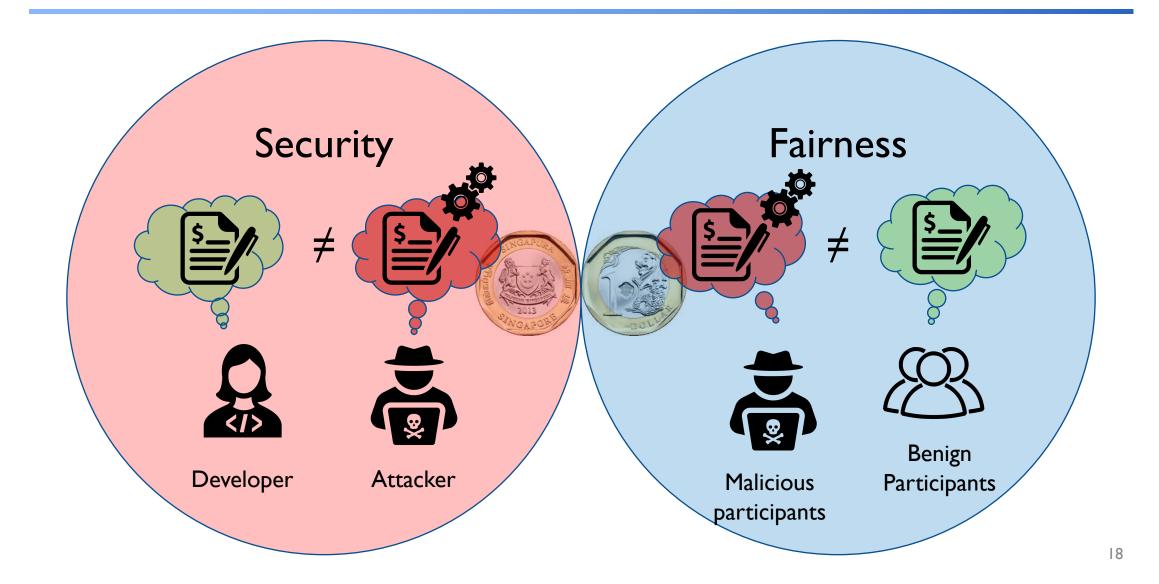
Threats to "Smart" Auction Fairness


A "Smart" Ponzi Scheme

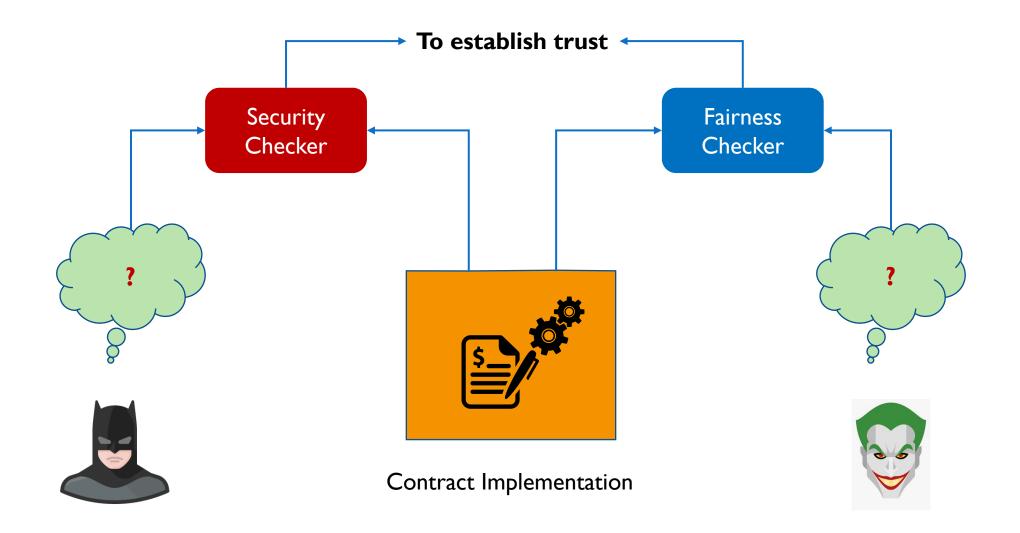
Moral of the story

Contract participants' interpretation \neq how the game rules are actually written

¥



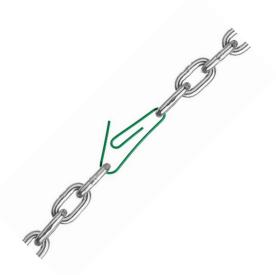
contract owner (or other participants)



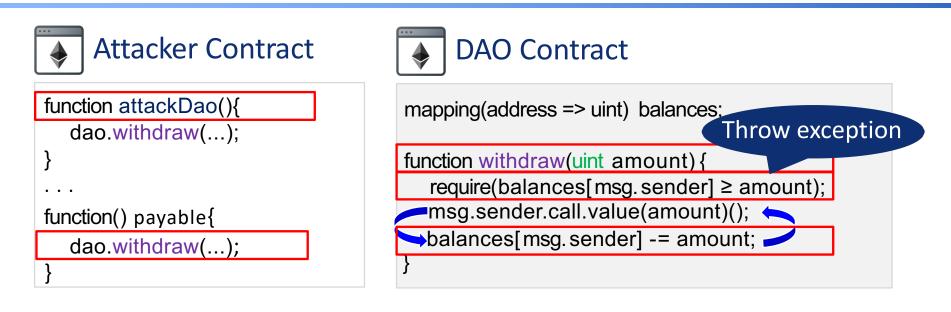
Benign Participants

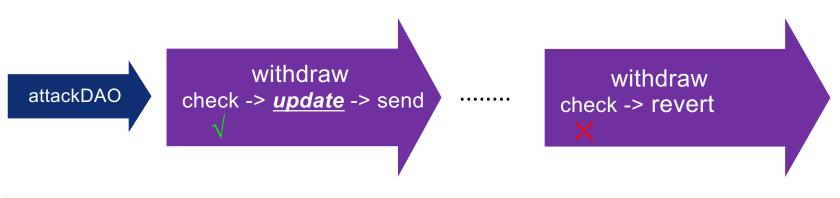
Smart Contracts: Security vs Fairness

Establishing Trust between Contending Parties


A Typical Security Checker

Security Checker


- Check for pre-defined (high-profile) attack patterns
 - Reentrancy
 - The DAO attack (3.5 million Ether stolen, worth \$45 million USD)
 - Exception Disorder
 - Gasless Send

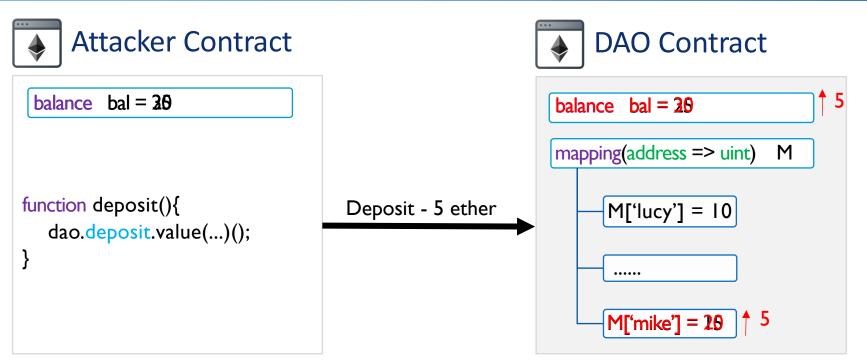

•

- Integer Overflow/underflow
 - The Proof of Weak Hand (PoWH) coin
 - 866 Ether stolen
- Easy to miss real issues or find a lot of spurious bugs

Pattern-Based Security Checkers

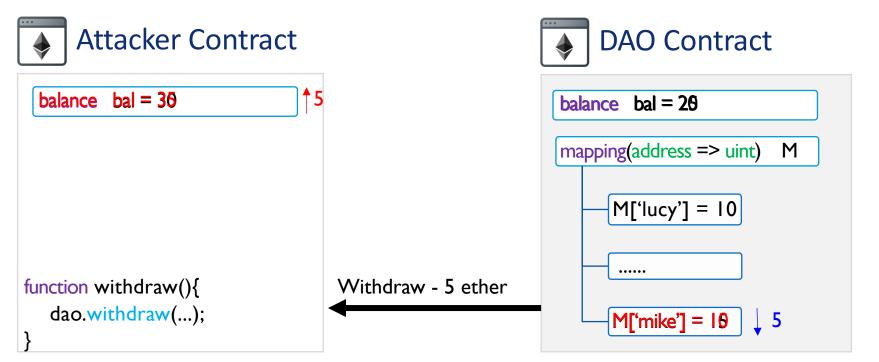
Non-exploitable reentrancy – withdraw cannot go beyond authorization

Security checker that knows you well

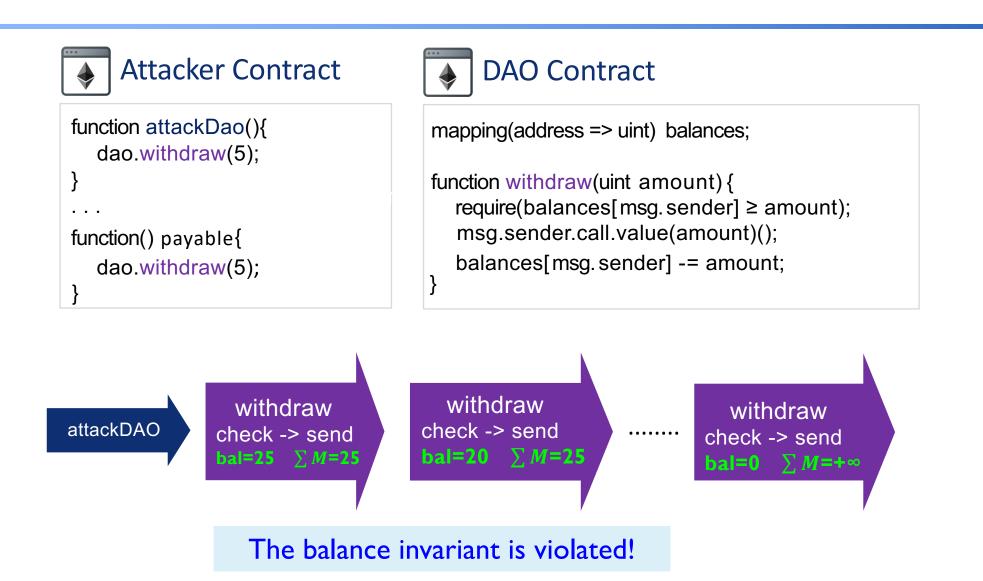

- Key insights:
 - Vulnerabilities happen due to the mismatch between the externally visible balance and the internal bookkeeping
 - This applies to many types of vulnerabilities
- Two invariants to hold for all "reasonable" contracts:
 - Balance invariant (intra-contract)
 - Transaction invariant (inter-contract)
 - These include but are not limited to all ERC-20 contracts

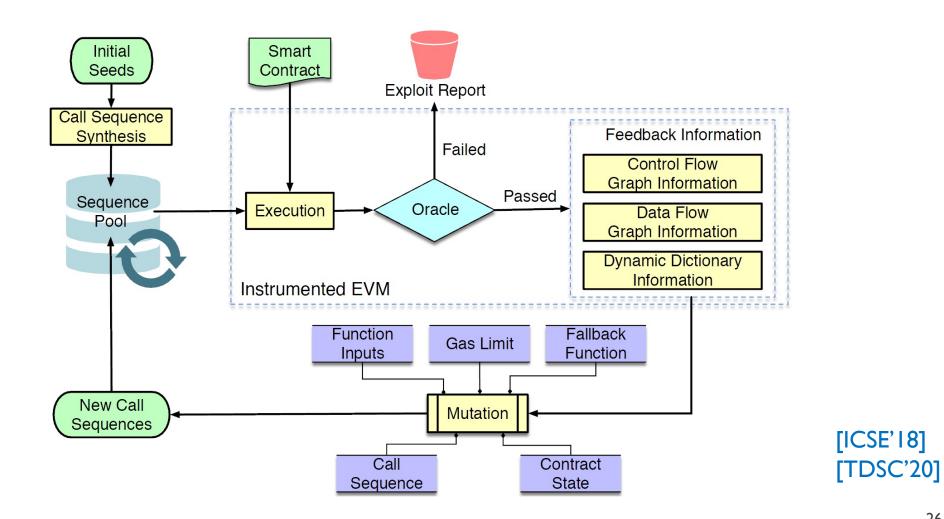
Security

Checker


Balance Invariant

- Balance Invariant. For every contract < a, bal, P, M >, $\sum_{p \in P} M(p) - bal = K$, where K is a constant
- Example in contracts Attacker DAO
 - before: (10 + 15) 25 = 0
 - after: (10 + 20) 30 = 0

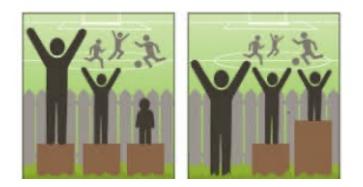

Transaction Invariant


- Transaction Invariant. For every outgoing transaction $\langle a, r, v \rangle$, $\Delta(M(r)) + \Delta(r, bal) = 0$, where $\Delta(x) = post(x) - pre(x)$ and pre(x)and post(x) denote value of a variable x before and after a transaction
- Example in contract Attacker DAO
 - $\Delta(DAO.M) = -5$ and $\Delta(attacker.bal) = +5$

Invariant Violation in DAO Attack

ContraMaster: Oracle-Supported Fuzzing

Security Checker



New Attack Surfaces

- Discovered 3 types of new attacks (not reported by other tools)
 - Incorrect access control
 - E.g., CreditDepositBank
 - Honey trap
 - E.g., ETH_VAULT and WhaleGiveaway
 - Violating transaction invariants
 - Deposit less and withdraw more
 - E.g., LZLCoin
 - Violating balance invariants
 - More details can be found at: <u>https://sites.google.com/view/contramaster</u>

There is no objective standard of "fairness". "Fairness" is strictly in the eye of the beholder... To a producer or seller, a "fair" price is a high price. To the buyer or consumer, a "fair" price is a low price. How is the conflict to be adjudicated?

– Milton Friedman, Newsweek, July 4, 1977.

Define Fairness Properties

- Challenges in defining fairness
 - Fairness can be subjective
 - Fairness \neq Equality \neq Equity (in contrast to the "unbiased" definition)

Contract

participant's

expectation!

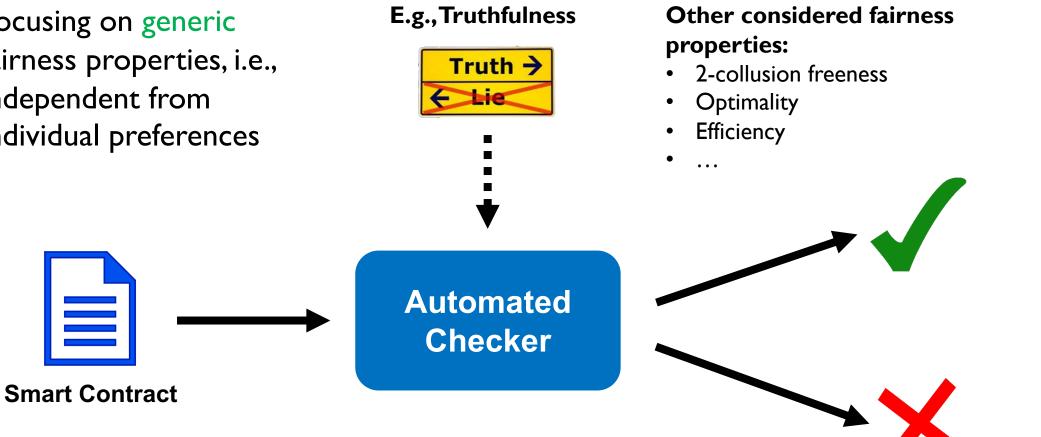
Θ

 $\theta -$

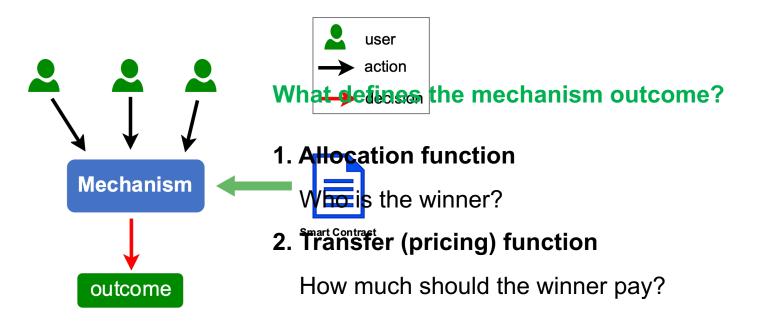
 $\xi(M,g,\theta)$

M,g

- Consider smart contract as a game form
 - A number of players: $N = \{1, 2, ..., n\}$
 - An action set for each: $\varTheta_1, \varTheta_2, \ldots, \varTheta_n$
 - An outcome function:
 - $d: \Theta \rightarrow O$ (allocation function)
 - $t: \Theta \longrightarrow \mathbb{R}^n$ (transfer function)
- Preference (utility) function (individual-specific)
 - $u_i: O \longrightarrow \mathbb{R}$


Х

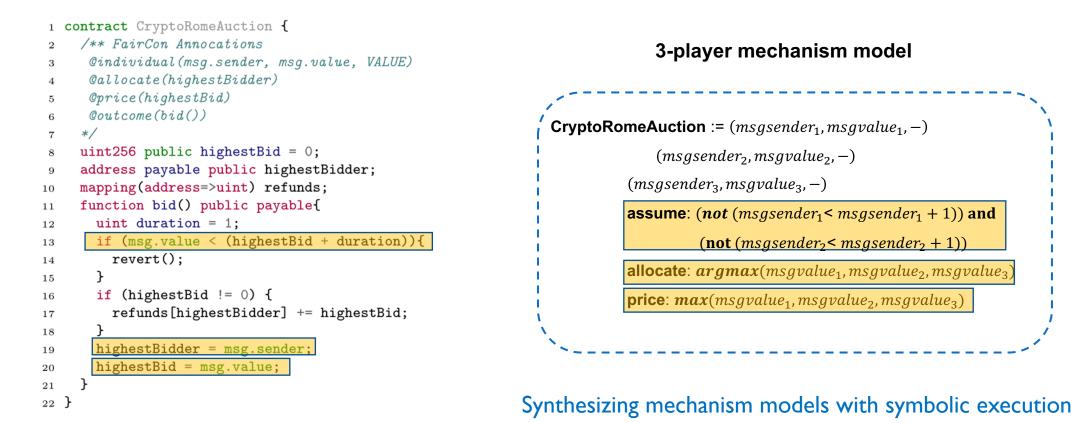
· f(0)


Smart Contract Fairness Verification

Fairness Checker

Focusing on generic fairness properties, i.e., independent from individual preferences

Mapping Smart Contracts into Mechanism Models

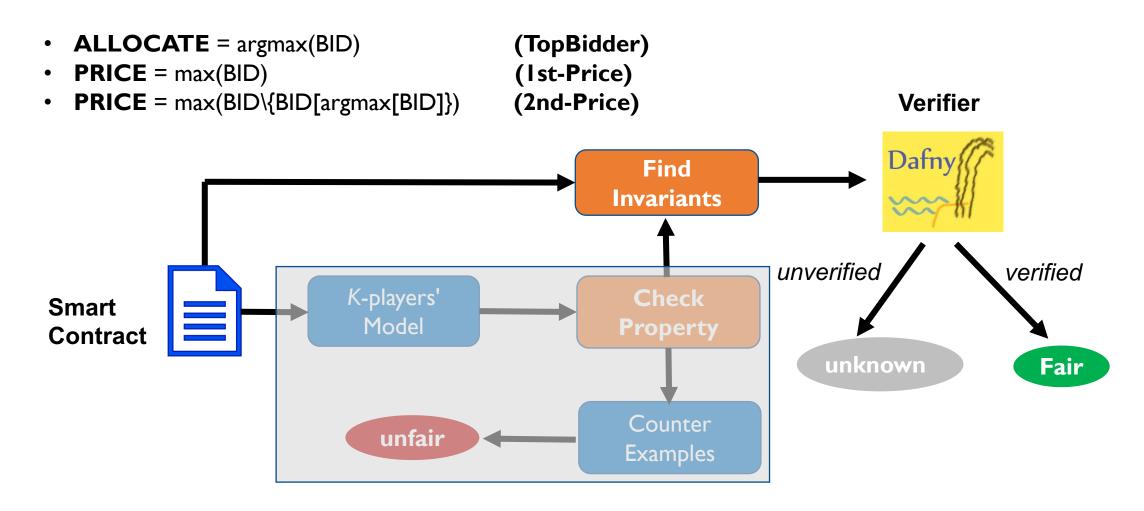


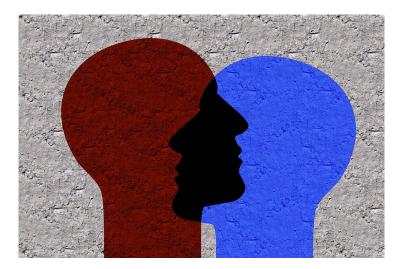
Fairness

Checker

Mapping Smart Contracts into Mechanism Models

Some contract annotation can be automated: e.g., ERC-1202 (voting), ERC-1815 (blind auction)


[FSE'20] Ye Liu, Yi Li, Shang-Wei Lin, Rong Zhao


Fairness

Checker

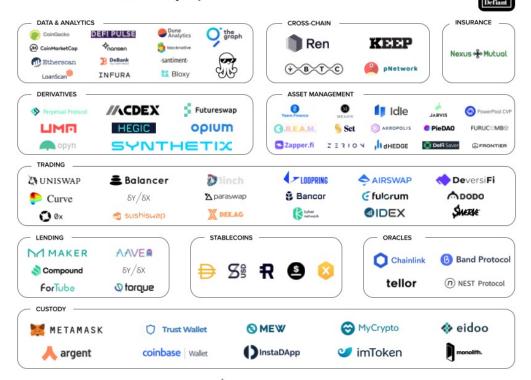
Fairness Proof: from k-player to n-player

Fairness Checker

Story 3

When the boundary between security and fairness becomes blurry ...

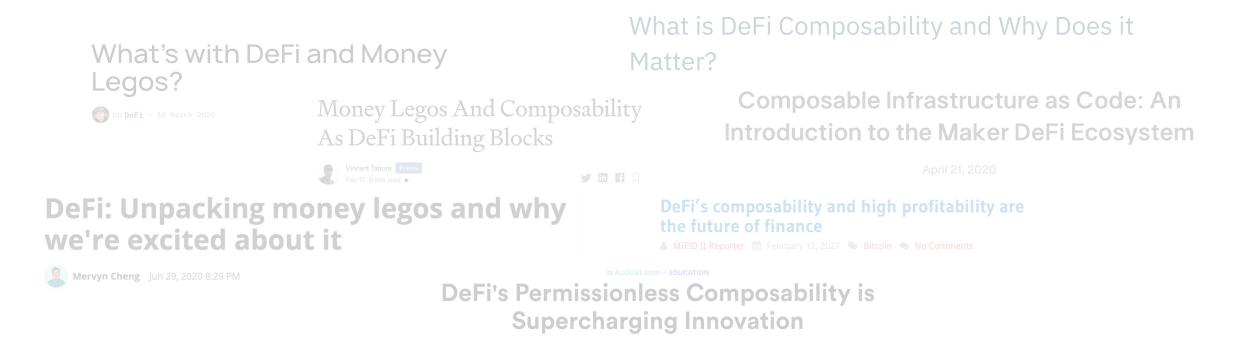
Decentralized Finance


DeFi is an ecosystem of financial applications that are built on blockchain using smart contracts

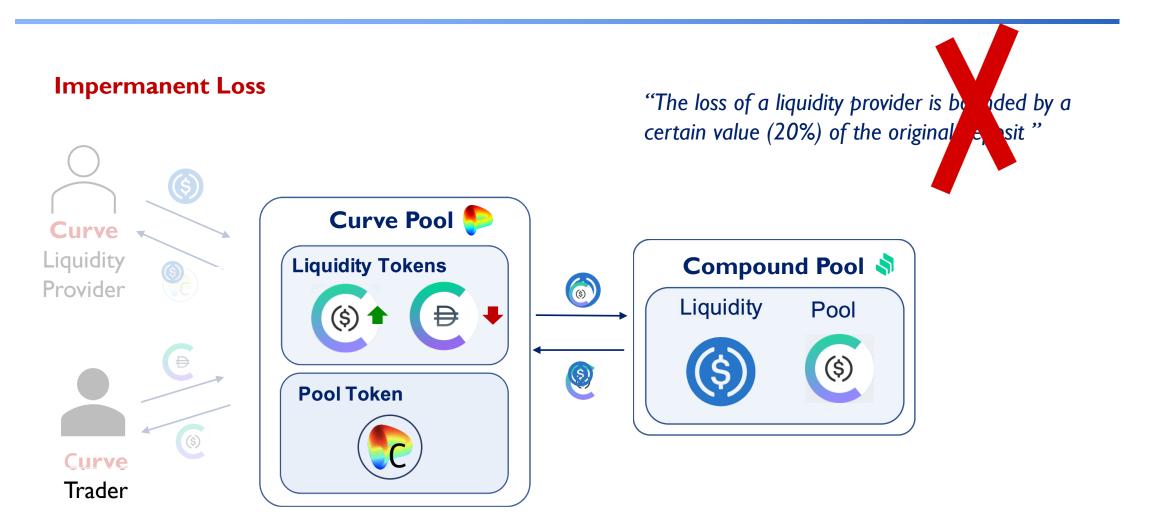
Total Value Locked (USD) in DeFi

Source: https://defipulse.com/

Source: https://thedefiant.io/defi-projects-map/

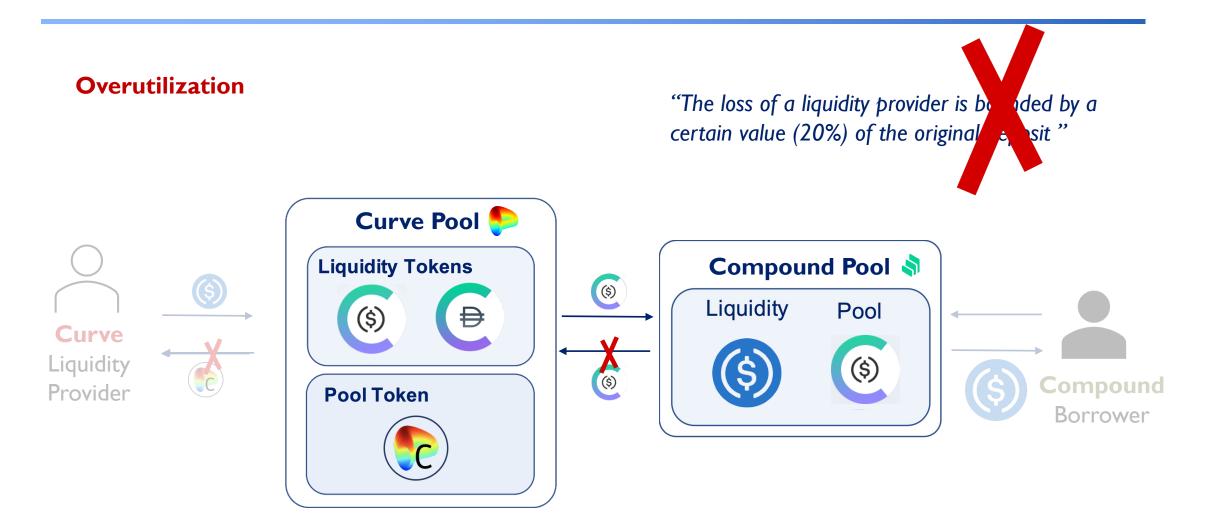


ETHEREUM DeFi Map by Simone Conti



DeFi "Money Lego"

• Composability is one of the key features of DeFi applications



"Bounded Loss" Property Violation

[DeFi'21] Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu

"Bounded Loss" Property Violation

[DeFi'21] Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu

A player may play multiple games simultaneously All contracts/games can be tontially be bestile

• All contracts/games can potentially be hostile

• A contract behind one game may become a player of another

- Sometimes, fairness is security
 - There are "technical" security and "economical" security (Werner et al., 2021)
 - "A DeFi protocol is technically secure if it is not possible for an attacker to obtain a risk-free profit"
 - "A DeFi protocol is economically secure if the protocol aligns incentives among all interacting agents such that non-technical exploits are economically infeasible"
- So, how do we move forward?
 - We don't have an answer, yet ...
 - May draw some inspirations from the literature

Moral of the story

Reality is often more complicated

14 / 1/ I														
ns	Applications	Model Formalisms			Specification Formalisms			Verification Techniques						
Domains		Process Algebra	Transition System	Control-Flow Automata	Program Logic	Temporal Logics	Other Logics	Hoare Logic	Path-Level Patterns	Model Checking	Theorem Proving	Symbolic Execution	Program Verification	Runtime Verification
	ICO / Token	[<u>165</u>] ^Ξ		[203]=	[200]	[181, [203] [±]	[200] ⁼ [165] ⁼	[162, 164] ^Ξ	[77] ⁼	[181]=	[164] ^Ξ	[<u>203</u>] ^Ξ	[165, 200] ^Ξ	[162, 77] ^Ξ
Finance	Bank		[152, [97] ^Ξ		[97] ^Ξ	[152, [97] [±]		[<u>26</u>] ^Ξ	[<u>58</u>] ^Ξ	[152, [97] ^Ξ			[26] [58] ^Ξ	
ins	Wallet		$[193]^{\pm}$		[56] [◆]	[193]=	8	$[90, 56]^{\diamond}$		[193]=	[<u>56</u>]*		[90] [◆]	
н	Escrow	[<u>209</u>]=	[97] [±]		[33, [97] [46] ^Ξ	[97] [±]		[<u>33</u>]=	[209, [46] [±]	[209, [97] ^Ξ	[<u>33</u>] ^Ξ			[<u>46</u>] ^Ξ
	Auction		[<u>181]</u> ^Ξ			[<u>181</u>] ⁼		[268] [±] [54]*	0	[181]=			[268, 171] ⁼ [54	*
Social Games	Voting		[97] [±]		[97] ^Ξ	[97] ^Ξ		56 [◆] 38, 162 ^Ξ	(burt)	[97] ^Ξ	56	[171] ^Ξ	[38, 171] ^Ξ	[162] ^E
0.0	Games / Gam- bling		[233] ^Ξ			[233]=		[53]*	[<u>100</u>] ⁼				[53] *	[100] ^E
	Supply Chain		[31]*			[31]*		[251] ⁼	[108]*	[31]*			[251] ^Ξ	[108]*
10	Marketplace		[192] [±]			[192]=		[191] ⁼		192			[191] ⁼	
Asset Tracking	License Agree- ment		[233] [±]		122	233=	122						122	
나 나	Name Regis- tration		[24] [±]			[<u>24</u>] ^Ξ	[137] ⁼			[24] [±]	[137]=			
Proto- cols	Timed Commitment	[44] ^B	[35] ^B			[44] [35] ^B				[44, [35] ^B				
P.	Atomic Swap		[242]*		[139]	242	139			242	139			
	Reentrancy		[<u>181</u>] ^Ξ	[175] ⁼		[181]=	[138] ⁼		[169, 249, [175] ⁼	[181]=	[138] ⁼ [194] ⁺	[175] ^Ξ	[249] ^Ξ	[169] [±]
	Concurrency	[209] ⁼		[151] ⁼					$\begin{bmatrix} 209, \\ 249 \end{bmatrix}^{\Xi}$ 151,	[209]=		[<u>151</u>] ^Ξ	[249] [±]	
	Dependence Manipulation			$\begin{bmatrix} 175 \\ 136 \end{bmatrix}^{+}$					[175, 249, [176] ^{\vec{1}} [136] [†]			$[136]^{\dagger}$	[<u>249</u>] [±]	[176] ⁼
Security	Unchecked Call			[175] ⁼					$\begin{bmatrix} 249, & 175, \\ 74 \end{bmatrix}^{\Xi}$			$[175]^{\Xi}$	[249] [±]	[74] ⁼
Sec	Access Control	[<u>165</u>] ⁼		[203] ⁼ [136] [†]		[203]=	[<u>232</u> , [165] ^E	[<u>251]</u> =	[66][74] ⁼		[232]=	[136] [†]	[66] 165, 203, 251] ^Ξ	[74] ⁼
	Liquidity	[52] ^B	[181] ^Ξ	[195, [240] [±]		[52] ^B [181] ⁼	[222]		$[240, [195]^{\Xi}$	[52] ^B [181] ⁼	222	()	[240] ^Ξ	
	Resource			124,			[117] ⁼	[191] ^E	$[124, [75]^{\pm}]$		[117]=		[124,	
	Consumption Arithmetic			75] ^Ξ			[232]=	[227] ⁼	[176, 106] ⁼		[232]=		191 ^Ξ [227] ^Ξ	[176] ⁼
	Antimetic			[100]			232	441	[110,[100]		232	[100]	441	[110]

Table 2.2: A (partial) overview of the formalization and verification literature.

Some open challenges

- Scalable and precise intercontract analysis
- Easier way to write good specifications
- Collaborative development of standards

Definitely more attention on fairness issues

SCPub dataset [ACM CSUR'21]

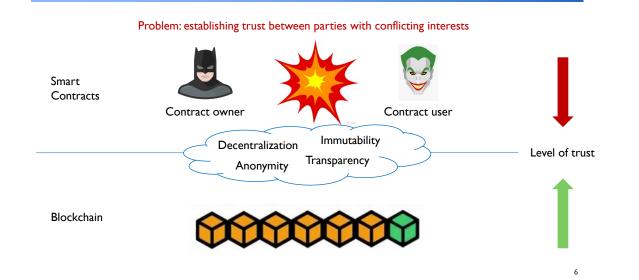
 Ξ : Ethereum, B: Bitcoin, \star : Hyperledger Fabric, \star : Tezos, \dagger : EOS, \star : Other

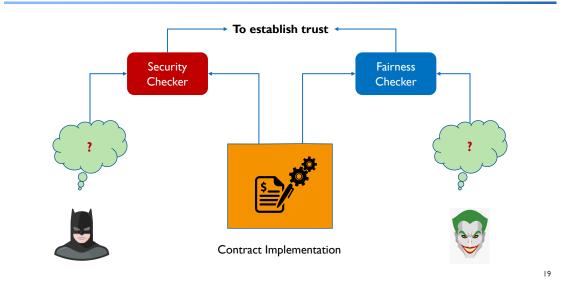
Acknowledgements

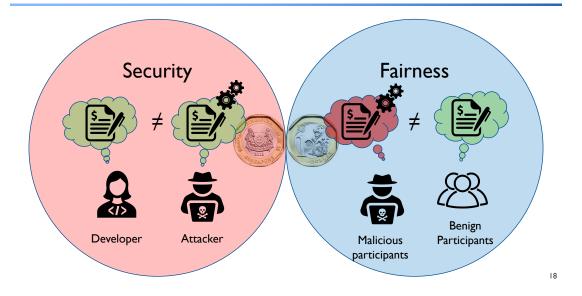
Ye Liu

Palina Tolmach

Haijun Wang


Shang-Wei Lin


Yang Liu


In code we trust? No!

Smart Contracts: Security vs Fairness

Establishing Trust between Contending Parties

Moral of the story

- Reality is often more complicated
 - A contract behind one game may become a player of another
 - A player may play multiple games simultaneously
 - All contracts/games can potentially be hostile
- Sometimes, fairness is security
 - There are "technical" security and "economical" security (Werner et al., 2021)
 - "A DeFi protocol is technically secure if it is not possible for an attacker to obtain a risk-free profit"
 - "A DeFi protocol is economically secure if the protocol aligns incentives among all interacting agents such that non-technical exploits are economically infeasible"
- So, how do we move forward?
 - We don't have an answer, yet ...
 - May draw some inspirations from the literature

