ioncgd NANYANG

S0
TECHNOLOGICAL
% UNIVERSITY
SINGAPORE

Smart Contract Security and Fairness
A Tale of Two Contending Parties

Yi Li
Nanyang Technological University

Online
May |3,2021

Why is blockchain such a big thing?

Internet is the information
superhighway

Blockchain is the Internet of
value (trust)

Smart Contracts

User-defined computer programs running on top of blockchain

> 3> %o

Users Smart Contract Execution

Image curtsey: www.flaticon.com

YIQY

A\

“'("(‘
A\

l v g
YR

A\
A\

\

Blockchain

Smart Contracts

* Managing exchange of digital assets

* Applications across many different
sectors

* Ethereum in 2020:

e 825,895 smart contracts created in
February

* 2,855 DApps
* 31.59K active users / Day
* [.143M ($670M) transactions / Day

Sources:

Ethereum Statistics: https://ycharts.com/indicators/reports/ethereum statistics

Consensys: https://consensys.net/blog/news/ethereum-by-the-numbers-may-2020/

Impact of blockchain by industry

N/A Limited Low Medium

Revenue Cost Capital

High

Social

Agriculture

Arts and recreation

Automotive

Financial services

Healthcare

Insurance

Manufacturing

0OO0CPDO

Mining

Property

Public sector

Retail

Technology, media,

and telecommunications

Transport and logistics

OO

Utilities

[JoNel JoNoNeNeNeNel JeNeoNe

® 000 00000
@ @8 080 ©

Revenue Cost Capital

McKinsey&Company

010000 0811 1@

Social

https://ycharts.com/indicators/reports/ethereum_statistics
https://consensys.net/blog/news/ethereum-by-the-numbers-may-2020/

In code we trust! No!

Problem: establishing trust between parties with conflicting interests

Smart
Contracts

Contract owner Contract user

Decentralization Immutability

Level of trust

Blockchain

Story |

Who moved my Ether?

Blockchain/Smart Contracts Security Incidents

2019/01 51% attack on Ethereum Classic, $200K of Loss $.0 LR w-'

2018/06 | Bithumb Hacks with $31 Million Dollars Stolen [ARt o A
2018/05 | EDU, BAIC Smart Contracts Bugs $60 Million EtherTheft

2018/04 | BEC,SMT Smart Contracts Bugs

2018/04 | Myetherwallet Suffer from DNS Hijacking EEEEEICECE

2018/02 BitGrail Hacks with Stolen Nano Tokens of |70 Millj e e reportedy beenhecked sparking a road marketseloft.

A leaderless organization comprised of a series of smart contracts written on the ethereum codebase, The
2 O I 8/0 I DAO has lost 3.6m ether, which is currently sitting in a separate wallet after being split off into a separate

Dollars Coincheck Hacks with 530 Million Dollars S sewnsassescnsono:

2017/12 | Nicehash Hacks with 4700 BTC Missing with 62 Million Dollars

2017/06 | Bithumb Hacks with | Billion Korean Yuan Loss and 30 Thousand User
2016/08 | Info.Leaked Bitfinex Hacks with 120,000 BTC Stolen of 75 Million Dollars
2016/01 | Cryptsy Hacks with 13,000 BTC and 300,000 LTC

2015/01 | Stolen Bitstamp Hacks with 19,000 BTC Stolen

2014/03 | Poloniex Hacks with 12.3% BTC Lost

2014/02 | Mt.Gox Hacks with Followed Bankruptcy

v f & inws & N

Example: the DAO attack

Attacker’s Contract

function moveBalance() {
dao.withdraw();

}

function () payable{

}

DAO Contract

mapping(address => JNer|[IRdl-Ne[-1011¢
"fallback” function

function withdraw()

uint amount = balances g.sender] ;

balances[msg.sender]

Example: the DAO attack

Attacker’s contract DAO contract

Re-entrancy attack with repeated Ether withdrawal

Initiate withdrawal

withdraw

fallback function _10 ETH Ether transfer

overridden by the attacker

. . send Ether, pass along gas
triggers another withdraw P g8

withdraw

update balance

Image source: https://quantstamp.com/blog/what-is-a-re-entrancy-attack internal state update 10

Moral of the story

Contract developers’ expectations # how the contract code actually works

&

Vo
S
-
‘I

Contract Developer Attacker

Story 2

All I want is my fair share

An Auction Smart Contract

® Open to all bidders
® highestBidder wins the bid

® Latecomer wins when bidding $1 more than the highestBid

contract CryptoRomeAuction {
uint256 public highestBid = 0;
address payable public highestBidder;
mapping (address=>uint) refunds;
function bid() public payable{
uint duration = 1;
if (msg.value < (highestBid + duration)){
revert();
}
if (highestBid != 0) {
refunds[highestBidder] += highestBid;
}
highestBidder = msg.sender;
highestBid = msg.value;

Centurion #15 Cinque Terre

A ® ForSale =0.75 ® Forsale=0.1
. @ ForSale=1 m m
. [oo |
rice1
Auction
B
price2
' ﬁ
c price3 Winner
O
A

=3 bid (price)

An Auction Smart Contract

® Open to all bidders
® highestBidder wins the bid

® Latecomer wins when bidding $1 more than the highestBid

contract CryptoRomeAuction {
uint256 public highestBid = 0;
address payable public highestBidder;
mapping (address=>uint) refunds;
function bid() public payable{
uint duration = 1;
if (msg.value < (highestBid + duration)){
revert();
}
if (highestBid != 0) {
refunds[highestBidder] += highestBid;
}
highestBidder = msg.sender;
highestBid = msg.value;

A 3 3
B 4 4
C 6 6

A C wins and pays $6

3
Auction
B
o Y
Al P~
5 Winner
C
O
)

=3 bid (price)

Threats to “Smart’” Auction Fairness

A

3
Auction
B
4

,300.0(

L= 2 > —_— .Q‘
Untruthful behaviors c. y Winner
- =3 bid (price)
A
®
3
\ Auction
g c
__)-
Winner

Collusion among
bidders
=3 bid (price)

« C wins but pays only $5
 Auctioneer loses

B and C win and only
pay $4 in total

 Both auctioneer and
other bidders lose

A “Smart” Ponzi Scheme

. 16 function enter(address inviter) public {
+$25 17 if ((msg.value < 1 ether) ||
18 (tree[msg.sender].inviter != 0x0) ||
19 (treel[inviter].inviter == 0x0)) throw;
20
. ‘ 21 tree[msg.sender] = User({itself: msg.sender,
22 inviter: inviterl});
+$25 23 address current = inviter;
2 uint amount = msg.value;
p 25 while (next != top) {
/ 26 amount = amount/2;
Fd I // I \ 27 current.send (amount) ;
@ ® ® @ 28 current = tree[current].inviter;
29 }
+$50 w w 30 current .send (amount) ;
31 1}
//’//// P
r -

WTEITEIR],

Moral of the story

Contract participants’ interpretation # how the game rules are actually written

4

s
iz

Benign
Participants

Malicious
contract owner (or
other participants)

Smart Contracts: Security vs Fairness

Fairness

Security

Developer Attacker Malicious Participants

participants

Establishing Trust between Contending Parties

» To establish trust <«

Fairness

Security
Checker

Checker

@

7

o

Contract Implementation A

A Typical Security Checker

* Check for pre-defined (high-profile) attack patterns

* Reentrancy
* The DAOQO attack (3.5 million Ether stolen, worth $45 million USD)

* Exception Disorder
* Gasless Send

* Integer Overflow/underflow
* The Proof of Weak Hand (PoWH) coin
* 866 Ether stolen

* Easy to miss real issues or find a lot of spurious bugs

20

Pattern-Based Security Checkers el

z Attacker Contract DAO Contract

function attackDao(){ mapping(address => uint) balances;)
dao.withdraw(...); Throw exception
} function withdraw(uint amount) {

require(balances| msg. sender] 2 amount);

function() payable{ ~=msg.sender.call.value(amount)(); <,
dao.withdraw(...); [Sbalances[msg. sender] -= amount; =’
} !

withdraw withdraw
attackDAO check -> update -> send check -> revert

Non-exploitable reentrancy — withdraw cannot go beyond authorization

21

Security checker that knows you well

* Key insights:
* Vulnerabilities happen due to the mismatch between the externally visible

balance and the internal bookkeeping

* This applies to many types of vulnerabilities

* Two invariants to hold for all “reasonable” contracts:

* Balance invariant (intra-contract)
* Transaction invariant (inter-contract)

* These include but are not limited to all ERC-20 contracts

22

Balance Invariant

Attacker Contract DAO Contract

[balance bal = 20] [balance bal = 28]T 5

[mapping(address =>uint) M]

function deposit(){ Deposit - 5 ether M[lucy] = 10|
dao.deposit.value(...)(); ——- L J

}

M['mike’] =28 |1 3

* Balance Invariant. For every contract <a, bal, P, M>,
Ypep M(p) — bal = K, where K is a constant

* Example in contracts Attacker - DAO
* before: (10 + 15)-25=0
e after: (10+20)-30=0 23

Transaction Invariant

Attacker Contract DAO Contract

[balance bal = 36]T5 [balance bal =26]

[mapping(address =>uint) M]

M[‘lucy’] = 10|

function withdraw (){ Withdraw - 5 ether
dao.withdraw(...); ——

}
* Transaction Invariant. For every outgoing transaction <a, r, v>,
A(M(r)) + A(r.bal) = 0,where A(x) = post(x) — pre(x) and pre(x)
and post(x) denote value of a variable x before and after a transaction

M['mike’]= 18 | | 5

* Example in contract Attacker — DAO

« A(DAO.M) =-5 and A(attacker.bal) = +5 9y

Invariant Violation in DAO Attack =y

Attacker Contract DAO Contract

function attackDao(){ mapping(address => uint) balances;
dao.withdraw(5);

} function withdraw(uint amount) {
: require(balances| msg. sender] 2 amount);

function() payable{ msg.sender.call.value(amount)();
dao.withdraw(5); } balances[msg.sender] -= amount;

}

withdraw withdraw withdraw

attackDAO

check -> send check -> send = EEOnT check -> send

The balance invariant is violated!

25

Security

ContraMaster: Oracle-Supported Fuzzing [

Initial
Seeds

Smart
Contract
p——

\ Exploit Report
Call Sequence TTCTIE T PR TSy

Svynthesis

| |

Feedback Information '

Failed

Control Flow
Graph Information

Passed

Seggglnce —— | Execution —> Data Flow
" i Graph Information
“’\ Dynamic Dictionary
 Instrumented EVM | —— I_n formatlon ________
Function Gaa it Fallba}ck
Inputs Function
New Call \: Mutation | |
Sequences [|CSE’ | 8]
Call Contract [TDSC’ZO]

Sequence State

26

New Attack Surfaces

* Discovered 3 types of new attacks (not reported by other tools)
* Incorrect access control
* E.g., CreditDepositBank

* Honey trap
* E.g,ETH_VAULT and WhaleGiveaway

* Violating transaction invariants

* Deposit less and withdraw more
* E.g,LZLCoin

* Violating balance invariants

* More details can be found at:

27

https://sites.google.com/view/contramaster

Fairness
Checker

There is no objective standard of “fairness”. Fairness” is
strictly in the eye of the beholder...To a producer or seller, a
“fair” price is a high price. To the buyer or consumer, a “fair”
price is a low price. How is the conflict to be adjudicated!?

— Milton Friedman, Newsweek, July 4, 1977.

i of i N %

28

Define Fairness Properties

* Challenges in defining fairness

* Fairness can be subjective
* Fairness # Equality # Equity (in contrast to the “unbiased” definition)

* Consider smart contract as a game form
* A number of players: N = {1, 2, ...,n}
* An action set for each: 04, 0,, ..., 0,

* An outcome function:
* d:0 — O (allocation function)
* t:0 — R" (transfer function)

@

* Preference (utility) function (indiviaual-specific)
* U O —R

§(M,g,0)
M,g

29

Smart Contract Fairness Verification

Focusing on generic E.g., Truthfulness Other considered fairness
: .. . properties:

fairness properties, i.e., | Truth > e 7 collusion freeness

independent from « Optimality

 Efficiency

individual preferences

Automated
Checker

Smart Contract

30

Mapping Smart Contracts into Mechanism
Models

Fairness
Checker

M user

=3 action
What-gefinas the mechanism outcome?

. AHegation function
the winner?
2. Transfer (pricing) function
How much should the winner pay?

31

Mapping Smart Contracts into Mechanism g
MOdels Checker

Some contract annotation can be automated: e.g., ERC-1202 (voting), ERC-1815 (blind auction)

1 contract CryptoRomeAuction {
/** FairCon Annocations .
@individual (msg.sender, msg.value, VALUE) 3-p|ayer mechanism model
@allocate(highestBidder)
@price(highestBid) s - T-T-TTTTTTEETTETTEETTEEEEIEETITOIETIEITEISTT RN
@outcome(bid()) /
*/
uint256 public highestBid = 0;
9 address payable public highestBidder;

CryptoRomeAuction := (imsgsender;, msgvalue;, —)

0 N s WN

(msgsender,, msgvalue,, —)

| I
I I
I I
I
10 mapping(address=>uint) refunds; I (msgsenders, msgvalues, —) :
11 function bid() public payable{ 1 . P 1
o wint duration = 1i: : assume: (not (msgsender;< msgsender; + 1)) and "
13 | if (msg.value < (highestBid + duration)){ | | (not (msgsender,< msgsender, + 1)) :
14 revert(); | - 1
15 } I allocate: argmax(msgvalue,, msgvalue,, msgvalues .
‘ . . . _ 1 = I
16 if (highestBid != 0) { I price: max(msgvalue;, msgvalue,, msgvalues) I
17 refunds[highestBidder] += highestBid; \ I
18 } \ /
19 highestBidder = msg.sender; M N e o o o o e - -7
20 [highestBid = msg.value; |
21 }
22 } Synthesizing mechanism models with symbolic execution

[FSE’20] Ye Liu,Yi Li, Shang-WVei Lin, Rong Zhao 3

Fairness Proof: from k-player to n-player

« ALLOCATE = argmax(BID) (TopBidder)
* PRICE = max(BID) (1st-Price)
* PRICE = max(BID\{BID[argmax[BID]}) (2nd-Price) Verifier

Find Dafny
Invariants VoS
un veriﬁV verified
Smart K-players'
Contract Model

Counter

Examples

33

Story 3

When the boundary between security and fairness becomes blurry ...

Decentralized Finance

DeFi is an ecosystem of financial applications that are built on

blockchain using smart contracts

Total Value Locked (USD) in DeFi
TVL (USD) | ETH | BTC

$508
$45B8
$40B
$35B
$30B
$25B
$20B
$15B

$10B
Jan

Source: https://defipulse.com/

Source: https://thedefiant.io/defi-projects-map/

All | 1Year | 90 Day | 30 Day

Mar 4, 2021 8:00 AM
[TVL (USD) $40.393B

Feb Mar

ETHEREUM DeFi Map by Simone Conti

— DATA & ANALYTICS

The
Deliant

" ~ — CROSS-CHAN —F—F— INSURANCE =
(@ cwome commmen O O) [X o ‘
Biniis N e TP M Ren KEEP) |
Mut
@E:har;ran J DeBank ‘santiment BXUS+ val
LoanScan INFURA Bloxy 6} enetwork ‘ ‘
J 75N J
/— DERIVATIVES \v “/— ASSET T \‘
o JNWCDEX Futureswap o . (] l' Idle = © rowerrosicy
UMM oplum Set) acrorouis @ PieDAO FURUC MBS
. &R SYNTHETIX) \Qldvpvv fi. zzz10v JigHence Srmomen |
/_ TRADING
I3 UNISWAP & Balancer D 4o & AIRSWAP @ oecrsiFi
£ Curve 5Y /86X A paraswap & Bancor € fulcrum \popo
O ox (KB OIDEX Swere
AN - J
v LENDING —\ /— STABLECOINS 4\ P ORACLES — X
MAKER \AVER
i : 0 Chainlink @ Band Protocol
\) Cv /8y
& Compound 8Y /86X g§ R e _
For O torque tellor (1) NEST Protocol
N D4 J _ /
_— cusToDY
B¥ METAMASK O Trust Wallet © MEW © MyCrypto 4» eidoo
argent coinbase wallet ‘)InstaDApp ¥ imToken amm.
A J

Qeﬂwereum

DeFi “Money Lego”

* Composability is one of the key features of DeFi applications

36

“Bounded Loss” Property Violation

Impermanent Loss

4 Curve Pool T A

4)
/Liquidity Tokens) Compound Pool &
<<$) * < I= &, 4 Liquidity Pool)

- /

$
/Pool Token A @ @ ()
© :)

Trder \\ J,

[DeFi'21] Palina Tolmach,Yi Li, Shang-WVei Lin,Yang Liu

37

“Bounded Loss” Property Violation

Overutilization o o
“The loss of a liquidity provider is b

certain value (20%) of the origina

ded by a
it »

4 Curve Pool ? A

4)
/Liquidity Tokens h Compound Pool &

<$) <§ i, a4 Liquidity Pool)
\

J
®
/Pool Token A & @
© - .

- -,

[DeFi'21] Palina Tolmach,Yi Li, Shang-WVei Lin,Yang Liu

Moral of the story

* Reality is often more complicated
* A contract behind one game may become a player of another
* A player may play multiple games simultaneously
* All contracts/games can potentially be hostile

-,

* Sometimes, fairness is security

* There are “technical” security and “economical” security (VWerner et al.,2021)
* “A DeFi protocol is technically secure if it is not possible for an attacker to obtain a risk-free profit”

* “A DeFi protocol is economically secure if the protocol aligns incentives among all interacting agents
such that non-technical exploits are economically infeasible”

* So, how do we move forward!?
* We don’t have an answer, yet ...
* May draw some inspirations from the literature

39

Table 2.2: A (partial) overview of the formalization and verification literature.

@ Model Formalisms Specification Formalisms Verification Techniques
=
‘a3
g Applicati g 8
pplications =) St g R3] 2 = . - = = =
g 28 Sg &8 Ho| 5 ¥ E,“ ta -8 Ew g8 g3 g =
g2 %8 LE £m 28 = 3 °v¥ 5 28 K8 £ g
2% g8 £9 ¥IEE g B £ 35 Sg 22 EZ gE EE
&< fo 22 8 = g L “5 B~ &4 A8 =i
H™ . g< &8 & 5 K O FA gl &8 kS
[165)F [181]F [203]F [200]F [181) [200F [162)164]F [77)° (181]F [164]F [203]F [165, (162
1CQ.F Tolken 203 [165)F 200F [77F
5 97 T152] 6= 585 126
g Bank Vl.)i, m Ll_"):‘ [Z()J)8_ ‘l,_,)f‘ —26:
g [97)F 97)= 97> 58]=
£ | Wallet [193]F [56]% | [193]F [90][56]* [193F [56]* [90]*
= [200FF [97]F 33, | [97F [33F [209][46]F [209] [33]F [46[=
Escrow 97! 97)=
16]=
Auction [I81F [181F [268[F [54]* [181F [I71F [268]
) 171 [54]*
O g Voting 97 [971= | [97]F (567 [38 971 [56]° [171]" [38] [162]F
S s 162]F 1717
» o T CLT O3 T = Tal% =
Games / Gam- 233FF [233]F (53] [100FF [53] [100FF
bling
Supply Chain 31* 31)* 511 108]* 31)* [251]F 108]*
e | Marketplace [192F (192 [191[F [192F 191
2 _% License Agree- [233]F [233[F [122]F 122]F
< & | ment
& [Name Regis- 24 [24)F [137]F [24)= [137]F
tration
&, | Timed [44® [35)° [44] [44]
£ g | Commitment 358 35
o Atomic Swap 2421F oY [242]F)[F 242[F 139]F
[I81]F (175 [181]F [138[F [169] [249] | [181[F [138[F [I75]F [249]F [169F
Reentrancy S| T s T [Toa* i?')lz T [foam i =
Concurrency | [200]° [51F [209] [151] | [209F [I51F (249
2495
Dependence (175 (175, [249| [175]= [249]= [176[F
Manipulation (136]" 176]= [136]" [136]*
£ | Unchecked [175]F [249] T175] [175F [249F [74F
| Call 74]=
3 Access Control | 1L02) 203F [203[F [232] [251F [66, 74 [232F [203[F [66! 2
g [136]" 165]F [136]* (165,
203,
251]F
— [52]° [181]F [195]) B2° [222]* [240)195F | [52]° [222]* [195]F [240F
Liquidity 240 [181F (181
Resource [124] [I17F [191F [124][75]F [I17F [T5F [124;
Consumption 75)= 191]=
Arithmetic [106]F [232]F [227F [176]106]F [232FF [106FF [227F [176F

=: Ethereum, B: Bitcoin, *: Hyperledger Fabric, *: Tezos, *: EOS, *: Other

Some open challenges

* Scalable and precise inter-
contract analysis

* Easier way to write good
specifications

* Collaborative development of
standards

Definitely more attention on fairness issues

SCPub dataset
[ACM CSUR™21]

40

Acknowledgements

Shang-Wei Lin

Palina Tolmach

Yang Liu

41

In code we trust? No! Smart Contracts: Security vs Fairness

Problem: establishing trust between parties with conflicting interests

k ;’ Security
Smart ~
Contracts
Contract owner Contract user
Decentralization Tra::::imty Level of trust ’ ‘
Anonymity p 4 Fov C ,)
W, L O
) & O
Blockchain - had kad g
ORI @' Benign
. ’ . ’ . ’ . ’ . ’ . ’ 2 i Developer Attacker Malicious Participants

participants

Establishing Trust between Contending Parties Moral of the story

* Reality is often more complicated

* A contract behind one game may become a player of another :Qf\: :
et

* A player may play multiple games simultaneously
* All contracts/games can potentially be hostile

To establish trust

Fairness
Checker

Security
Checker

* Sometimes, fairness is security
* There are “technical” security and “economical” security (Werner et al.,2021)
* “A DefFi protocol is technically secure if it is not possible for an attacker to obtain a risk-free profit”
* “A DefFi protocol is economically secure if the protocol aligns incentives among all interacting agents
8 '5_\ such that non-technical exploits are economically infeasible”
=

* So, how do we move forward?
* We don’t have an answer, yet ...
* May draw some inspirations from the literature

@ -

Contract Implementation

